Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2014 May 24;70(Pt 6):o707–o708. doi: 10.1107/S160053681401143X

3-Bromo­methyl-4-meth­oxy-2-(2-nitro­phen­yl)-9-phenyl­sulfonyl-9H-carbazole

S Gopinath a, K Sethusankar a,*, Velu Saravanan b, Arasambattu K Mohanakrishnan b
PMCID: PMC4050995  PMID: 24940279

Abstract

In the title compound, C26H19BrN2O5S, the carbazole tricycle is essentially planar, with the largest deviation being 0.126 (3) Å for the C atom connected to the nitro­phenyl group. The carbazole moiety is almost orthogonal to the benzene rings of the adjacent phenyl­sulfonyl and nitro­phenyl groups, making dihedral angles of 85.43 (15) and 88.62 (12)°, respectively. The mol­ecular conformation is stabilized by two C—H⋯O hydrogen bonds involving the sulfone group, which form similar six-membered rings. In the crystal, mol­ecules symmetrically related by a glide plane are linked in C(6) chains parallel to [001] by C—H⋯O hydrogen bonds formed with the participation of the nitro group. The chains are reinforced by additional C—H⋯π inter­actions.

Related literature  

For the uses and biological importance of carbazoles, see: Itoigawa et al. (2000); Ramsewak et al. (1999). For electronic properties and applications, see: Friend et al. (1999); Zhang et al. (2004). For related structures, see: Narayanan et al. (2014); Gopinath et al. (2014). For the Thorpe–Ingold effect, see: Bassindale (1984). For bond-length distortions, see: Allen et al. (1987). For graph-set notation, see: Bernstein et al. (1995).graphic file with name e-70-0o707-scheme1.jpg

Experimental  

Crystal data  

  • C26H19BrN2O5S

  • M r = 551.40

  • Monoclinic, Inline graphic

  • a = 10.3176 (4) Å

  • b = 14.4431 (6) Å

  • c = 15.4901 (6) Å

  • β = 92.329 (2)°

  • V = 2306.40 (16) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.92 mm−1

  • T = 296 K

  • 0.35 × 0.30 × 0.25 mm

Data collection  

  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008) T min = 0.901, T max = 0.905

  • 28756 measured reflections

  • 6652 independent reflections

  • 3939 reflections with I > 2σ(I)

  • R int = 0.037

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.050

  • wR(F 2) = 0.161

  • S = 1.03

  • 6652 reflections

  • 317 parameters

  • H-atom parameters constrained

  • Δρmax = 0.42 e Å−3

  • Δρmin = −0.74 e Å−3

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S160053681401143X/ld2127sup1.cif

e-70-0o707-sup1.cif (23.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681401143X/ld2127Isup2.hkl

e-70-0o707-Isup2.hkl (325.6KB, hkl)

Supporting information file. DOI: 10.1107/S160053681401143X/ld2127Isup3.cml

CCDC reference: 1003645

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg1 is the centroid of the C7–C12 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O3 0.93 2.34 2.941 (4) 122
C9—H9⋯O4 0.93 2.32 2.925 (4) 122
C23—H23⋯O1i 0.93 2.53 3.264 (4) 136
C22—H22⋯Cg1ii 0.93 2.95 3.810 (4) 155

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

SG and KS thank Dr Babu Varghese, Senior Scientific Officer, SAIF, IIT, Madras, India for the data collection.

supplementary crystallographic information

1. Comment

Carbazole and its derivatives have become quite attractive compounds owing to their applications in pharmacy and molecular electronics. It has been reported that carbazole derivatives exihibit various biological activities such as antitumor and antioxidative (Itoigawa, et al. 2000), and anti- inflammatory and anti-mutagenic (Ramsewak, et al. 1999). They also exhibit electroactivity and luminenscence and are considered to be potential candidates for electronic applications such as colour displays, organic, semi- conductors, laser and solar cells (Friend, et al. 1999; Zhang et al. 2004).

The title compound, Fig. 1, comprises a carbazole ring system which is attached to a phenylsulfonyl group, a nitrophenyl, a methoxy and a bromomethyl group. The carbazole ring system is essentially planar with maximum deviation of -0.126 (3) Å for the carbon atom C10. The oxygen atom O5 significantly deviates from the carbazole ring by 0.1560 (22) Å. The carbazole ring is almost orthagonal to phenyl ring attached to sulfonyl group and nitrophenyl ring with dihedral angles of 85.43 (15)° and 88.62 (12)°, respectively.

As a result of electron-withdrawing character of phenysulfonyl group, the bond lengths N1–C1 = 1.424 (4) Å and N1–C8 = 1.430 (3) Å in the molecule are longer than the mean value of 1.355 (14) Å (Allen, et al. 1987). The atom S1 has a distorted tetrahedral configuration. The widening of angle O3—S1—O4 [120.22 (15)°] and narrowing angle N1—S1—C14 [104.44 (13)°] from the ideal tetrahedral value are attributed to the Thorpe-Ingold effect (Bassindale, et al. 1984).

The sum of the bond angles around N1 [353.6°] indicate the sp2 hybridization. The nitrogen atom N2 is almost in the plane of phenyl ring with the torsional angle of C21–C20–C25–N2 = -179.6 (3)°. The bromine atom forms the torsional angle of C10– C11–C26–Br1 = 88.1 (3)°.

The molecular structure is stabilized by C—H···O hydrogen bonds (Table 1 Fig. 1), which generate two S(6) ring motifs. In the crystal packing, molecules are linked via C23—H23···O1i intermolecular hydrogen bonding, which generate C(6) infinite chains running parallel to the base vector [0 0 1]. The crystal packing is further stabilized by C22—H22···Cg1ii intermolecular interaction, where the Cg1 is the centre of gravity of the benzene ring(C7–C12) (Bernstein, et al. 1995). The packing view of the title compound shown in the Fig-2 and Fig-3. The symmetry codes are: (i) x, -y + 1/2 + 1, +z - 1/2 (ii) x, 3/2 - y, -1/2 + z

2. Experimental

A mixture of 4-methoxy-3-methyl-2-(2-nitrophenyl)-9- (phenylsulfonyl)-9H-carbazole(1.65 g, 3.5 mmol) and NBS(0.93 g, 5.25 mmol) in dry CCl4(100 ml) containing a catalytic amount of AIBN(50 mg) was refluxed for 1 h. Then, it was cooled to room temperature and the additional equivalent of NBS(0.93 g, 5.25 mmol) and AIBN(50 mg) were added and allowed to reflux for 1 h. Then the reaction mixture was cooled to room temperature and the floated succinimide was filtered off through Na2So4 pad and washed with hot CCl4 (20 ml). The subsequent removal of solvent in vacuo followed by tituration of the crude product with MeOH(10 ml) afforded 3-(bromomethyl)-4-methoxy-2-(2-nitrophenyl)-9-(phenylsulfonyl) -9Hcarbazole(1.71 g, 89%) as a dull white solid. Single crystals suitable for X-ray diffraction was prepared by slow evapouration of a solution of the title compound in methanol at room temperature.

m.p. = 483 K–485 K.

3. Refinement

The positions of the hydrogen atoms were localized from the difference electron density maps and the distances were geometrically constrained. The hydrogen atoms bound to the C atoms are treated as riding atoms, with d(C–H) = 0.93 Å and Uiso(H) = 1.2Ueq (c) for aromatic and methoxy group, d(C–H) = 0.96 Å and Uiso(H) = 1.5Ueq(c) for the bromomethyl group. The rotation angle for the methyl group was optimized by least squares.

Figures

Fig. 1.

Fig. 1.

The molecular Structure of the title compound with the atom numbering scheme, displacement ellipsoids are drawn at 30% probability level. H atoms are present as small spheres of arbitrary radius.

Fig. 2.

Fig. 2.

The packing arrangement of the title compound viewed down a axis. The dashed line indicate the C—H···O intermolecular interaction. Symmetry Code: (i) x, -y + 3/2, +z - 1/2

Fig. 3.

Fig. 3.

Part of the crystal packing of the title compound viewed down b axis. the dashed lines indicate C22—H22···Cg1ii interactions, where the Cg1 is the centre of the gravity of (C7–C12). Symmetry code: (ii) x, -y + 1/2, +z - 3/2

Crystal data

C26H19BrN2O5S F(000) = 1120
Mr = 551.40 Dx = 1.588 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 6652 reflections
a = 10.3176 (4) Å θ = 2.0–27.0°
b = 14.4431 (6) Å µ = 1.92 mm1
c = 15.4901 (6) Å T = 296 K
β = 92.329 (2)° Block, white
V = 2306.40 (16) Å3 0.35 × 0.30 × 0.25 mm
Z = 4

Data collection

Bruker Kappa APEXII CCD diffractometer 6652 independent reflections
Radiation source: fine-focus sealed tube 3939 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.037
ω &φ scans θmax = 30.0°, θmin = 2.0°
Absorption correction: multi-scan (SADABS; Bruker, 2008) h = −14→13
Tmin = 0.901, Tmax = 0.905 k = −20→19
28756 measured reflections l = −17→21

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.161 H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0816P)2 + 0.8074P] where P = (Fo2 + 2Fc2)/3
6652 reflections (Δ/σ)max = 0.001
317 parameters Δρmax = 0.42 e Å3
0 restraints Δρmin = −0.74 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.5239 (3) 0.9609 (2) 0.16131 (19) 0.0406 (6)
C2 0.4792 (3) 1.0177 (2) 0.2262 (2) 0.0545 (8)
H2 0.4971 1.0808 0.2272 0.065*
C3 0.4077 (3) 0.9774 (3) 0.2886 (2) 0.0624 (9)
H3 0.3769 1.0139 0.3328 0.075*
C4 0.3802 (3) 0.8829 (3) 0.2873 (2) 0.0597 (9)
H4 0.3326 0.8573 0.3310 0.072*
C5 0.4221 (3) 0.8274 (2) 0.2225 (2) 0.0488 (7)
H5 0.4023 0.7645 0.2214 0.059*
C6 0.4952 (3) 0.8669 (2) 0.15814 (19) 0.0393 (6)
C7 0.5591 (3) 0.82841 (18) 0.08476 (18) 0.0363 (6)
C8 0.6265 (3) 0.89955 (18) 0.04518 (18) 0.0368 (6)
C9 0.7036 (3) 0.88394 (19) −0.02381 (18) 0.0396 (6)
H9 0.7454 0.9326 −0.0505 0.048*
C10 0.7173 (3) 0.79316 (19) −0.05237 (18) 0.0366 (6)
C11 0.6474 (3) 0.72050 (18) −0.01624 (17) 0.0370 (6)
C12 0.5667 (3) 0.73930 (18) 0.05171 (18) 0.0363 (6)
C13 0.3650 (3) 0.6679 (3) 0.0589 (2) 0.0654 (10)
H13A 0.3240 0.7248 0.0748 0.098*
H13B 0.3216 0.6168 0.0848 0.098*
H13C 0.3600 0.6614 −0.0028 0.098*
C14 0.8317 (3) 1.0435 (2) 0.1570 (2) 0.0443 (7)
C15 0.9401 (3) 1.0058 (2) 0.1228 (2) 0.0546 (8)
H15 0.9433 0.9957 0.0636 0.065*
C16 1.0440 (4) 0.9831 (3) 0.1767 (3) 0.0678 (10)
H16 1.1179 0.9574 0.1541 0.081*
C17 1.0389 (4) 0.9983 (3) 0.2642 (3) 0.0755 (12)
H17 1.1099 0.9838 0.3006 0.091*
C18 0.9288 (4) 1.0349 (4) 0.2979 (3) 0.0779 (12)
H18 0.9251 1.0441 0.3572 0.093*
C19 0.8250 (4) 1.0576 (3) 0.2448 (2) 0.0641 (10)
H19 0.7505 1.0824 0.2675 0.077*
C20 0.8034 (3) 0.77497 (18) −0.12588 (17) 0.0372 (6)
C21 0.7515 (3) 0.7773 (2) −0.2098 (2) 0.0536 (8)
H21 0.6637 0.7901 −0.2192 0.064*
C22 0.8278 (4) 0.7609 (3) −0.2803 (2) 0.0641 (10)
H22 0.7906 0.7626 −0.3360 0.077*
C23 0.9561 (4) 0.7425 (3) −0.2683 (2) 0.0633 (10)
H23 1.0071 0.7328 −0.3157 0.076*
C24 1.0099 (3) 0.7381 (2) −0.1871 (2) 0.0531 (8)
H24 1.0975 0.7240 −0.1786 0.064*
C25 0.9345 (3) 0.75469 (19) −0.11715 (17) 0.0386 (6)
C26 0.6569 (3) 0.6230 (2) −0.0488 (2) 0.0472 (7)
H26A 0.6094 0.5762 −0.0237 0.057*
H26B 0.7103 0.6095 −0.0940 0.057*
N1 0.6006 (2) 0.98366 (15) 0.08997 (16) 0.0407 (5)
N2 1.0011 (3) 0.7494 (2) −0.03198 (18) 0.0520 (7)
O1 0.9650 (3) 0.7991 (2) 0.02487 (15) 0.0771 (8)
O2 1.0921 (3) 0.6960 (2) −0.0230 (2) 0.0881 (9)
O3 0.6318 (3) 1.14928 (15) 0.12702 (17) 0.0634 (6)
O4 0.7410 (3) 1.08277 (15) 0.00314 (15) 0.0575 (6)
O5 0.4979 (2) 0.66924 (14) 0.08849 (14) 0.0482 (5)
S1 0.69953 (8) 1.07490 (5) 0.08859 (5) 0.0460 (2)
Br1 0.80182 (4) 0.55845 (2) 0.01227 (2) 0.06233 (16)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0317 (14) 0.0433 (15) 0.0466 (16) 0.0042 (11) 0.0016 (12) −0.0051 (13)
C2 0.0420 (18) 0.0529 (19) 0.069 (2) 0.0071 (14) 0.0026 (16) −0.0164 (17)
C3 0.0446 (19) 0.082 (3) 0.061 (2) 0.0042 (18) 0.0081 (16) −0.021 (2)
C4 0.0427 (18) 0.085 (3) 0.0519 (19) −0.0037 (17) 0.0084 (15) −0.0034 (18)
C5 0.0413 (17) 0.0549 (18) 0.0504 (18) −0.0038 (14) 0.0027 (14) −0.0001 (15)
C6 0.0295 (14) 0.0421 (15) 0.0459 (15) 0.0027 (11) −0.0025 (12) −0.0004 (12)
C7 0.0283 (13) 0.0367 (14) 0.0434 (15) 0.0008 (10) −0.0047 (11) 0.0007 (12)
C8 0.0345 (14) 0.0303 (13) 0.0452 (15) 0.0016 (11) −0.0042 (12) −0.0011 (11)
C9 0.0397 (15) 0.0339 (14) 0.0453 (16) −0.0051 (11) 0.0034 (13) 0.0009 (12)
C10 0.0313 (14) 0.0369 (14) 0.0412 (15) −0.0007 (11) −0.0038 (11) −0.0035 (12)
C11 0.0383 (14) 0.0300 (13) 0.0421 (15) 0.0004 (11) −0.0063 (12) −0.0038 (11)
C12 0.0344 (14) 0.0313 (13) 0.0427 (15) −0.0041 (10) −0.0042 (12) 0.0032 (11)
C13 0.055 (2) 0.077 (2) 0.064 (2) −0.0356 (19) 0.0000 (18) −0.0043 (19)
C14 0.0468 (17) 0.0392 (15) 0.0472 (17) −0.0111 (12) 0.0052 (14) −0.0028 (13)
C15 0.059 (2) 0.056 (2) 0.0495 (18) −0.0072 (16) 0.0124 (16) −0.0026 (15)
C16 0.054 (2) 0.070 (2) 0.080 (3) 0.0002 (18) 0.0105 (19) 0.001 (2)
C17 0.061 (3) 0.088 (3) 0.077 (3) −0.011 (2) −0.013 (2) 0.008 (2)
C18 0.068 (3) 0.119 (4) 0.046 (2) −0.010 (2) 0.0014 (19) −0.003 (2)
C19 0.052 (2) 0.091 (3) 0.050 (2) −0.0078 (18) 0.0075 (17) −0.0119 (18)
C20 0.0411 (15) 0.0327 (13) 0.0376 (14) −0.0031 (11) −0.0020 (12) −0.0027 (11)
C21 0.0506 (18) 0.0586 (19) 0.0505 (18) −0.0020 (15) −0.0117 (15) −0.0032 (15)
C22 0.083 (3) 0.074 (2) 0.0340 (17) −0.007 (2) −0.0107 (17) −0.0052 (16)
C23 0.078 (3) 0.071 (2) 0.0413 (18) −0.0043 (19) 0.0129 (18) −0.0095 (16)
C24 0.0504 (19) 0.058 (2) 0.0514 (19) 0.0013 (15) 0.0104 (15) −0.0059 (15)
C25 0.0405 (15) 0.0413 (15) 0.0337 (14) −0.0024 (12) −0.0018 (12) 0.0004 (11)
C26 0.0557 (18) 0.0365 (15) 0.0492 (17) −0.0043 (13) 0.0000 (14) −0.0066 (13)
N1 0.0402 (13) 0.0304 (11) 0.0515 (14) 0.0017 (10) 0.0030 (11) −0.0057 (10)
N2 0.0368 (14) 0.0698 (18) 0.0488 (16) −0.0042 (13) −0.0049 (12) 0.0064 (14)
O1 0.0648 (17) 0.127 (3) 0.0389 (13) 0.0121 (16) −0.0058 (12) −0.0149 (15)
O2 0.0648 (18) 0.109 (2) 0.088 (2) 0.0272 (17) −0.0267 (16) 0.0025 (17)
O3 0.0786 (17) 0.0319 (11) 0.0798 (17) 0.0056 (11) 0.0028 (13) −0.0074 (11)
O4 0.0847 (17) 0.0381 (11) 0.0497 (13) −0.0083 (11) 0.0030 (12) 0.0064 (9)
O5 0.0499 (12) 0.0393 (11) 0.0554 (12) −0.0096 (9) 0.0016 (10) 0.0074 (9)
S1 0.0590 (5) 0.0277 (3) 0.0511 (4) −0.0022 (3) 0.0013 (4) −0.0011 (3)
Br1 0.0740 (3) 0.0455 (2) 0.0674 (3) 0.01137 (16) 0.00214 (19) 0.00155 (15)

Geometric parameters (Å, º)

C1—C2 1.390 (4) C14—S1 1.752 (3)
C1—C6 1.391 (4) C15—C16 1.371 (5)
C1—N1 1.423 (4) C15—H15 0.9300
C2—C3 1.369 (5) C16—C17 1.376 (6)
C2—H2 0.9300 C16—H16 0.9300
C3—C4 1.394 (6) C17—C18 1.374 (6)
C3—H3 0.9300 C17—H17 0.9300
C4—C5 1.368 (5) C18—C19 1.365 (6)
C4—H4 0.9300 C18—H18 0.9300
C5—C6 1.397 (4) C19—H19 0.9300
C5—H5 0.9300 C20—C25 1.385 (4)
C6—C7 1.448 (4) C20—C21 1.386 (4)
C7—C12 1.389 (4) C21—C22 1.393 (5)
C7—C8 1.396 (4) C21—H21 0.9300
C8—C9 1.377 (4) C22—C23 1.355 (5)
C8—N1 1.429 (4) C22—H22 0.9300
C9—C10 1.393 (4) C23—C24 1.355 (5)
C9—H9 0.9300 C23—H23 0.9300
C10—C11 1.402 (4) C24—C25 1.381 (4)
C10—C20 1.496 (4) C24—H24 0.9300
C11—C12 1.395 (4) C25—N2 1.465 (4)
C11—C26 1.500 (4) C26—Br1 1.971 (3)
C12—O5 1.373 (3) C26—H26A 0.9300
C13—O5 1.428 (4) C26—H26B 0.9300
C13—H13A 0.9600 N1—S1 1.668 (2)
C13—H13B 0.9600 N2—O1 1.207 (4)
C13—H13C 0.9600 N2—O2 1.218 (4)
C14—C15 1.370 (5) O3—S1 1.425 (2)
C14—C19 1.379 (5) O4—S1 1.412 (2)
C2—C1—C6 121.7 (3) C15—C16—H16 120.0
C2—C1—N1 129.6 (3) C17—C16—H16 120.0
C6—C1—N1 108.8 (2) C18—C17—C16 120.1 (4)
C3—C2—C1 117.6 (3) C18—C17—H17 120.0
C3—C2—H2 121.2 C16—C17—H17 120.0
C1—C2—H2 121.2 C19—C18—C17 120.2 (4)
C2—C3—C4 121.4 (3) C19—C18—H18 119.9
C2—C3—H3 119.3 C17—C18—H18 119.9
C4—C3—H3 119.3 C18—C19—C14 119.3 (4)
C5—C4—C3 121.0 (3) C18—C19—H19 120.3
C5—C4—H4 119.5 C14—C19—H19 120.3
C3—C4—H4 119.5 C25—C20—C21 115.8 (3)
C4—C5—C6 118.7 (3) C25—C20—C10 124.8 (2)
C4—C5—H5 120.7 C21—C20—C10 119.4 (3)
C6—C5—H5 120.7 C20—C21—C22 121.5 (3)
C1—C6—C5 119.6 (3) C20—C21—H21 119.3
C1—C6—C7 107.4 (2) C22—C21—H21 119.3
C5—C6—C7 132.9 (3) C23—C22—C21 120.4 (3)
C12—C7—C8 118.9 (3) C23—C22—H22 119.8
C12—C7—C6 132.8 (3) C21—C22—H22 119.8
C8—C7—C6 108.3 (2) C22—C23—C24 119.8 (3)
C9—C8—C7 122.3 (3) C22—C23—H23 120.1
C9—C8—N1 129.9 (3) C24—C23—H23 120.1
C7—C8—N1 107.8 (2) C23—C24—C25 119.9 (3)
C8—C9—C10 118.0 (3) C23—C24—H24 120.1
C8—C9—H9 121.0 C25—C24—H24 120.1
C10—C9—H9 121.0 C24—C25—C20 122.6 (3)
C9—C10—C11 121.2 (3) C24—C25—N2 116.0 (3)
C9—C10—C20 118.6 (2) C20—C25—N2 121.3 (3)
C11—C10—C20 120.2 (2) C11—C26—Br1 110.0 (2)
C12—C11—C10 119.2 (2) C11—C26—H26A 120.0
C12—C11—C26 119.0 (3) Br1—C26—H26A 81.8
C10—C11—C26 121.8 (3) C11—C26—H26B 120.0
O5—C12—C7 119.5 (3) Br1—C26—H26B 78.5
O5—C12—C11 120.3 (2) H26A—C26—H26B 120.0
C7—C12—C11 120.2 (2) C1—N1—C8 107.6 (2)
O5—C13—H13A 109.5 C1—N1—S1 123.50 (19)
O5—C13—H13B 109.5 C8—N1—S1 122.6 (2)
H13A—C13—H13B 109.5 O1—N2—O2 123.5 (3)
O5—C13—H13C 109.5 O1—N2—C25 118.6 (3)
H13A—C13—H13C 109.5 O2—N2—C25 117.9 (3)
H13B—C13—H13C 109.5 C12—O5—C13 112.5 (2)
C15—C14—C19 121.0 (3) O4—S1—O3 120.22 (15)
C15—C14—S1 119.8 (2) O4—S1—N1 106.54 (14)
C19—C14—S1 119.3 (3) O3—S1—N1 106.23 (14)
C14—C15—C16 119.3 (3) O4—S1—C14 109.25 (16)
C14—C15—H15 120.3 O3—S1—C14 108.98 (15)
C16—C15—H15 120.3 N1—S1—C14 104.43 (13)
C15—C16—C17 120.1 (4)
C6—C1—C2—C3 1.5 (5) C9—C10—C20—C25 90.5 (4)
N1—C1—C2—C3 −179.1 (3) C11—C10—C20—C25 −92.5 (3)
C1—C2—C3—C4 −0.3 (5) C9—C10—C20—C21 −90.0 (3)
C2—C3—C4—C5 −1.0 (5) C11—C10—C20—C21 87.0 (4)
C3—C4—C5—C6 1.0 (5) C25—C20—C21—C22 −0.5 (5)
C2—C1—C6—C5 −1.5 (4) C10—C20—C21—C22 179.9 (3)
N1—C1—C6—C5 179.0 (3) C20—C21—C22—C23 −0.3 (6)
C2—C1—C6—C7 −178.4 (3) C21—C22—C23—C24 1.3 (6)
N1—C1—C6—C7 2.0 (3) C22—C23—C24—C25 −1.6 (6)
C4—C5—C6—C1 0.2 (4) C23—C24—C25—C20 0.7 (5)
C4—C5—C6—C7 176.2 (3) C23—C24—C25—N2 −179.4 (3)
C1—C6—C7—C12 178.5 (3) C21—C20—C25—C24 0.3 (4)
C5—C6—C7—C12 2.1 (5) C10—C20—C25—C24 179.8 (3)
C1—C6—C7—C8 0.6 (3) C21—C20—C25—N2 −179.5 (3)
C5—C6—C7—C8 −175.8 (3) C10—C20—C25—N2 0.0 (4)
C12—C7—C8—C9 −2.1 (4) C12—C11—C26—Br1 −92.0 (3)
C6—C7—C8—C9 176.1 (3) C10—C11—C26—Br1 88.1 (3)
C12—C7—C8—N1 178.8 (2) C2—C1—N1—C8 176.7 (3)
C6—C7—C8—N1 −2.9 (3) C6—C1—N1—C8 −3.9 (3)
C7—C8—C9—C10 −2.2 (4) C2—C1—N1—S1 24.2 (4)
N1—C8—C9—C10 176.6 (3) C6—C1—N1—S1 −156.4 (2)
C8—C9—C10—C11 4.5 (4) C9—C8—N1—C1 −174.8 (3)
C8—C9—C10—C20 −178.5 (2) C7—C8—N1—C1 4.2 (3)
C9—C10—C11—C12 −2.5 (4) C9—C8—N1—S1 −22.0 (4)
C20—C10—C11—C12 −179.4 (2) C7—C8—N1—S1 157.0 (2)
C9—C10—C11—C26 177.4 (3) C24—C25—N2—O1 147.7 (3)
C20—C10—C11—C26 0.5 (4) C20—C25—N2—O1 −32.5 (4)
C8—C7—C12—O5 −178.1 (2) C24—C25—N2—O2 −30.9 (4)
C6—C7—C12—O5 4.2 (5) C20—C25—N2—O2 148.9 (3)
C8—C7—C12—C11 4.2 (4) C7—C12—O5—C13 81.0 (3)
C6—C7—C12—C11 −173.5 (3) C11—C12—O5—C13 −101.3 (3)
C10—C11—C12—O5 −179.6 (2) C1—N1—S1—O4 −170.5 (2)
C26—C11—C12—O5 0.5 (4) C8—N1—S1—O4 41.0 (3)
C10—C11—C12—C7 −2.0 (4) C1—N1—S1—O3 −41.2 (3)
C26—C11—C12—C7 178.1 (3) C8—N1—S1—O3 170.3 (2)
C19—C14—C15—C16 −0.9 (5) C1—N1—S1—C14 73.9 (2)
S1—C14—C15—C16 178.7 (3) C8—N1—S1—C14 −74.6 (2)
C14—C15—C16—C17 −0.1 (6) C15—C14—S1—O4 −18.4 (3)
C15—C16—C17—C18 1.1 (7) C19—C14—S1—O4 161.3 (3)
C16—C17—C18—C19 −1.0 (7) C15—C14—S1—O3 −151.5 (3)
C17—C18—C19—C14 0.0 (7) C19—C14—S1—O3 28.1 (3)
C15—C14—C19—C18 0.9 (5) C15—C14—S1—N1 95.3 (3)
S1—C14—C19—C18 −178.7 (3) C19—C14—S1—N1 −85.1 (3)

Hydrogen-bond geometry (Å, º)

Cg1 is the centroid of the C7–C12 ring.

D—H···A D—H H···A D···A D—H···A
C2—H2···O3 0.93 2.34 2.941 (4) 122
C9—H9···O4 0.93 2.32 2.925 (4) 122
C23—H23···O1i 0.93 2.53 3.264 (4) 136
C22—H22···Cg1ii 0.93 2.95 3.810 (4) 155

Symmetry codes: (i) x, −y+3/2, z−1/2; (ii) x, −y+1/2, z−3/2.

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: LD2127).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin. Trans. 2, pp. S1–19.
  2. Bassindale, A. (1984). The Third Dimension in Organic Chemistry ch. 1, p. 11. New York: John Wiley and Sons.
  3. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  4. Bruker (2008). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  6. Friend, R. H., Gymer, R. W., Holmes, A. B., Burroughes, J. H., Mark, R. N., Taliani, C., Bradley, D. D. C., Dos SAntos, D. A., Bredas, J. L., Logdlund, M. & Salaneck, W. R. (1999). Nature (London), 397, 121–127.
  7. Gopinath, S., Sethusankar, K., Saravanan, V. & Mohanakrishnan, A. K. (2014). Acta Cryst. E70, o273–o274. [DOI] [PMC free article] [PubMed]
  8. Itoigawa, M., Kashiwada, Y., Ito, C., Furukawa, H., Tachibana, Y., Bastow, K. F. & Lee, K. H. (2000). J. Nat. Prod. 63, 893–897. [DOI] [PubMed]
  9. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
  10. Narayanan, P., Sethusankar, K., Saravanan, V. & Mohanakrishnan, A. K. (2014). Acta Cryst. E70, o230–o231. [DOI] [PMC free article] [PubMed]
  11. Ramsewak, R. S., Nair, M. G., Starsburg, G. M., Dewitt, D. L. & Nitiss, J. L. (1999). J. Agric. Food Chem. 47, 444—447. [DOI] [PubMed]
  12. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  13. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  14. Zhang, Q., Chen, J. Y., Wang, L., Ma, D., Jing, X. & Wang, F. (2004). J. Mater. Chem, 14, 895–900.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S160053681401143X/ld2127sup1.cif

e-70-0o707-sup1.cif (23.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681401143X/ld2127Isup2.hkl

e-70-0o707-Isup2.hkl (325.6KB, hkl)

Supporting information file. DOI: 10.1107/S160053681401143X/ld2127Isup3.cml

CCDC reference: 1003645

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES