Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2014 May 21;70(Pt 6):m225–m226. doi: 10.1107/S1600536814011118

Tetrakis(2,6-di­methyl­pyridinium) di­hydrogen deca­vanadate dihydrate

Erik Rakovský a,*, Lukáš Krivosudský a
PMCID: PMC4051003  PMID: 24940209

Abstract

The structure of the title compound, (C7H10N)4[H2V10O28]·2H2O, was solved from a non-merohedrally twinned crystal (ratio of twin components ∼0.6:0.4). The asymmetric unit consists of one-half deca­vanadate anion (the other half completed by inversion symmetry), two 2,6-di­methyl­pyridinium cations and one water mol­ecule of crystallization. In the crystal, the components are connected by strong N—H⋯O and O—H⋯O hydrogen bonds, forming a supra­molecular chain along the b-axis direction. There are weak C—H⋯O inter­actions between the chains.

Related literature  

For our previously published research on polyoxidovanadates, see: Rakovský & Gyepes (2006); Pacigová et al. (2007); Klištincová et al. (2008, 2010); Bartošová et al. (2012). For more general background to their applications, see: Crans (1998); Hagrman et al. (2001). Other deca­vanadates with pyridinium derivatives as the cations have been reported by Asgedom et al. (1996); Arrieta et al. (1988); Santi­ago et al. (1988). For IR spectra inter­pretation, see: Ban-Oganowska et al. (2002); Elassal et al. (2011); Medhi & Mukherjee (1965). For hydrogen-bond criteria, see: Jeffrey (1997).graphic file with name e-70-0m225-scheme1.jpg

Experimental  

Crystal data  

  • (C7H10N)4[H2V10O28]·2H2O

  • M r = 1428.09

  • Monoclinic, Inline graphic

  • a = 24.7777 (5) Å

  • b = 8.35654 (16) Å

  • c = 25.0089 (6) Å

  • β = 113.878 (3)°

  • V = 4735.0 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.98 mm−1

  • T = 293 K

  • 0.41 × 0.22 × 0.08 mm

Data collection  

  • Oxford Diffraction Gemini R diffractometer

  • Absorption correction: gaussian (CrysAlis PRO; Agilent, 2014) T min = 0.575, T max = 0.873

  • 59285 measured reflections

  • 5867 independent reflections

  • 5086 reflections with I > 2σ(I)

  • R int = 0.032

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.031

  • wR(F 2) = 0.084

  • S = 1.08

  • 5867 reflections

  • 344 parameters

  • 6 restraints

  • H atoms treated by a mixture of constrained and restrained refinement

  • Δρmax = 0.77 e Å−3

  • Δρmin = −0.39 e Å−3

Data collection: CrysAlis PRO (Agilent, 2014); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL2014/1 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2010); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009) and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I, Ie. DOI: 10.1107/S1600536814011118/gk2606sup1.cif

e-70-0m225-sup1.cif (30.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814011118/gk2606Isup2.hkl

e-70-0m225-Isup2.hkl (321.7KB, hkl)

CCDC reference: 1003037

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O13—H13⋯O1i 0.80 (2) 2.00 (2) 2.789 (2) 172 (3)
N1—H1⋯O9 0.82 (2) 1.81 (2) 2.625 (2) 178 (3)
C15—H15⋯O2ii 0.93 2.54 3.396 (3) 152
N2—H2⋯O1W 0.83 (2) 1.89 (2) 2.689 (3) 163 (3)
C21—H21A⋯O4iii 0.96 2.62 3.270 (3) 125
C21—H21B⋯O5iv 0.96 2.50 3.454 (3) 171
C24—H24⋯O12v 0.93 2.49 3.297 (3) 145
C25—H25⋯O7v 0.93 2.53 3.237 (3) 134
C25—H25⋯O10v 0.93 2.51 3.264 (3) 138
C27—H27B⋯O1i 0.96 2.46 3.347 (4) 153
O1W—H1W⋯O11i 0.83 (2) 2.02 (2) 2.833 (2) 168 (3)
O1W—H2W⋯O8 0.83 (2) 1.90 (2) 2.718 (2) 171 (3)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic.

Acknowledgments

This work was supported by the Slovak Grant Agency VEGA (project No. 1/0336/13).

supplementary crystallographic information

1. Comment

The reaction system V2O5 – 2,6-dimethylpyridine – H2O – HClO4 was studied as a part of our study of the formation of transition metal complexes with substituted pyridinium ligands in the presence of polyoxovanadate anions. We wish to obtain a better understanding of the role of the counter-ion in the formation of HnV10O28(6–n)– species and the influence of the cation and the decavanadate anion protonation mode on the IR spectra and information about possible side products of the syntheses. This article is a continuation of our previous work on salts of polyoxovanadates with organic cations (Rakovský & Gyepes, 2006; Pacigová et al., 2007). The oxovanadates(V) and peroxovanadium compounds are also of great interest in biochemistry and medicine because of their diverse biological activities (Crans, 1998). Heterobimetallic compounds containing, beside polyoxovanadate core, entities composed of other transition metals bound to organic ligands have been extensively studied due to their potential applications in the field of catalysis and material science (Hagrman et al., 2001; Klištincová et al., 2008; Klištincová et al., 2010; Bartošová et al., 2012). Several decavanadates with pyridine and its derivatives are already known. Asgedom et al. (1996) reported the structure of (C5H6N)6V10O28.2H2O. Pyridinium cations are bonded directly to the decavanadate anions via hydrogen bonds as it is in (C7H10N)3H3V10O28.H2O (Arrieta et al., 1988) and (C6H8N)3H3V10O28.H2O (Santiago et al., 1988).

The system mentioned above was studied in the pH range 2.5–7 and the crystalline product was only obtained at pH 2.5, which is typical pH value for the dihydrogendecavanadate formation. The asymmetric unit of the title compound, (I), consists of one-half decavanadate anion of Ci symmetry, lying on a special position on the centre of symmetry, which is protonated on the µ-OV3 bridging atom O13, two 2,6-dimethylpyridinium cations and one water molecule of crystallization (Fig. 1). The terminal vanadium-oxygen bond lengths are in the range 1.5916 (17)–1.6153 (16) Å, with an average value of 1.601 (10) Å. The bond lengths of the bridging O atoms with coordination numbers two are in the range 1.6768 (14)–2.0752 (15) Å with the mean value of 1.84 (12) Å . There are 2 types of µ-OV3 bridging oxygen groups present: unprotonated (O12) with bond lengths in the range 1.8757 (15)–1.9931 (14) Å with the mean value of 1.95 (6) Å, and protonated (O13) with bond lengths in the range 2.0678 (15)–2.1170 (14) Å with the mean value of 2.10 (3) Å. Bond lengths of the six-coordinated µ-OV6 oxygen atom (O14) are in the range 2.0592 (13)–2.3588 (14) Å with an average value of 2.24 (13) Å.

The supramolecular structure is formed by D–H···O hydrogen bonds [D = N, O or C, with H···O ≤ 2.72 Å and D–H···O > 120° (Jeffrey, 1997)] between cations and anions, cations and water molecules, between two anions and between water molecules and anions (Table 1). Adjacent [H2V10O28]4– anions are mutually linked together by the system of strong hydrogen bonds: directly by two anion-anion hydrogen bonds O13–H1V···O1 and via two bridging water molecules, where water acts as a H-bond donor for both anions, forming O1W–H1W···O11 and O1W–H2W···O8 hydrogen bonds. N–H group of the first cation is donating H-bond to the anion, thus forming N1–H10···O9 hydrogen bond, N–H group of the second cation acts as a H-bond donor for the water molecule, forming N2–H20···O1W hydrogen bond. This system of hydrogen bonds is forming supramolecular chain running in the b axis direction (Fig. 2).

The C–H···O weak hydrogen bonds present in the structure are involved in the interaction between neighbouring supramolecular chains, with exception of C21–H21B···O5 and C27–H27B···O1 bonds, which are reinforcing mutual bonding between one of the anions, cation and the water molecule hydrogen-bonded to the cation.

2. Experimental

All reactants with the exception of purified vanadium pentoxide were obtained commercially and used without further purification.

Purified vanadium pentoxide was prepared as follows: to 1.5 l of water, NH4VO3 (50 g) and NH3 (60 ml, w = 25%) were added. The mixture was stirred and heated in a water bath until the temperature reached 343 K and left cool down for about 1 h. After cooling the mixture was filtered. White NH4VO3 was precipited by adding of crystalline NH4NO3 (70 g) to the filtrate, filtered out and washed with distilled water (20 ml) and ethanol (20 ml). The product was dried on air. Purified NH4VO3 was heated in a porcelain dish at 773 K for at least 2 h.

2 NH4VO3→ V2O5 + 2 NH3 + H2O

Test for purity of prepared V2O5: small amout of the product added to cold 1 M solution of KOH in a test tube completely dissolves.

Synthesis of the (C7H10N)4H2V10O28.2H2O (I): V2O5 (0.9 g, 0.005 mol) was dissolved after stirring overnight in 100 ml of 0.1 M solution of 2,6-dimethylpyridine. Yellow solution obtained was filtered and adjusted to pH 2.5 with 4 M HClO4. Orange plate crystals were isolated after standing 5 days at 277 K.

Vanadium was determined gravimetrically as V2O5. C, H and N were estimated on a CHN analyser (Carlo Erba). Analysis calculated for C28H46N4O30V10 (found): C 23.55 (23.59), H 3.25 (3.21), N 3.92 (3.89), V 35.67 (35.58).

The FT—IR spectra were performed with a Nonius 6700 FTIR spectrophotometer in nujol mulls. The IR spectrum of prepared compound exhibits characteristic bands of the decavanadate anion [965 (s), 944 (s), 926 (m), 829 (s) and 589 (m) cm-1] (Klištincová et al., 2010) as well as characteristic bands for protonated 2,6-dimethylpyridine (2534 (sh) – ν(NH+); 1629 (s), 1641 (s) – δ(NH+)) and other bands for the base (716 (s), 794 (s) – δ(CH); 971 (s) – ν(C–CH3); 1175 (m), 1280 (m) – δ(CH comb.), 1415 (m) – ν(C–C) or ν(C–N)) (Ban-Oganowska et al., 2002; Elassal et al., 2011; Medhi et al., 1965).

3. Refinement

The selected crystal was a non-merohedral twin with the twin law: -1 0 0; 0 -1 0; 1 0 1 (given by rows) and the domain volume ratio approx. 0.6:0.4. The structure was solved and refined from detwinned HKLF 4 data, however, due to approximately equal domain volume ratio, some reflections were strongly affected (typically Fo >> Fc) by twinning; these reflections were omitted in the final stages of the refinement.

The H atoms bound to the C atoms of the cations were placed in geometrically idealized positions (C–H = 0.93 Å) and constrained to ride on their parent atoms [Uiso(H) = 1.2 Ueq(C)] with the exception of the methyl groups, which were treated as rigid rotors [C–H = 0.96 Å, Uiso(H) = 1.5 Ueq(C)]. The H atoms bound to N atoms were refined semi-freely using distance restraint (N–H = 0.86 (2) Å) and with Uiso(H) = 1.5 Ueq(N). The H atoms of the anion and water molecule were located in a difference map and refined with d(O–H) = 0.82 (2) Å and d(H···H) = 1.36 (2) Å for water molecule.

Figures

Fig. 1.

Fig. 1.

The structure of the title compound, showing the atom labelling scheme and hydrogen bonding interactions (dashed lines). Displacement ellipsoids are drawn ar the 30% probability level. The symmetry operation: (i) 3/2 – x, 3/2 – y, 1 – z.

Fig. 2.

Fig. 2.

A view of the cell packing of (I) along the b axis. Supramolecular chains are running in the b axis direction, N–H···O and O–H···O hydrogen bonds are drawn as red dashed lines. Carbon-bound hydrogen atoms are omitted for clarity.

Crystal data

(C7H10N)4[H2V10O28]·2H2O F(000) = 2848
Mr = 1428.09 Dx = 2.003 Mg m3
Monoclinic, C2/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2yc Cell parameters from 27323 reflections
a = 24.7777 (5) Å θ = 3.6–28.7°
b = 8.35654 (16) Å µ = 1.98 mm1
c = 25.0089 (6) Å T = 293 K
β = 113.878 (3)° Plate, orange
V = 4735.0 (2) Å3 0.41 × 0.22 × 0.08 mm
Z = 4

Data collection

Oxford Diffraction Gemini R diffractometer 5867 independent reflections
Radiation source: Enhance (Mo) X-ray Source 5086 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.032
Detector resolution: 10.4340 pixels mm-1 θmax = 28.9°, θmin = 3.5°
ω–scans h = −33→33
Absorption correction: gaussian (CrysAlis PRO; Agilent, 2014) k = −11→11
Tmin = 0.575, Tmax = 0.873 l = −33→33
59285 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031 Hydrogen site location: difference Fourier map
wR(F2) = 0.084 H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.0401P)2 + 8.437P] where P = (Fo2 + 2Fc2)/3
5867 reflections (Δ/σ)max = 0.001
344 parameters Δρmax = 0.77 e Å3
6 restraints Δρmin = −0.39 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
V1 0.81781 (2) 0.47465 (4) 0.51737 (2) 0.02165 (9)
V2 0.70304 (2) 0.55586 (4) 0.40183 (2) 0.02228 (9)
V3 0.60060 (2) 0.74652 (5) 0.41309 (2) 0.02433 (9)
V4 0.68019 (2) 0.91657 (5) 0.36342 (2) 0.02475 (9)
V5 0.79281 (2) 0.82080 (4) 0.47073 (2) 0.01834 (8)
O1 0.82181 (7) 0.30171 (19) 0.49035 (7) 0.0303 (3)
O2 0.70776 (8) 0.3908 (2) 0.37228 (7) 0.0342 (4)
O3 0.53181 (7) 0.7150 (2) 0.39512 (8) 0.0374 (4)
O4 0.67212 (8) 1.0004 (2) 0.30321 (7) 0.0371 (4)
O5 0.60486 (6) 0.8555 (2) 0.35266 (6) 0.0281 (3)
O6 0.76907 (6) 0.91441 (18) 0.40574 (6) 0.0237 (3)
O7 0.86611 (6) 0.84722 (18) 0.50288 (6) 0.0238 (3)
O8 0.62630 (6) 0.55718 (18) 0.39335 (6) 0.0254 (3)
O9 0.69435 (7) 0.69902 (19) 0.34630 (6) 0.0258 (3)
O10 0.88874 (6) 0.55388 (19) 0.54352 (7) 0.0254 (3)
O11 0.81944 (7) 0.41941 (18) 0.58919 (7) 0.0261 (3)
O12 0.78823 (6) 0.60759 (17) 0.44582 (6) 0.0204 (3)
O13 0.72489 (6) 0.48316 (17) 0.48854 (6) 0.0203 (3)
O14 0.70334 (6) 0.78365 (17) 0.45323 (6) 0.0192 (3)
H13 0.7096 (11) 0.407 (3) 0.4957 (11) 0.029*
N1 0.66681 (9) 0.6432 (3) 0.23502 (8) 0.0326 (4)
H1 0.6763 (13) 0.660 (4) 0.2699 (8) 0.049*
C11 0.57585 (15) 0.5319 (5) 0.23387 (15) 0.0640 (10)
H11A 0.5905 0.4366 0.2566 0.096*
H11B 0.5364 0.5137 0.2055 0.096*
H11C 0.5758 0.6181 0.2592 0.096*
C12 0.61462 (12) 0.5743 (3) 0.20330 (11) 0.0395 (6)
C13 0.60049 (13) 0.5490 (4) 0.14473 (12) 0.0488 (7)
H13A 0.5644 0.5035 0.1212 0.059*
C14 0.63984 (13) 0.5913 (4) 0.12099 (11) 0.0498 (8)
H14 0.6309 0.5702 0.0818 0.060*
C15 0.69227 (13) 0.6644 (3) 0.15484 (12) 0.0420 (6)
H15 0.7182 0.6963 0.1385 0.050*
C16 0.70592 (11) 0.6900 (3) 0.21315 (11) 0.0344 (5)
C17 0.76196 (14) 0.7645 (4) 0.25454 (15) 0.0542 (8)
H17A 0.7806 0.6952 0.2876 0.081*
H17B 0.7535 0.8656 0.2676 0.081*
H17C 0.7879 0.7806 0.2351 0.081*
N2 0.49294 (9) 0.1465 (3) 0.38718 (9) 0.0333 (4)
H2 0.5234 (10) 0.170 (4) 0.3827 (13) 0.050*
C21 0.46457 (12) 0.0171 (4) 0.29325 (12) 0.0489 (7)
H21A 0.4366 −0.0615 0.2702 0.073*
H21B 0.5038 −0.0253 0.3058 0.073*
H21C 0.4610 0.1115 0.2702 0.073*
C22 0.45261 (10) 0.0582 (3) 0.34534 (11) 0.0353 (5)
C23 0.40287 (13) 0.0113 (4) 0.35294 (15) 0.0536 (8)
H23 0.3737 −0.0482 0.3242 0.064*
C24 0.39681 (16) 0.0534 (5) 0.40350 (18) 0.0674 (10)
H24 0.3634 0.0221 0.4091 0.081*
C25 0.43990 (16) 0.1415 (5) 0.44557 (15) 0.0629 (10)
H25 0.4361 0.1680 0.4800 0.075*
C26 0.48857 (13) 0.1904 (4) 0.43713 (12) 0.0453 (7)
C27 0.53721 (15) 0.2890 (5) 0.47929 (15) 0.0758 (12)
H27A 0.5409 0.3863 0.4606 0.114*
H27B 0.5736 0.2303 0.4920 0.114*
H27C 0.5286 0.3140 0.5125 0.114*
O1W 0.57679 (8) 0.2656 (2) 0.35592 (9) 0.0425 (4)
H1W 0.6068 (11) 0.208 (3) 0.3669 (15) 0.064*
H2W 0.5882 (14) 0.357 (2) 0.3674 (15) 0.064*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
V1 0.02131 (17) 0.01978 (18) 0.02536 (18) 0.00097 (13) 0.01099 (14) 0.00127 (13)
V2 0.02531 (18) 0.02300 (18) 0.01948 (17) −0.00306 (14) 0.01005 (14) −0.00278 (13)
V3 0.01854 (17) 0.0285 (2) 0.02501 (19) −0.00254 (13) 0.00786 (14) 0.00077 (14)
V4 0.02526 (18) 0.0288 (2) 0.02013 (18) −0.00009 (14) 0.00916 (14) 0.00546 (14)
V5 0.01910 (16) 0.01996 (17) 0.01882 (17) −0.00175 (12) 0.01063 (13) 0.00133 (12)
O1 0.0325 (8) 0.0226 (8) 0.0393 (9) 0.0017 (6) 0.0182 (7) −0.0010 (7)
O2 0.0425 (9) 0.0288 (9) 0.0352 (9) −0.0049 (7) 0.0196 (8) −0.0096 (7)
O3 0.0220 (8) 0.0459 (10) 0.0418 (10) −0.0054 (7) 0.0104 (7) 0.0006 (8)
O4 0.0378 (9) 0.0459 (10) 0.0265 (8) −0.0009 (8) 0.0119 (7) 0.0116 (8)
O5 0.0229 (7) 0.0341 (9) 0.0238 (7) −0.0007 (6) 0.0058 (6) 0.0046 (6)
O6 0.0256 (7) 0.0263 (8) 0.0223 (7) −0.0023 (6) 0.0130 (6) 0.0047 (6)
O7 0.0211 (7) 0.0271 (8) 0.0261 (7) −0.0026 (6) 0.0125 (6) −0.0002 (6)
O8 0.0244 (7) 0.0260 (8) 0.0249 (7) −0.0059 (6) 0.0089 (6) −0.0028 (6)
O9 0.0289 (8) 0.0316 (8) 0.0180 (7) −0.0034 (6) 0.0107 (6) −0.0008 (6)
O10 0.0208 (7) 0.0278 (8) 0.0297 (8) 0.0021 (6) 0.0122 (6) 0.0019 (6)
O11 0.0263 (7) 0.0243 (8) 0.0279 (8) 0.0011 (6) 0.0113 (6) 0.0064 (6)
O12 0.0230 (7) 0.0214 (7) 0.0203 (7) −0.0012 (5) 0.0125 (5) −0.0010 (5)
O13 0.0226 (7) 0.0181 (7) 0.0225 (7) −0.0039 (5) 0.0117 (6) −0.0003 (5)
O14 0.0201 (6) 0.0216 (7) 0.0179 (6) −0.0006 (5) 0.0097 (5) 0.0013 (5)
N1 0.0405 (11) 0.0356 (11) 0.0211 (9) 0.0010 (9) 0.0118 (8) −0.0025 (8)
C11 0.0545 (19) 0.087 (3) 0.0526 (19) −0.0222 (18) 0.0243 (15) −0.0066 (18)
C12 0.0385 (13) 0.0433 (15) 0.0332 (13) −0.0004 (11) 0.0109 (10) −0.0037 (11)
C13 0.0405 (15) 0.063 (2) 0.0323 (14) 0.0043 (13) 0.0034 (11) −0.0131 (13)
C14 0.0530 (16) 0.069 (2) 0.0234 (12) 0.0252 (15) 0.0117 (11) −0.0029 (12)
C15 0.0517 (16) 0.0445 (15) 0.0386 (14) 0.0181 (12) 0.0275 (12) 0.0038 (12)
C16 0.0406 (13) 0.0294 (12) 0.0362 (13) 0.0050 (10) 0.0186 (10) −0.0030 (10)
C17 0.0502 (17) 0.0553 (19) 0.063 (2) −0.0145 (14) 0.0293 (15) −0.0199 (16)
N2 0.0273 (10) 0.0437 (12) 0.0305 (10) 0.0029 (9) 0.0134 (8) −0.0008 (9)
C21 0.0386 (14) 0.075 (2) 0.0339 (14) −0.0052 (14) 0.0153 (11) −0.0131 (14)
C22 0.0291 (11) 0.0425 (14) 0.0365 (13) −0.0005 (10) 0.0155 (10) −0.0022 (11)
C23 0.0396 (15) 0.0593 (19) 0.070 (2) −0.0120 (14) 0.0303 (15) −0.0107 (16)
C24 0.057 (2) 0.083 (3) 0.087 (3) −0.0003 (19) 0.056 (2) 0.004 (2)
C25 0.069 (2) 0.087 (3) 0.0500 (18) 0.023 (2) 0.0415 (17) 0.0048 (18)
C26 0.0453 (15) 0.0560 (18) 0.0327 (13) 0.0176 (13) 0.0139 (11) −0.0036 (12)
C27 0.057 (2) 0.100 (3) 0.053 (2) 0.016 (2) 0.0038 (16) −0.038 (2)
O1W 0.0294 (9) 0.0320 (10) 0.0617 (13) −0.0050 (7) 0.0139 (9) −0.0002 (9)

Geometric parameters (Å, º)

V1—O1 1.6153 (16) C11—H11B 0.9600
V1—O10 1.7390 (15) C11—H11C 0.9600
V1—O11 1.8391 (15) C11—C12 1.492 (4)
V1—O12 1.9776 (14) C12—C13 1.378 (4)
V1—O13 2.1170 (14) C13—H13A 0.9300
V1—O14i 2.2818 (14) C13—C14 1.377 (4)
V2—O2 1.5916 (17) C14—H14 0.9300
V2—O8 1.8261 (15) C14—C15 1.374 (4)
V2—O9 1.7788 (15) C15—H15 0.9300
V2—O12 1.9931 (14) C15—C16 1.374 (3)
V2—O13 2.1009 (15) C16—C17 1.491 (4)
V2—O14 2.2952 (14) C17—H17A 0.9600
V3—O3 1.5990 (16) C17—H17B 0.9600
V3—O5 1.8035 (16) C17—H17C 0.9600
V3—O7i 2.0752 (15) N2—H2 0.830 (17)
V3—O8 1.8458 (16) N2—C22 1.338 (3)
V3—O10i 1.9487 (16) N2—C26 1.348 (3)
V3—O14 2.3486 (14) C21—H21A 0.9600
V4—O4 1.5983 (16) C21—H21B 0.9600
V4—O5 1.8468 (15) C21—H21C 0.9600
V4—O6 2.0208 (15) C21—C22 1.488 (3)
V4—O9 1.9321 (16) C22—C23 1.378 (4)
V4—O11i 1.8097 (16) C23—H23 0.9300
V4—O14 2.3588 (14) C23—C24 1.378 (5)
V5—O6 1.6810 (14) C24—H24 0.9300
V5—O7 1.6768 (14) C24—C25 1.371 (5)
V5—O12 1.8757 (15) C25—H25 0.9300
V5—O13i 2.0678 (15) C25—C26 1.368 (5)
V5—O14i 2.0592 (13) C26—C27 1.488 (5)
V5—O14 2.1015 (13) C27—H27A 0.9600
O13—H13 0.796 (17) C27—H27B 0.9600
N1—H1 0.817 (17) C27—H27C 0.9600
N1—C12 1.343 (3) O1W—H1W 0.832 (17)
N1—C16 1.349 (3) O1W—H2W 0.825 (17)
C11—H11A 0.9600
O1—V1—O10 105.91 (8) V5—O12—V2 107.31 (7)
O1—V1—O11 101.72 (8) V1—O13—H13 116.6 (19)
O1—V1—O12 100.78 (7) V2—O13—V1 98.72 (6)
O1—V1—O13 97.47 (7) V2—O13—H13 121.1 (19)
O1—V1—O14i 171.01 (7) V5i—O13—V1 106.09 (6)
O10—V1—O11 96.25 (7) V5i—O13—V2 105.18 (6)
O10—V1—O12 94.27 (7) V5i—O13—H13 107.7 (19)
O10—V1—O13 155.43 (7) V1i—O14—V2 164.90 (7)
O10—V1—O14i 82.58 (6) V1i—O14—V3 84.49 (5)
O11—V1—O12 151.43 (6) V1i—O14—V4 83.74 (5)
O11—V1—O13 86.10 (6) V2—O14—V3 83.90 (5)
O11—V1—O14i 79.89 (6) V2—O14—V4 85.00 (5)
O12—V1—O13 73.70 (6) V3—O14—V4 81.46 (4)
O12—V1—O14i 75.23 (5) V5—O14—V1i 99.36 (6)
O13—V1—O14i 73.74 (5) V5i—O14—V1i 90.48 (5)
O2—V2—O8 102.71 (8) V5i—O14—V2 98.86 (6)
O2—V2—O9 103.22 (8) V5—O14—V2 90.18 (5)
O2—V2—O12 100.59 (8) V5—O14—V3 167.97 (7)
O2—V2—O13 101.07 (8) V5i—O14—V3 88.61 (5)
O2—V2—O14 174.13 (8) V5—O14—V4 87.61 (5)
O8—V2—O12 152.03 (6) V5i—O14—V4 168.93 (7)
O8—V2—O13 86.72 (6) V5i—O14—V5 102.69 (6)
O8—V2—O14 80.05 (6) C12—N1—H1 120 (2)
O9—V2—O8 96.54 (7) C12—N1—C16 124.2 (2)
O9—V2—O12 92.96 (6) C16—N1—H1 116 (2)
O9—V2—O13 154.09 (7) H11A—C11—H11B 109.5
O9—V2—O14 81.46 (6) H11A—C11—H11C 109.5
O12—V2—O13 73.75 (6) H11B—C11—H11C 109.5
O12—V2—O14 75.43 (5) C12—C11—H11A 109.5
O13—V2—O14 73.78 (5) C12—C11—H11B 109.5
O3—V3—O5 105.36 (8) C12—C11—H11C 109.5
O3—V3—O7i 99.44 (8) N1—C12—C11 117.7 (2)
O3—V3—O8 103.16 (8) N1—C12—C13 117.6 (3)
O3—V3—O10i 100.73 (8) C13—C12—C11 124.7 (3)
O3—V3—O14 171.75 (7) C12—C13—H13A 120.0
O5—V3—O7i 154.82 (6) C14—C13—C12 120.0 (3)
O5—V3—O8 93.73 (7) C14—C13—H13A 120.0
O5—V3—O10i 89.65 (7) C13—C14—H14 119.8
O5—V3—O14 82.56 (6) C15—C14—C13 120.4 (2)
O7i—V3—O14 72.50 (5) C15—C14—H14 119.8
O8—V3—O7i 84.75 (6) C14—C15—H15 120.4
O8—V3—O10i 154.02 (6) C16—C15—C14 119.2 (3)
O8—V3—O14 78.23 (6) C16—C15—H15 120.4
O10i—V3—O7i 81.40 (6) N1—C16—C15 118.5 (2)
O10i—V3—O14 76.69 (6) N1—C16—C17 117.3 (2)
O4—V4—O5 104.49 (8) C15—C16—C17 124.2 (3)
O4—V4—O6 101.04 (8) C16—C17—H17A 109.5
O4—V4—O9 99.69 (8) C16—C17—H17B 109.5
O4—V4—O11i 104.52 (9) C16—C17—H17C 109.5
O4—V4—O14 173.18 (8) H17A—C17—H17B 109.5
O5—V4—O6 153.74 (6) H17A—C17—H17C 109.5
O5—V4—O9 88.34 (7) H17B—C17—H17C 109.5
O5—V4—O14 81.40 (6) C22—N2—H2 117 (2)
O6—V4—O14 72.76 (5) C22—N2—C26 124.0 (2)
O9—V4—O6 81.40 (6) C26—N2—H2 119 (2)
O9—V4—O14 76.82 (6) H21A—C21—H21B 109.5
O11i—V4—O5 92.39 (7) H21A—C21—H21C 109.5
O11i—V4—O6 87.03 (7) H21B—C21—H21C 109.5
O11i—V4—O9 154.77 (7) C22—C21—H21A 109.5
O11i—V4—O14 78.36 (6) C22—C21—H21B 109.5
O6—V5—O12 99.81 (7) C22—C21—H21C 109.5
O6—V5—O13i 92.68 (7) N2—C22—C21 117.5 (2)
O6—V5—O14i 163.23 (6) N2—C22—C23 118.4 (2)
O6—V5—O14 86.60 (6) C23—C22—C21 124.1 (3)
O7—V5—O6 106.83 (7) C22—C23—H23 120.3
O7—V5—O12 101.10 (7) C22—C23—C24 119.3 (3)
O7—V5—O13i 93.67 (7) C24—C23—H23 120.3
O7—V5—O14i 88.66 (6) C23—C24—H24 120.0
O7—V5—O14 164.97 (6) C25—C24—C23 120.1 (3)
O12—V5—O13i 156.90 (6) C25—C24—H24 120.0
O12—V5—O14i 83.00 (6) C24—C25—H25 119.9
O12—V5—O14 82.74 (6) C26—C25—C24 120.2 (3)
O13i—V5—O14 78.66 (6) C26—C25—H25 119.9
O14i—V5—O13i 79.67 (6) N2—C26—C25 117.9 (3)
O14i—V5—O14 77.31 (6) N2—C26—C27 117.5 (3)
V3—O5—V4 114.58 (8) C25—C26—C27 124.6 (3)
V5—O6—V4 113.02 (7) C26—C27—H27A 109.5
V5—O7—V3i 110.20 (7) C26—C27—H27B 109.5
V2—O8—V3 115.45 (8) C26—C27—H27C 109.5
V2—O9—V4 115.80 (8) H27A—C27—H27B 109.5
V1—O10—V3i 115.08 (8) H27A—C27—H27C 109.5
V4i—O11—V1 116.22 (8) H27B—C27—H27C 109.5
V1—O12—V2 107.42 (7) H1W—O1W—H2W 107 (2)
V5—O12—V1 106.42 (7)

Symmetry code: (i) −x+3/2, −y+3/2, −z+1.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O13—H13···O1ii 0.80 (2) 2.00 (2) 2.789 (2) 172 (3)
N1—H1···O9 0.82 (2) 1.81 (2) 2.625 (2) 178 (3)
C15—H15···O2iii 0.93 2.54 3.396 (3) 152
N2—H2···O1W 0.83 (2) 1.89 (2) 2.689 (3) 163 (3)
C21—H21A···O4iv 0.96 2.62 3.270 (3) 125
C21—H21B···O5v 0.96 2.50 3.454 (3) 171
C24—H24···O12vi 0.93 2.49 3.297 (3) 145
C25—H25···O7vi 0.93 2.53 3.237 (3) 134
C25—H25···O10vi 0.93 2.51 3.264 (3) 138
C27—H27B···O1ii 0.96 2.46 3.347 (4) 153
O1W—H1W···O11ii 0.83 (2) 2.02 (2) 2.833 (2) 168 (3)
O1W—H2W···O8 0.83 (2) 1.90 (2) 2.718 (2) 171 (3)

Symmetry codes: (ii) −x+3/2, −y+1/2, −z+1; (iii) −x+3/2, y+1/2, −z+1/2; (iv) −x+1, y−1, −z+1/2; (v) x, y−1, z; (vi) x−1/2, y−1/2, z.

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: GK2606).

References

  1. Agilent (2014). CrysAlis PRO. Agilent Technologies Ltd., Yarnton, England.
  2. Arrieta, J. M., Arnaiz, A., Lorente, L., Santiago, C. & Germain, G. (1988). Acta Cryst. C44, 1004–1008.
  3. Asgedom, G., Sreedhara, A., Kivikoski, J. & Rao, C. P. (1996). Polyhedron, 16, 643–651.
  4. Ban-Oganowska, H., Godlewska, P., Macalik, L., Hanuza, J., Oganowski, W. & van der Maas, J. H. (2002). J. Mol. Struct. 605, 291–307.
  5. Bartošová, L., Padělková, Z., Rakovský, E. & Schwendt, P. (2012). Polyhedron, 31, 565–569.
  6. Brandenburg, K. (2010). DIAMOND Crystal Impact GbR, Bonn, Germany.
  7. Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.
  8. Crans, D. C. (1998). Peroxo, Hydroxylamido and acac Derived Vanadium Complexes: Chemistry, Biochemistry and Insulin-Mimetic Action of Selected Vanadium Compounds. ACS Symposium Series 711, edited by Al. S. Tracey & D. C. Crans. Oxford University Press.
  9. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  10. Elassal, Z., Groula, L., Nohair, K., Sahibed-dine, A., Brahmi, R., Loghmarti, M., Mzerd, A. & Bensitel, M. (2011). Arab. J. Chem. 4, 313–319.
  11. Hagrman, P. J., Finn, R. C. & Zubieta, J. (2001). Solid State Sci. 3, 745–774.
  12. Jeffrey, G. A. (1997). An Introduction to Hydrogen Bonding. New York: Oxford University Press.
  13. Klištincová, L., Rakovský, E. & Schwendt, P. (2008). Inorg. Chem. Commun. 11, 1140–1142.
  14. Klištincová, L., Rakovský, E., Schwendt, P., Plesch, G. & Gyepes, R. (2010). Inorg. Chem. Commun. 13, 1275–1277.
  15. Medhi, K. C. & Mukherjee, D. K. (1965). Spectrochim. Acta, 21, 895–902.
  16. Pacigová, S., Rakovský, E., Sivák, M. & Žák, Z. (2007). Acta Cryst. C63, m419–m422. [DOI] [PubMed]
  17. Rakovský, E. & Gyepes, R. (2006). Acta Cryst. E62, m2108–m2110.
  18. Santiago, C., Arnaiz, A., Lorente, L., Arrieta, J. M. & Germain, G. (1988). Acta Cryst. C44, 239–242.
  19. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  20. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, Ie. DOI: 10.1107/S1600536814011118/gk2606sup1.cif

e-70-0m225-sup1.cif (30.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814011118/gk2606Isup2.hkl

e-70-0m225-Isup2.hkl (321.7KB, hkl)

CCDC reference: 1003037

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES