Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2014 May 31;70(Pt 6):o740–o741. doi: 10.1107/S1600536814012409

4′-Phenyl-3,4-di­hydro-2H-spiro­[naph­tha­lene-1,3′-[1,2,4]triazole]-5′-thione

Joel T Mague a, Mehmet Akkurt b, Shaaban K Mohamed c,d, Alaa A Hassan e, Mustafa R Albayati f,*
PMCID: PMC4051013  PMID: 24940303

Abstract

In the title mol­ecule, C17H15N3S, the phenyl group makes a dihedral angle of 57.29 (11)° with the mean plane of the triazole ring, which in turn makes an angle of 86.83 (12)° with the plane of the aromatic portion of the tetra­hydro­naphthalene moiety. In the crystal, mol­ecules are linked by weak C—H⋯S hydrogen bonds into supra­molecular chains propagating along the a-axis direction. Weak C—H⋯π inter­actions are also observed.

Related literature  

For the synthesis of different triazole thione compounds, see: Wujec et al. (2004); Zamani et al. (2004); Pitucha et al. (2007); Farghaly & El-Kashef (2006); Guelerman et al. (1998); Salgin-Gökşen et al. (2007). For the biological activity of triazole thio­nes, see: Amir & Kumar (2007); Gokce et al. (2001); Ezabadi et al. (2008); Mazzone et al. (1981); Küçükgüzel et al. (2008); Dogan et al. (2005); Kane et al. (1994); Kane et al. (1988). For ring-puckering parameters, see: Cremer & Pople (1975).graphic file with name e-70-0o740-scheme1.jpg

Experimental  

Crystal data  

  • C17H15N3S

  • M r = 293.39

  • Orthorhombic, Inline graphic

  • a = 6.2091 (9) Å

  • b = 13.1804 (19) Å

  • c = 17.391 (3) Å

  • V = 1423.3 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.22 mm−1

  • T = 150 K

  • 0.25 × 0.15 × 0.08 mm

Data collection  

  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2013) T min = 0.80, T max = 0.98

  • 25736 measured reflections

  • 3564 independent reflections

  • 3274 reflections with I > 2σ(I)

  • R int = 0.048

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.035

  • wR(F 2) = 0.085

  • S = 1.04

  • 3564 reflections

  • 190 parameters

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.15 e Å−3

  • Absolute structure: Flack x determined using 1312 quotients [(I +)−(I )]/[(I +)+(I )] (Parsons et al., 2013)

  • Absolute structure parameter: −0.02 (3)

Data collection: APEX2 (Bruker, 2013); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536814012409/xu5795sup1.cif

e-70-0o740-sup1.cif (24.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814012409/xu5795Isup2.hkl

e-70-0o740-Isup2.hkl (195.7KB, hkl)

Supporting information file. DOI: 10.1107/S1600536814012409/xu5795Isup3.cml

CCDC reference: 1005633

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg3 is the centroid of the benzene ring of the 1,2,3,4-tetra­hydro­naphthalene group.

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7⋯S1i 0.95 2.86 3.568 (3) 132
C6—H6⋯Cg3ii 0.95 2.84 3.602 (2) 138
C16—H16⋯Cg3iii 0.95 2.90 3.676 (3) 139

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

JTM thanks Tulane University for support of the Tulane Crystallography Laboratory.

supplementary crystallographic information

1. Comment

Triazole thiones have been prepared by different methods based mostly on cyclodehydration of thiosemicarbazides with a variety of basic reagents such as sodium hydroxide (Wujec et al., 2004; Zamani et al., 2004; Pitucha et al., 2007), potassium hydroxide (Farghaly & El-Kashef, 2006), sodium carbonate (Guelerman et al., 1998) and triethylamine (Salgin-Gökşen et al., 2007). On other hand the pharmacological properties such as anti-inflammatory, analgesic (Amir & Kumar, 2007; Gokce et al., 2001), anti-bacterial, anti-fungal (Ezabadi et al., 2008; Mazzone et al., 1981), anti-tubercular, anti-viral (Küçükgüzel et al., 2008), anti-tumoral (Dogan et al., 2005), anti-convulsant (Kane et al., 1994) and anti-depressant (Kane et al., 1988) activities have been reported for mercapto-and thione-substituted 1,2,4-triazole systems. Based on above findings, we herein report the use of chloranil as a dehydrogenating agent of (1E)-3,4,4a,5,8,8a-hexahydronaphthalen-1(2H)-one N-phenylthiosemicarbazone to give the corresponding triazole thione compound.

In the title compound, the phenyl group (C3–C8) attached to N3 makes a dihedral angle of 57.29 (11)° with the mean plane of the triazole ring (N1–N3/C1/C2) which in turn makes an angle of 86.83 (12)° with the plane of the aromatic portion (C12–C17) of the tetrahydronaphthalene moiety (Fig. 1). A Cremer-Pople analysis of the conformation of the ring C2/C9–C12/C17 gave puckering parameters Q(2) = 0.356 (3) Å, Q(3) = -0.332 (3) Å and φ(2) = 275.4 (4)° (Cremer & Pople, 1975). In the solid there are no unusual intermolecular contacts. Only weak C—H···S and C—H···π interactions are observed (Table 1, Fig. 2).

2. Experimental

A mixture of 1 mmol (299 mg) of (1E)-3,4,4a,5,8,8a-hexahydronaphthalen-1(2H)-one N-phenylthiosemicarbazone and 1 mmol (246 mg) of 2,3,5,6-tetrachloro-1,4-benzoquinone in 30 ml dry ethyl acetate was stirred for 96 h at room temperature. The precipitate was filtered off, dried under vacuum and recrytallized from ethanol to give pure orange crystals.

3. Refinement

H atoms were placed in calculated positions with C—H = 0.95-0.99 Å, and refined in riding mode with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.

Fig. 1.

Perspective view of the title compound with 50% probability ellipsoids.

Fig. 2.

Fig. 2.

Packing viewed down the a axis. Hydrogen atoms are omitted.

Crystal data

C17H15N3S F(000) = 616
Mr = 293.39 Dx = 1.369 Mg m3
Orthorhombic, P212121 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2ab Cell parameters from 9998 reflections
a = 6.2091 (9) Å θ = 2.3–28.3°
b = 13.1804 (19) Å µ = 0.22 mm1
c = 17.391 (3) Å T = 150 K
V = 1423.3 (4) Å3 Column, orange
Z = 4 0.25 × 0.15 × 0.08 mm

Data collection

Bruker SMART APEX CCD diffractometer 3564 independent reflections
Radiation source: fine-focus sealed tube 3274 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.048
Detector resolution: 8.3660 pixels mm-1 θmax = 28.3°, θmin = 1.9°
φ and ω scans h = −8→8
Absorption correction: multi-scan (SADABS; Bruker, 2013) k = −17→17
Tmin = 0.80, Tmax = 0.98 l = −23→23
25736 measured reflections

Refinement

Refinement on F2 Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.035 w = 1/[σ2(Fo2) + (0.0378P)2 + 0.4193P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.085 (Δ/σ)max = 0.001
S = 1.04 Δρmax = 0.26 e Å3
3564 reflections Δρmin = −0.15 e Å3
190 parameters Absolute structure: Flack x determined using 1312 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
0 restraints Absolute structure parameter: −0.02 (3)

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.62076 (10) 0.54064 (5) 0.53367 (3) 0.0310 (2)
N1 0.6979 (4) 0.57824 (16) 0.68377 (12) 0.0330 (6)
N2 0.6462 (3) 0.54877 (15) 0.74954 (11) 0.0306 (6)
N3 0.4806 (3) 0.44434 (13) 0.66343 (10) 0.0222 (5)
C1 0.5921 (3) 0.51596 (16) 0.62549 (13) 0.0252 (6)
C2 0.5003 (3) 0.45985 (17) 0.74710 (12) 0.0231 (6)
C3 0.3302 (3) 0.37544 (16) 0.62918 (11) 0.0207 (6)
C4 0.3432 (3) 0.27253 (16) 0.64403 (12) 0.0240 (6)
C5 0.1925 (4) 0.20741 (17) 0.61087 (13) 0.0258 (6)
C6 0.0339 (4) 0.24503 (18) 0.56279 (12) 0.0266 (6)
C7 0.0221 (4) 0.34798 (18) 0.54906 (12) 0.0270 (6)
C8 0.1688 (3) 0.41375 (17) 0.58248 (12) 0.0241 (6)
C9 0.2844 (4) 0.48971 (19) 0.78250 (13) 0.0291 (7)
C10 0.3014 (4) 0.4969 (2) 0.86981 (14) 0.0346 (8)
C11 0.3616 (4) 0.39487 (19) 0.90331 (13) 0.0315 (7)
C12 0.5517 (4) 0.34643 (17) 0.86358 (12) 0.0243 (6)
C13 0.6703 (4) 0.27160 (18) 0.90093 (13) 0.0292 (7)
C14 0.8448 (4) 0.22515 (18) 0.86675 (14) 0.0314 (7)
C15 0.9049 (4) 0.25245 (18) 0.79299 (14) 0.0295 (7)
C16 0.7902 (4) 0.32656 (18) 0.75447 (12) 0.0245 (6)
C17 0.6145 (4) 0.37395 (16) 0.78893 (11) 0.0216 (5)
H4 0.45350 0.24650 0.67640 0.0290*
H5 0.19880 0.13670 0.62140 0.0310*
H6 −0.06640 0.20020 0.53940 0.0320*
H7 −0.08750 0.37400 0.51640 0.0320*
H8 0.15880 0.48470 0.57340 0.0290*
H9A 0.23820 0.55600 0.76150 0.0350*
H9B 0.17420 0.43860 0.76860 0.0350*
H10A 0.41200 0.54780 0.88390 0.0420*
H10B 0.16180 0.51930 0.89140 0.0420*
H11A 0.39580 0.40350 0.95850 0.0380*
H11B 0.23620 0.34880 0.89940 0.0380*
H13 0.62990 0.25190 0.95150 0.0350*
H14 0.92350 0.17460 0.89380 0.0380*
H15 1.02430 0.22040 0.76900 0.0350*
H16 0.83170 0.34540 0.70390 0.0290*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0328 (3) 0.0327 (3) 0.0274 (3) 0.0027 (3) 0.0043 (2) 0.0093 (2)
N1 0.0365 (11) 0.0290 (10) 0.0336 (11) −0.0093 (9) −0.0021 (9) 0.0033 (8)
N2 0.0339 (10) 0.0242 (10) 0.0336 (10) −0.0065 (9) −0.0046 (9) −0.0017 (8)
N3 0.0257 (9) 0.0210 (10) 0.0199 (8) −0.0036 (7) −0.0028 (7) 0.0013 (7)
C1 0.0243 (10) 0.0216 (11) 0.0298 (11) 0.0001 (8) −0.0004 (9) 0.0021 (8)
C2 0.0261 (9) 0.0217 (10) 0.0214 (10) −0.0032 (9) −0.0022 (8) −0.0029 (8)
C3 0.0248 (10) 0.0223 (10) 0.0151 (9) −0.0019 (8) −0.0002 (8) −0.0011 (8)
C4 0.0264 (10) 0.0238 (10) 0.0217 (9) 0.0010 (8) −0.0047 (9) 0.0016 (8)
C5 0.0314 (11) 0.0214 (11) 0.0246 (10) −0.0027 (9) −0.0011 (9) −0.0009 (8)
C6 0.0263 (10) 0.0311 (12) 0.0224 (10) −0.0040 (9) −0.0029 (8) −0.0058 (9)
C7 0.0250 (10) 0.0332 (12) 0.0227 (11) 0.0036 (9) −0.0061 (9) −0.0018 (9)
C8 0.0286 (11) 0.0216 (10) 0.0221 (10) 0.0037 (8) −0.0025 (9) −0.0014 (8)
C9 0.0282 (11) 0.0299 (12) 0.0293 (11) 0.0035 (9) −0.0017 (10) −0.0044 (9)
C10 0.0372 (13) 0.0374 (14) 0.0292 (12) 0.0028 (11) 0.0060 (10) −0.0088 (10)
C11 0.0334 (12) 0.0390 (14) 0.0221 (11) −0.0033 (11) 0.0055 (10) −0.0027 (9)
C12 0.0276 (10) 0.0264 (11) 0.0189 (10) −0.0076 (8) 0.0006 (8) −0.0037 (8)
C13 0.0398 (13) 0.0270 (12) 0.0207 (10) −0.0064 (9) −0.0014 (9) 0.0010 (9)
C14 0.0389 (13) 0.0255 (11) 0.0299 (11) −0.0008 (9) −0.0090 (10) 0.0028 (9)
C15 0.0269 (10) 0.0298 (12) 0.0318 (12) 0.0005 (9) −0.0013 (9) −0.0016 (9)
C16 0.0228 (9) 0.0305 (12) 0.0202 (10) −0.0037 (9) 0.0012 (8) 0.0007 (9)
C17 0.0228 (9) 0.0240 (10) 0.0179 (9) −0.0048 (9) −0.0026 (8) −0.0010 (8)

Geometric parameters (Å, º)

S1—C1 1.639 (2) C13—C14 1.379 (3)
N1—N2 1.250 (3) C14—C15 1.384 (3)
N1—C1 1.460 (3) C15—C16 1.382 (3)
N2—C2 1.482 (3) C16—C17 1.393 (3)
N3—C1 1.344 (3) C4—H4 0.9500
N3—C2 1.475 (3) C5—H5 0.9500
N3—C3 1.432 (3) C6—H6 0.9500
C2—C9 1.527 (3) C7—H7 0.9500
C2—C17 1.521 (3) C8—H8 0.9500
C3—C4 1.383 (3) C9—H9A 0.9900
C3—C8 1.385 (3) C9—H9B 0.9900
C4—C5 1.395 (3) C10—H10A 0.9900
C5—C6 1.384 (3) C10—H10B 0.9900
C6—C7 1.380 (3) C11—H11A 0.9900
C7—C8 1.385 (3) C11—H11B 0.9900
C9—C10 1.525 (3) C13—H13 0.9500
C10—C11 1.513 (4) C14—H14 0.9500
C11—C12 1.509 (3) C15—H15 0.9500
C12—C13 1.392 (3) C16—H16 0.9500
C12—C17 1.403 (3)
N2—N1—C1 110.2 (2) C12—C17—C16 120.0 (2)
N1—N2—C2 112.12 (19) C3—C4—H4 120.00
C1—N3—C2 110.15 (17) C5—C4—H4 120.00
C1—N3—C3 125.25 (18) C4—C5—H5 120.00
C2—N3—C3 123.53 (17) C6—C5—H5 120.00
S1—C1—N1 121.04 (16) C5—C6—H6 120.00
S1—C1—N3 132.35 (17) C7—C6—H6 120.00
N1—C1—N3 106.61 (19) C6—C7—H7 120.00
N2—C2—N3 100.87 (16) C8—C7—H7 120.00
N2—C2—C9 108.74 (18) C3—C8—H8 120.00
N2—C2—C17 106.86 (16) C7—C8—H8 120.00
N3—C2—C9 111.15 (17) C2—C9—H9A 109.00
N3—C2—C17 114.04 (17) C2—C9—H9B 109.00
C9—C2—C17 114.10 (18) C10—C9—H9A 109.00
N3—C3—C4 120.40 (17) C10—C9—H9B 109.00
N3—C3—C8 118.97 (19) H9A—C9—H9B 108.00
C4—C3—C8 120.61 (19) C9—C10—H10A 110.00
C3—C4—C5 119.16 (19) C9—C10—H10B 110.00
C4—C5—C6 120.5 (2) C11—C10—H10A 110.00
C5—C6—C7 119.7 (2) C11—C10—H10B 110.00
C6—C7—C8 120.5 (2) H10A—C10—H10B 108.00
C3—C8—C7 119.6 (2) C10—C11—H11A 109.00
C2—C9—C10 110.90 (19) C10—C11—H11B 109.00
C9—C10—C11 110.2 (2) C12—C11—H11A 109.00
C10—C11—C12 113.14 (19) C12—C11—H11B 109.00
C11—C12—C13 120.0 (2) H11A—C11—H11B 108.00
C11—C12—C17 122.1 (2) C12—C13—H13 119.00
C13—C12—C17 117.9 (2) C14—C13—H13 119.00
C12—C13—C14 122.0 (2) C13—C14—H14 120.00
C13—C14—C15 119.7 (2) C15—C14—H14 120.00
C14—C15—C16 119.6 (2) C14—C15—H15 120.00
C15—C16—C17 120.8 (2) C16—C15—H15 120.00
C2—C17—C12 120.4 (2) C15—C16—H16 120.00
C2—C17—C16 119.55 (18) C17—C16—H16 120.00
C1—N1—N2—C2 1.3 (3) N3—C2—C17—C16 38.4 (3)
N2—N1—C1—S1 176.99 (17) C9—C2—C17—C12 −16.1 (3)
N2—N1—C1—N3 −2.6 (3) C9—C2—C17—C16 167.6 (2)
N1—N2—C2—N3 0.3 (2) N3—C3—C4—C5 178.98 (19)
N1—N2—C2—C9 −116.6 (2) C8—C3—C4—C5 0.5 (3)
N1—N2—C2—C17 119.8 (2) N3—C3—C8—C7 −179.93 (18)
C2—N3—C1—S1 −176.77 (17) C4—C3—C8—C7 −1.4 (3)
C2—N3—C1—N1 2.7 (2) C3—C4—C5—C6 1.0 (3)
C3—N3—C1—S1 −8.3 (3) C4—C5—C6—C7 −1.5 (3)
C3—N3—C1—N1 171.17 (19) C5—C6—C7—C8 0.6 (3)
C1—N3—C2—N2 −2.0 (2) C6—C7—C8—C3 0.9 (3)
C1—N3—C2—C9 113.2 (2) C2—C9—C10—C11 −61.8 (3)
C1—N3—C2—C17 −116.1 (2) C9—C10—C11—C12 49.2 (3)
C3—N3—C2—N2 −170.63 (17) C10—C11—C12—C13 159.1 (2)
C3—N3—C2—C9 −55.5 (3) C10—C11—C12—C17 −21.2 (3)
C3—N3—C2—C17 75.2 (2) C11—C12—C13—C14 179.9 (2)
C1—N3—C3—C4 130.6 (2) C17—C12—C13—C14 0.1 (4)
C1—N3—C3—C8 −50.9 (3) C11—C12—C17—C2 4.2 (3)
C2—N3—C3—C4 −62.4 (3) C11—C12—C17—C16 −179.6 (2)
C2—N3—C3—C8 116.1 (2) C13—C12—C17—C2 −176.1 (2)
N2—C2—C9—C10 −74.6 (2) C13—C12—C17—C16 0.2 (3)
N3—C2—C9—C10 175.21 (19) C12—C13—C14—C15 −0.4 (4)
C17—C2—C9—C10 44.5 (3) C13—C14—C15—C16 0.4 (4)
N2—C2—C17—C12 104.1 (2) C14—C15—C16—C17 −0.2 (4)
N2—C2—C17—C16 −72.2 (2) C15—C16—C17—C2 176.1 (2)
N3—C2—C17—C12 −145.4 (2) C15—C16—C17—C12 −0.2 (4)

Hydrogen-bond geometry (Å, º)

Cg3 is the centroid of the benzene ring of the 1,2,3,4-tetrahydronaphthalene group.

D—H···A D—H H···A D···A D—H···A
C7—H7···S1i 0.95 2.86 3.568 (3) 132
C6—H6···Cg3ii 0.95 2.84 3.602 (2) 138
C16—H16···Cg3iii 0.95 2.90 3.676 (3) 139

Symmetry codes: (i) x−1, y, z; (ii) x−1/2, −y+1/2, −z+1; (iii) x+1, y, z.

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: XU5795).

References

  1. Amir, M. & Kumar, S. (2007). Acta Pharm. 57, 31–45. [DOI] [PubMed]
  2. Bruker (2013). APEX2, SADABS and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.
  4. Dogan, H. N., Duran, A. & Rollas, S. (2005). Indian J. Chem. Sect. B, 44, 2301–2307.
  5. Ezabadi, I. R., Camoutsis, C., Zoumpoulakis, P., Geronikaki, A., Soković, M., Glamočlija, J. & Ćirić, A. (2008). Bioorg. Med. Chem. 16, 355–360. [DOI] [PubMed]
  6. Farghaly, A.-R. & El-Kashef, H. (2006). Arkivoc, XI, 79–90.
  7. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  8. Gokce, M., Cakir, B., Erol, K. & Sahin, M. F. (2001). Arch. Pharm. 334, 279–283. [DOI] [PubMed]
  9. Guelerman, N., Rollas, S. & Uelgen, M. (1998). Boll. Chim. Farm. 137, 140–143. [PubMed]
  10. Kane, J. M., Dudley, M. K., Sorensen, S. M. & Miller, F. P. (1988). J. Med. Chem. 31, 1253–1258. [DOI] [PubMed]
  11. Kane, J. M., Staeger, M. A., Dalton, C. R., Miller, F. P., Dudley, M. W., Ogden, A. M. L., Kehne, J. H., Ketteler, H. J., McCloskey, T. C., Senyah, Y., Chmieleweski, P. A. & Miller, J. A. (1994). J. Med. Chem. 37, 125–132. [DOI] [PubMed]
  12. Küçükgüzel, I., Tatar, E., Küçükgüzel, Ş. G., Rollas, S. & De Clercq, E. (2008). Eur. J. Med. Chem. 43, 381–392. [DOI] [PubMed]
  13. Mazzone, G., Bonina, F., Reina, R. A. & Blandino, G. (1981). Il Farmaco, 36, 181–196. [PubMed]
  14. Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. [DOI] [PMC free article] [PubMed]
  15. Pitucha, M., Wujec, M. & Dobosz, M. (2007). J. Chin. Chem. Soc. 54, 69–73.
  16. Salgin-Gökşen, U., Gökhan-Kelekçi, N., Göktaş, Ö., Köysal, Y., Kiliç, E., Işik, Ş., Aktay, G. & Özalp, M. (2007). Bioorg. Med. Chem. 15, 5738–5751. [DOI] [PubMed]
  17. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  18. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  19. Wujec, M., Pitucha, M., Dobosz, M., Kosikowska, U. & Malm, A. (2004). Acta Pharm. 54, 251–260. [PubMed]
  20. Zamani, K., Faghihi, K., Tofighi, T. & Shariatzadeh, M. R. (2004). Turk. J. Chem. 28, 95–100.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536814012409/xu5795sup1.cif

e-70-0o740-sup1.cif (24.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814012409/xu5795Isup2.hkl

e-70-0o740-Isup2.hkl (195.7KB, hkl)

Supporting information file. DOI: 10.1107/S1600536814012409/xu5795Isup3.cml

CCDC reference: 1005633

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES