Abstract
The title compound, (C9H17N2)[ZnBr(C32H16N8)], contains a bromido(phthalocyaninato)zincate anion and a protonated 1,8-diazabicyclo[5.4.0]undece-7-ene cation, [DBUH]+. The central ZnII atom has a distorted square-pyramidal geometry, with four isoindole N atoms of the macrocycle in equatorial positions and a bromide ion in the axial position. The latter has a relatively high displacement parameter, but no evidence for disorder was obtained. The central ZnII atom is displaced by 0.488 (3) Å from the mean plane defined by the four isoindole N atoms. The [DBUH]+ cation is involved in an almost linear N—H⋯Br hydrogen bond. In the crystal, π–π interactions lead to a relatively short distance of 3.366 (3) Å between the phthalocyaninate rings.
Related literature
For background information on phthalocyanines, see: Nyokong et al. (1987 ▶); Gregory (2000 ▶); Leznoff & Lever (1996 ▶); Tedesco et al. (2003 ▶); Ormond & Freeman (2013 ▶). For related structures, see: Kobayashi et al. (1971 ▶); Mossoyan-Deneux et al. (1985 ▶); Zeng et al. (2005 ▶); Del Sole et al. (2005 ▶); Kubiak et al. (2007 ▶); Yang et al. (2008 ▶); Janczak et al. (2009 ▶, 2011 ▶); Janczak & Kubiak (2009 ▶); Li et al. (2011 ▶); Przybył & Janczak (2014 ▶).
Experimental
Crystal data
(C9H17N2)[ZnBr(C32H16N8)]
M r = 811.05
Monoclinic,
a = 12.4336 (8) Å
b = 22.9278 (16) Å
c = 13.3267 (9) Å
β = 113.266 (4)°
V = 3490.2 (4) Å3
Z = 4
Mo Kα radiation
μ = 1.90 mm−1
T = 295 K
0.35 × 0.21 × 0.19 mm
Data collection
Kuma KM-4 with CCD detector diffractometer
Absorption correction: numerical (CrysAlis RED; Oxford Diffraction, 2008 ▶) T min = 0.562, T max = 0.725
42041 measured reflections
8492 independent reflections
4908 reflections with I > 2σ(I)
R int = 0.045
Refinement
R[F 2 > 2σ(F 2)] = 0.057
wR(F 2) = 0.143
S = 1.00
8492 reflections
478 parameters
H atoms treated by a mixture of independent and constrained refinement
Δρmax = 0.76 e Å−3
Δρmin = −1.26 e Å−3
Data collection: CrysAlis CCD (Oxford Diffraction, 2008 ▶); cell refinement: CrysAlis RED (Oxford Diffraction, 2008 ▶); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 ▶); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 ▶); molecular graphics: DIAMOND (Brandenburg & Putz, 2006 ▶); software used to prepare material for publication: SHELXL97.
Supplementary Material
Crystal structure: contains datablock(s) I. DOI: 10.1107/S160053681401157X/fj2673sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681401157X/fj2673Isup2.hkl
CCDC reference: 1003951
Additional supporting information: crystallographic information; 3D view; checkCIF report
Table 1. Hydrogen-bond geometry (Å, °).
| D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A |
|---|---|---|---|---|
| N10—H10⋯Br1 | 0.87 (2) | 2.44 (2) | 3.281 (4) | 163 (2) |
Acknowledgments
This work was supported by the Ministry of Science and Higher Education (grant No. N N204 397540).
supplementary crystallographic information
1. Comment
Phthalocyanines and metallophthalocyanines (Pcs and MPcs) arouses interest because of exhibition of many important features which gives potential application in many fields from industry to medicine (Leznoff & Lever, 1996; Gregory, 2000). The utility of MPc complexes is limited by their relatively low solubility in the most organic solvents. The solubility of MPcs can be enhanced by substitution of the H atoms of Pc macrocycle or/and by ligation an additional ligand the the metal centre of MPcs. Both ways of modification of MPc's lead to improvment of their solubility, due to decreasing of the π···π interactions between the Pc macrocycles as well as lowering their aggregation in solution. ZnPc and its derivatives, due to strong absorption in the red region of visible radiation and high triplet quantum yield and long lifetimes, are intensively studied as potential agents in photodynamic therapy (Tedesco et al., 2003; Ormond & Freeman, 2013).
Complex 1 crystallizes as ionic compound in the centrosymmetric space group of monoclinic system. The blue-violet crystals of 1 are built up from bromido(phthalocyaninato)zinc(II) anion (ZnPcBr-) and 1,8-diazabicyclo[5.4.0]undec-7-en-8-ium cation (DBUH+) (Fig. 1). Both oppositely charged units interact via N—H10···Br hydrogen-bond, in which DBUH+ plays role of a donor (Table 1). Due to presence of DBU that accepts H+, phthalocyaninato macrocyle maintains -2 oxidation state, therefore the complex 1 is diamagnetic as show the magnetic susceptibility measurements. This is in contrast to the chloro(phthalocyaninato)zinc(II) in which ZnPc is oxidised and has +1 charge, and the metal centre is coordinated by phthalocyaninato anion with π-radical character, Pc-. (Mossoyan-Deneux et al., 1985). As an effect of monaxial Zn—Br bond formation, Zn(II) atom exhibits displacement from a plane defined by four isoindole nitrogen atoms of Pc(2-) (N4 plane) by 0.488 (3) Å. This is a value situated in the typical range in comparison with other 4+1 complexes of ZnPc reported in the literature (Table S1). Additionally, pyramidal coordination environment of Zn(II) centre is slightly distorted, angle between the normal to the N4 plane and the Zn—Br bond is equal 1.65 (5) ° that is inclined towards the hydrogen-bond. In reported structure Pc(2-) macrocycle has nearly flat conformation though deformation from flat to saucer-like shape is very common among 4+1 MPc complexes arranged in the back-to-back fashion in solids. Almost all nitrogen and carbon atoms of Pc(2-) exhibit displacement from the mean plane of these atoms smaller than 0.1 Å (only three peripheral carbon atoms slightly exceed this value). Complex of ZnPc with chloride (Mossoyan-Deneux et al., 1985) also exhibits nearly flat conformation of Pc(2-) macrocycle, thus deformation of the molecule into saucer-like shape is probably caused by interaction with bulky ligands like amines or pyridine derivatives (Table S1). Mutual arrangement of the complex molecules exhibits typical back-to-back fashion, with the distance 3.366 (3) Å, as a consequence of π···π interaction between Pc(2-) macrocycles. Back-to-back oriented molecules exhibits relatively small shift in plane of Pc(2-) macrorings (Fig. 2).
Thanks to DBU molecule that plays role of acceptor H+, ligation of ZnPc by Br- with the formation of the ionic complex (ZnPcBr-)(DBUH+) maintains -2 oxidation state of the Pc macrocycle . Thus ligation of the central Zn atom of ZnPc by Br- in 1 does not change the colouring properties compared with the parent ZnPc pigment since the energy gap of HOMO-LUMO level is not disturbed. The Q band assigned to HOMO-LUMO transition is observed at almost the same wavelength of ~673 nm in both complexes (ZnPcBr-)(DBUH+) and ZnPc (Nyokong et al., 1987). However, the ionic compound 1 is significantly better soluble than ZnPc pigment and therefore this feature of 1 widnes its potential utility.
2. Experimental
Crystals of 1 were obtained by heating of complex ZnPc—DBU, well characterized in literature (Del Sole et al. 2005, Janczak et al., 2011), with n-pentanothiol slightly acidified with HBr under solvothermal conditions (evacuated glass elongated ampoule, 130 °C, 5 days). Elemental analysis of the ionic (ZnPcBr-)(DBUH+) crystals was performed with energy dispersive spectroscopy (EDS) as well as with a Perkin-Elmer 2400 elemental analyser. EDS spectra were acquired and analysed using an EDAX Pegasus XM4 spectrometer with SDD Apollo 4D detector mounted on a FEI Nova NanoSEM 230 microscope. Found: Zn, 8.00; Br, 9.95; C, 60.45; N, 17.17 and H, 4.20%. Calculated for C41H33N10ZnBr: Zn, 8.06; Br, 9.84; C, 60.72; N, 17.27 and H, 4.10%.
The temperature dependence of the magnetic susceptibility was performed on Quantum Design SQUID magnetometer (San Diego, CA). The data were recorded at a magnetic field of 0.5 T between 1.8 and 300 K on the sample of 50 mg. Electronic absorption spectrum in solution (CARY Varian SE UV-Vis-NIR spectrometer) exhibits typical for Pc macrocycle two bands: Q (~673 nm, logε=5.55) and B (~350 nm,logε=4.22).
3. Refinement
Crystal data, data collection and structure refinement details are summarized in Table 1. During refinement of the crystal structure we have seen the relatively high thermal parameters of Br coordinated to ZnPc. Therefore, the composition of the crystal has been checked with energy dispersive spectroscopy (EDS) as well as with a Perkin-Elmer 2400 elemental analyser. Elemental analysis evidently points to 1:1 proportion of Zn:Br. Therefore the refinement of the crystal structure was performed with the occupation factor of 1 for Br. Hydrogen atoms were placed in calculated positions and refined using a riding model with C—H = 0.97 Å and Uiso(H) = 1.5Ueq(C) for aliphatic and C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C) for aromatic moieties. H atom involved in N—H···Br bond was localized in difference maps and refined with N—H distance restrain of 0.87 (2) Å.
Figures
Fig. 1.
Asymmetric part of the unit cell of 1, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
Fig. 2.
Unit cell packing in 1, viewed along a. All atoms are represented by spheres. H atoms, except one involved in hydrogen-bond formation, have been omitted for clarity.
Crystal data
| (C9H17N2)[ZnBr(C32H16N8)] | F(000) = 1656 |
| Mr = 811.05 | Dx = 1.544 Mg m−3Dm = 1.54 Mg m−3Dm measured by floatation |
| Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
| Hall symbol: -P 2yn | Cell parameters from 3452 reflections |
| a = 12.4336 (8) Å | θ = 2.6–27.5° |
| b = 22.9278 (16) Å | µ = 1.90 mm−1 |
| c = 13.3267 (9) Å | T = 295 K |
| β = 113.266 (4)° | Parallelepiped, blue-violet |
| V = 3490.2 (4) Å3 | 0.35 × 0.21 × 0.19 mm |
| Z = 4 |
Data collection
| Kuma KM-4 with CCD detector diffractometer | 8492 independent reflections |
| Radiation source: fine-focus sealed tube | 4908 reflections with I > 2σ(I) |
| Graphite monochromator | Rint = 0.045 |
| ω scan | θmax = 28.8°, θmin = 2.6° |
| Absorption correction: numerical (CrysAlis RED; Oxford Diffraction, 2008) | h = −16→12 |
| Tmin = 0.562, Tmax = 0.725 | k = −30→30 |
| 42041 measured reflections | l = −17→17 |
Refinement
| Refinement on F2 | Primary atom site location: structure-invariant direct methods |
| Least-squares matrix: full | Secondary atom site location: difference Fourier map |
| R[F2 > 2σ(F2)] = 0.057 | Hydrogen site location: inferred from neighbouring sites |
| wR(F2) = 0.143 | H atoms treated by a mixture of independent and constrained refinement |
| S = 1.00 | w = 1/[σ2(Fo2) + (0.076P)2] where P = (Fo2 + 2Fc2)/3 |
| 8492 reflections | (Δ/σ)max < 0.001 |
| 478 parameters | Δρmax = 0.76 e Å−3 |
| 0 restraints | Δρmin = −1.26 e Å−3 |
Special details
| Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
| Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
| x | y | z | Uiso*/Ueq | ||
| Zn1 | 0.45113 (3) | 0.025014 (16) | 0.31931 (3) | 0.02443 (12) | |
| Br1 | 0.34125 (5) | 0.06134 (3) | 0.13296 (5) | 0.07214 (19) | |
| N1 | 0.4406 (2) | 0.14541 (12) | 0.4657 (2) | 0.0260 (6) | |
| N2 | 0.3569 (2) | 0.04946 (12) | 0.4069 (2) | 0.0262 (6) | |
| N3 | 0.2243 (2) | −0.03246 (12) | 0.3688 (2) | 0.0266 (6) | |
| N4 | 0.3855 (2) | −0.05667 (12) | 0.3176 (2) | 0.0257 (6) | |
| N5 | 0.5072 (2) | −0.11056 (12) | 0.2462 (2) | 0.0274 (7) | |
| N6 | 0.5907 (2) | −0.01490 (11) | 0.3055 (2) | 0.0241 (6) | |
| N7 | 0.7220 (2) | 0.06751 (12) | 0.3406 (2) | 0.0255 (6) | |
| N8 | 0.5615 (2) | 0.09175 (12) | 0.3933 (2) | 0.0255 (6) | |
| C1 | 0.3601 (3) | 0.10425 (14) | 0.4491 (3) | 0.0241 (7) | |
| C2 | 0.2578 (3) | 0.11214 (15) | 0.4761 (3) | 0.0254 (7) | |
| C3 | 0.2179 (3) | 0.15852 (16) | 0.5191 (3) | 0.0360 (9) | |
| H3 | 0.2594 | 0.1934 | 0.5376 | 0.043* | |
| C4 | 0.1140 (3) | 0.15119 (18) | 0.5335 (3) | 0.0392 (10) | |
| H4 | 0.0851 | 0.1817 | 0.5615 | 0.047* | |
| C5 | 0.0527 (3) | 0.09887 (18) | 0.5065 (3) | 0.0374 (9) | |
| H5 | −0.0170 | 0.0953 | 0.5163 | 0.045* | |
| C6 | 0.0927 (3) | 0.05206 (16) | 0.4655 (3) | 0.0310 (8) | |
| H6 | 0.0522 | 0.0169 | 0.4497 | 0.037* | |
| C7 | 0.1959 (3) | 0.05924 (15) | 0.4485 (3) | 0.0257 (8) | |
| C8 | 0.2596 (3) | 0.02122 (15) | 0.4053 (3) | 0.0257 (7) | |
| C9 | 0.2820 (3) | −0.06799 (14) | 0.3283 (3) | 0.0259 (8) | |
| C10 | 0.2418 (3) | −0.12622 (15) | 0.2871 (3) | 0.0282 (8) | |
| C11 | 0.1426 (3) | −0.15806 (16) | 0.2767 (3) | 0.0351 (9) | |
| H11 | 0.0886 | −0.1438 | 0.3030 | 0.042* | |
| C12 | 0.1275 (4) | −0.21193 (17) | 0.2256 (4) | 0.0445 (11) | |
| H12 | 0.0614 | −0.2339 | 0.2167 | 0.053* | |
| C13 | 0.2086 (4) | −0.23419 (18) | 0.1871 (4) | 0.0460 (11) | |
| H13 | 0.1959 | −0.2707 | 0.1542 | 0.055* | |
| C14 | 0.3078 (3) | −0.20285 (15) | 0.1971 (3) | 0.0376 (9) | |
| H14 | 0.3614 | −0.2172 | 0.1704 | 0.045* | |
| C15 | 0.3235 (3) | −0.14865 (15) | 0.2493 (3) | 0.0282 (8) | |
| C16 | 0.4146 (3) | −0.10403 (14) | 0.2715 (3) | 0.0274 (8) | |
| C17 | 0.5885 (3) | −0.06958 (14) | 0.2633 (3) | 0.0260 (8) | |
| C18 | 0.6887 (3) | −0.07754 (16) | 0.2344 (3) | 0.0295 (8) | |
| C19 | 0.7285 (3) | −0.12345 (17) | 0.1915 (3) | 0.0371 (9) | |
| H19 | 0.6885 | −0.1588 | 0.1745 | 0.044* | |
| C20 | 0.8312 (4) | −0.11469 (19) | 0.1750 (4) | 0.0459 (11) | |
| H20 | 0.8592 | −0.1448 | 0.1453 | 0.055* | |
| C21 | 0.8930 (3) | −0.06286 (18) | 0.2010 (3) | 0.0402 (10) | |
| H21 | 0.9618 | −0.0591 | 0.1897 | 0.048* | |
| C22 | 0.8530 (3) | −0.01619 (17) | 0.2442 (3) | 0.0324 (8) | |
| H22 | 0.8930 | 0.0191 | 0.2604 | 0.039* | |
| C23 | 0.7526 (3) | −0.02415 (15) | 0.2619 (3) | 0.0285 (8) | |
| C24 | 0.6867 (3) | 0.01334 (14) | 0.3065 (3) | 0.0240 (7) | |
| C25 | 0.6642 (3) | 0.10279 (14) | 0.3824 (3) | 0.0238 (7) | |
| C26 | 0.7048 (3) | 0.16120 (14) | 0.4240 (3) | 0.0259 (8) | |
| C27 | 0.8037 (3) | 0.19329 (16) | 0.4326 (3) | 0.0325 (9) | |
| H27 | 0.8576 | 0.1789 | 0.4064 | 0.039* | |
| C28 | 0.8176 (3) | 0.24766 (17) | 0.4819 (3) | 0.0388 (10) | |
| H28 | 0.8823 | 0.2702 | 0.4885 | 0.047* | |
| C29 | 0.7384 (3) | 0.26927 (16) | 0.5212 (3) | 0.0386 (9) | |
| H29 | 0.7520 | 0.3054 | 0.5556 | 0.046* | |
| C30 | 0.6399 (3) | 0.23853 (15) | 0.5107 (3) | 0.0343 (9) | |
| H30 | 0.5853 | 0.2538 | 0.5351 | 0.041* | |
| C31 | 0.6246 (3) | 0.18372 (14) | 0.4624 (3) | 0.0253 (8) | |
| C32 | 0.5330 (3) | 0.13890 (14) | 0.4404 (3) | 0.0226 (7) | |
| N9 | 0.2108 (3) | −0.14631 (15) | −0.0847 (3) | 0.0429 (8) | |
| C34 | 0.3084 (4) | −0.1587 (2) | −0.1199 (4) | 0.0594 (13) | |
| H34A | 0.3181 | −0.2006 | −0.1233 | 0.089* | |
| H34B | 0.2896 | −0.1429 | −0.1923 | 0.089* | |
| C35 | 0.4196 (4) | −0.1325 (2) | −0.0422 (4) | 0.0561 (12) | |
| H35A | 0.4797 | −0.1363 | −0.0710 | 0.084* | |
| H35B | 0.4458 | −0.1530 | 0.0271 | 0.084* | |
| C36 | 0.4004 (4) | −0.0697 (2) | −0.0254 (4) | 0.0532 (12) | |
| H36A | 0.4691 | −0.0541 | 0.0332 | 0.080* | |
| H36B | 0.3888 | −0.0480 | −0.0914 | 0.080* | |
| N10 | 0.3005 (3) | −0.06292 (16) | 0.0010 (3) | 0.0476 (9) | |
| H10 | 0.2977 (9) | −0.0324 (8) | 0.0388 (8) | 0.057* | |
| C37 | 0.2124 (3) | −0.09974 (18) | −0.0279 (3) | 0.0395 (10) | |
| C38 | 0.1153 (4) | −0.0872 (2) | 0.0084 (4) | 0.0559 (12) | |
| H38A | 0.1389 | −0.0553 | 0.0602 | 0.084* | |
| H38B | 0.1036 | −0.1212 | 0.0461 | 0.084* | |
| C39 | −0.0027 (4) | −0.0713 (2) | −0.0856 (4) | 0.0540 (12) | |
| H39A | −0.0530 | −0.0533 | −0.0543 | 0.081* | |
| H39B | 0.0121 | −0.0426 | −0.1321 | 0.081* | |
| C40 | −0.0669 (4) | −0.1216 (2) | −0.1551 (4) | 0.0629 (14) | |
| H40A | −0.0897 | −0.1479 | −0.1100 | 0.094* | |
| H40B | −0.1382 | −0.1068 | −0.2117 | 0.094* | |
| C41 | −0.0026 (4) | −0.1557 (2) | −0.2082 (4) | 0.0668 (15) | |
| H41A | 0.0188 | −0.1299 | −0.2549 | 0.100* | |
| H41B | −0.0548 | −0.1852 | −0.2545 | 0.100* | |
| C42 | 0.1090 (4) | −0.18605 (19) | −0.1279 (4) | 0.0546 (12) | |
| H42A | 0.0936 | −0.2018 | −0.0673 | 0.082* | |
| H42B | 0.1281 | −0.2184 | −0.1648 | 0.082* |
Atomic displacement parameters (Å2)
| U11 | U22 | U33 | U12 | U13 | U23 | |
| Zn1 | 0.0227 (2) | 0.0204 (2) | 0.0316 (2) | −0.00134 (17) | 0.01218 (17) | −0.00316 (18) |
| Br1 | 0.0702 (4) | 0.0754 (4) | 0.0621 (4) | 0.0065 (3) | 0.0168 (3) | 0.0066 (3) |
| N1 | 0.0239 (15) | 0.0223 (15) | 0.0314 (17) | 0.0007 (12) | 0.0104 (13) | −0.0021 (13) |
| N2 | 0.0263 (15) | 0.0239 (15) | 0.0305 (16) | −0.0017 (12) | 0.0136 (13) | 0.0001 (13) |
| N3 | 0.0244 (15) | 0.0224 (15) | 0.0341 (17) | −0.0033 (12) | 0.0128 (13) | −0.0002 (13) |
| N4 | 0.0275 (16) | 0.0212 (15) | 0.0307 (16) | −0.0026 (12) | 0.0141 (13) | −0.0024 (13) |
| N5 | 0.0256 (15) | 0.0246 (15) | 0.0293 (17) | 0.0032 (13) | 0.0079 (13) | −0.0016 (13) |
| N6 | 0.0220 (14) | 0.0210 (15) | 0.0287 (16) | 0.0013 (11) | 0.0094 (13) | −0.0008 (12) |
| N7 | 0.0227 (15) | 0.0253 (15) | 0.0293 (16) | 0.0009 (12) | 0.0111 (13) | −0.0002 (13) |
| N8 | 0.0237 (15) | 0.0221 (14) | 0.0309 (17) | −0.0018 (12) | 0.0111 (13) | −0.0019 (13) |
| C1 | 0.0236 (17) | 0.0230 (17) | 0.0250 (18) | 0.0022 (14) | 0.0089 (15) | 0.0004 (15) |
| C2 | 0.0193 (17) | 0.0291 (18) | 0.0270 (19) | 0.0036 (14) | 0.0083 (15) | 0.0006 (15) |
| C3 | 0.035 (2) | 0.028 (2) | 0.043 (2) | 0.0000 (17) | 0.0139 (19) | −0.0059 (18) |
| C4 | 0.033 (2) | 0.042 (2) | 0.048 (3) | 0.0118 (18) | 0.022 (2) | −0.001 (2) |
| C5 | 0.028 (2) | 0.048 (2) | 0.039 (2) | 0.0058 (18) | 0.0154 (18) | 0.0071 (19) |
| C6 | 0.0262 (19) | 0.035 (2) | 0.034 (2) | −0.0013 (16) | 0.0144 (17) | 0.0067 (17) |
| C7 | 0.0234 (18) | 0.0280 (19) | 0.0252 (19) | 0.0026 (15) | 0.0088 (15) | 0.0022 (15) |
| C8 | 0.0224 (17) | 0.0276 (18) | 0.0277 (18) | −0.0003 (15) | 0.0104 (15) | 0.0063 (16) |
| C9 | 0.0239 (18) | 0.0228 (17) | 0.0289 (19) | −0.0020 (14) | 0.0082 (16) | 0.0025 (15) |
| C10 | 0.0273 (19) | 0.0231 (18) | 0.030 (2) | −0.0029 (15) | 0.0061 (16) | 0.0034 (15) |
| C11 | 0.035 (2) | 0.030 (2) | 0.036 (2) | −0.0078 (17) | 0.0096 (18) | 0.0049 (17) |
| C12 | 0.037 (2) | 0.035 (2) | 0.052 (3) | −0.0131 (18) | 0.007 (2) | 0.002 (2) |
| C13 | 0.053 (3) | 0.030 (2) | 0.049 (3) | −0.012 (2) | 0.015 (2) | −0.011 (2) |
| C14 | 0.041 (2) | 0.0218 (19) | 0.044 (2) | −0.0011 (17) | 0.0099 (19) | −0.0040 (17) |
| C15 | 0.0302 (19) | 0.0231 (18) | 0.0266 (19) | −0.0028 (15) | 0.0063 (16) | 0.0011 (15) |
| C16 | 0.0285 (19) | 0.0202 (17) | 0.0297 (19) | 0.0030 (15) | 0.0074 (16) | 0.0030 (15) |
| C17 | 0.0262 (18) | 0.0240 (17) | 0.0233 (18) | 0.0032 (15) | 0.0051 (15) | −0.0005 (15) |
| C18 | 0.0252 (19) | 0.0313 (19) | 0.0268 (19) | 0.0051 (15) | 0.0049 (16) | −0.0023 (16) |
| C19 | 0.036 (2) | 0.034 (2) | 0.041 (2) | 0.0067 (17) | 0.0140 (19) | −0.0100 (18) |
| C20 | 0.046 (3) | 0.043 (2) | 0.053 (3) | 0.009 (2) | 0.025 (2) | −0.014 (2) |
| C21 | 0.034 (2) | 0.050 (3) | 0.041 (2) | 0.0038 (19) | 0.019 (2) | −0.002 (2) |
| C22 | 0.0306 (19) | 0.035 (2) | 0.034 (2) | 0.0060 (16) | 0.0157 (17) | 0.0019 (17) |
| C23 | 0.0282 (18) | 0.0276 (18) | 0.0288 (19) | 0.0018 (16) | 0.0102 (16) | 0.0024 (16) |
| C24 | 0.0234 (17) | 0.0253 (18) | 0.0240 (18) | 0.0027 (14) | 0.0101 (15) | 0.0008 (14) |
| C25 | 0.0205 (17) | 0.0227 (17) | 0.0287 (19) | −0.0007 (14) | 0.0102 (15) | 0.0011 (15) |
| C26 | 0.0233 (17) | 0.0208 (17) | 0.0295 (19) | −0.0021 (14) | 0.0062 (15) | 0.0028 (15) |
| C27 | 0.0269 (19) | 0.032 (2) | 0.039 (2) | −0.0040 (16) | 0.0133 (17) | 0.0049 (17) |
| C28 | 0.033 (2) | 0.029 (2) | 0.049 (3) | −0.0078 (17) | 0.0103 (19) | 0.0070 (19) |
| C29 | 0.038 (2) | 0.0238 (19) | 0.047 (2) | −0.0064 (17) | 0.009 (2) | −0.0039 (18) |
| C30 | 0.035 (2) | 0.0235 (19) | 0.042 (2) | 0.0027 (16) | 0.0131 (18) | −0.0008 (17) |
| C31 | 0.0243 (18) | 0.0190 (17) | 0.0286 (19) | −0.0013 (14) | 0.0062 (15) | 0.0015 (14) |
| C32 | 0.0195 (16) | 0.0198 (16) | 0.0267 (18) | 0.0012 (13) | 0.0071 (15) | −0.0004 (14) |
| N9 | 0.043 (2) | 0.043 (2) | 0.041 (2) | 0.0002 (17) | 0.0150 (17) | 0.0038 (17) |
| C34 | 0.070 (3) | 0.060 (3) | 0.059 (3) | 0.004 (3) | 0.038 (3) | −0.002 (3) |
| C35 | 0.047 (3) | 0.066 (3) | 0.059 (3) | 0.008 (2) | 0.025 (2) | 0.013 (3) |
| C36 | 0.034 (2) | 0.072 (3) | 0.044 (3) | −0.006 (2) | 0.005 (2) | 0.014 (2) |
| N10 | 0.046 (2) | 0.050 (2) | 0.037 (2) | −0.0004 (18) | 0.0054 (17) | 0.0001 (17) |
| C37 | 0.036 (2) | 0.045 (2) | 0.031 (2) | 0.0023 (19) | 0.0059 (18) | 0.0049 (19) |
| C38 | 0.055 (3) | 0.070 (3) | 0.044 (3) | 0.015 (2) | 0.021 (2) | 0.007 (2) |
| C39 | 0.045 (3) | 0.054 (3) | 0.067 (3) | 0.007 (2) | 0.026 (3) | 0.019 (2) |
| C40 | 0.042 (3) | 0.057 (3) | 0.078 (4) | −0.003 (2) | 0.011 (3) | 0.021 (3) |
| C41 | 0.053 (3) | 0.050 (3) | 0.070 (4) | −0.014 (2) | −0.005 (3) | 0.002 (3) |
| C42 | 0.056 (3) | 0.039 (2) | 0.061 (3) | −0.009 (2) | 0.015 (2) | 0.006 (2) |
Geometric parameters (Å, º)
| Zn1—N2 | 2.032 (3) | C19—H19 | 0.9300 |
| Zn1—N8 | 2.032 (3) | C20—C21 | 1.383 (6) |
| Zn1—N6 | 2.034 (3) | C20—H20 | 0.9300 |
| Zn1—N4 | 2.040 (3) | C21—C22 | 1.396 (5) |
| Zn1—Br1 | 2.4591 (7) | C21—H21 | 0.9300 |
| N1—C32 | 1.327 (4) | C22—C23 | 1.370 (5) |
| N1—C1 | 1.328 (4) | C22—H22 | 0.9300 |
| N2—C8 | 1.366 (4) | C23—C24 | 1.466 (5) |
| N2—C1 | 1.370 (4) | C25—C26 | 1.461 (5) |
| N3—C8 | 1.332 (4) | C26—C31 | 1.388 (5) |
| N3—C9 | 1.333 (4) | C26—C27 | 1.398 (5) |
| N4—C16 | 1.365 (4) | C27—C28 | 1.388 (5) |
| N4—C9 | 1.374 (4) | C27—H27 | 0.9300 |
| N5—C16 | 1.330 (4) | C28—C29 | 1.378 (5) |
| N5—C17 | 1.332 (4) | C28—H28 | 0.9300 |
| N6—C24 | 1.353 (4) | C29—C30 | 1.371 (5) |
| N6—C17 | 1.370 (4) | C29—H29 | 0.9300 |
| N7—C24 | 1.336 (4) | C30—C31 | 1.390 (5) |
| N7—C25 | 1.341 (4) | C30—H30 | 0.9300 |
| N8—C32 | 1.365 (4) | C31—C32 | 1.475 (4) |
| N8—C25 | 1.365 (4) | N9—C37 | 1.304 (5) |
| C1—C2 | 1.465 (4) | N9—C42 | 1.479 (5) |
| C2—C3 | 1.389 (5) | N9—C34 | 1.492 (5) |
| C2—C7 | 1.405 (5) | C34—C35 | 1.488 (6) |
| C3—C4 | 1.389 (5) | C34—H34A | 0.9700 |
| C3—H3 | 0.9300 | C34—H34B | 0.9700 |
| C4—C5 | 1.390 (6) | C35—C36 | 1.491 (6) |
| C4—H4 | 0.9300 | C35—H35A | 0.9700 |
| C5—C6 | 1.383 (5) | C35—H35B | 0.9700 |
| C5—H5 | 0.9300 | C36—N10 | 1.428 (5) |
| C6—C7 | 1.397 (5) | C36—H36A | 0.9700 |
| C6—H6 | 0.9300 | C36—H36B | 0.9700 |
| C7—C8 | 1.442 (5) | N10—C37 | 1.314 (5) |
| C9—C10 | 1.455 (5) | N10—H10 | 0.87 (2) |
| C10—C11 | 1.393 (5) | C37—C38 | 1.495 (6) |
| C10—C15 | 1.398 (5) | C38—C39 | 1.551 (6) |
| C11—C12 | 1.387 (5) | C38—H38A | 0.9700 |
| C11—H11 | 0.9300 | C38—H38B | 0.9700 |
| C12—C13 | 1.396 (6) | C39—C40 | 1.496 (7) |
| C12—H12 | 0.9300 | C39—H39A | 0.9700 |
| C13—C14 | 1.388 (5) | C39—H39B | 0.9700 |
| C13—H13 | 0.9300 | C40—C41 | 1.483 (7) |
| C14—C15 | 1.400 (5) | C40—H40A | 0.9700 |
| C14—H14 | 0.9300 | C40—H40B | 0.9700 |
| C15—C16 | 1.467 (5) | C41—C42 | 1.544 (6) |
| C17—C18 | 1.454 (5) | C41—H41A | 0.9700 |
| C18—C19 | 1.379 (5) | C41—H41B | 0.9700 |
| C18—C23 | 1.426 (5) | C42—H42A | 0.9700 |
| C19—C20 | 1.393 (5) | C42—H42B | 0.9700 |
| N2—Zn1—N8 | 86.86 (11) | C23—C22—H22 | 121.1 |
| N2—Zn1—N6 | 151.95 (12) | C21—C22—H22 | 121.1 |
| N8—Zn1—N6 | 86.90 (11) | C22—C23—C18 | 121.5 (3) |
| N2—Zn1—N4 | 86.61 (11) | C22—C23—C24 | 133.2 (3) |
| N8—Zn1—N4 | 152.57 (12) | C18—C23—C24 | 105.3 (3) |
| N6—Zn1—N4 | 86.44 (11) | N7—C24—N6 | 128.2 (3) |
| N2—Zn1—Br1 | 105.68 (8) | N7—C24—C23 | 121.5 (3) |
| N8—Zn1—Br1 | 103.56 (8) | N6—C24—C23 | 110.3 (3) |
| N6—Zn1—Br1 | 102.38 (8) | N7—C25—N8 | 127.6 (3) |
| N4—Zn1—Br1 | 103.85 (8) | N7—C25—C26 | 123.3 (3) |
| C32—N1—C1 | 123.2 (3) | N8—C25—C26 | 109.0 (3) |
| C8—N2—C1 | 108.8 (3) | C31—C26—C27 | 120.7 (3) |
| C8—N2—Zn1 | 124.7 (2) | C31—C26—C25 | 106.9 (3) |
| C1—N2—Zn1 | 124.0 (2) | C27—C26—C25 | 132.3 (3) |
| C8—N3—C9 | 124.1 (3) | C28—C27—C26 | 116.9 (3) |
| C16—N4—C9 | 108.8 (3) | C28—C27—H27 | 121.5 |
| C16—N4—Zn1 | 124.0 (2) | C26—C27—H27 | 121.5 |
| C9—N4—Zn1 | 124.0 (2) | C29—C28—C27 | 121.9 (3) |
| C16—N5—C17 | 123.4 (3) | C29—C28—H28 | 119.0 |
| C24—N6—C17 | 108.5 (3) | C27—C28—H28 | 119.0 |
| C24—N6—Zn1 | 124.4 (2) | C30—C29—C28 | 121.3 (4) |
| C17—N6—Zn1 | 124.7 (2) | C30—C29—H29 | 119.3 |
| C24—N7—C25 | 123.0 (3) | C28—C29—H29 | 119.3 |
| C32—N8—C25 | 109.0 (3) | C29—C30—C31 | 117.7 (4) |
| C32—N8—Zn1 | 124.8 (2) | C29—C30—H30 | 121.1 |
| C25—N8—Zn1 | 124.6 (2) | C31—C30—H30 | 121.1 |
| N1—C1—N2 | 128.1 (3) | C26—C31—C30 | 121.3 (3) |
| N1—C1—C2 | 122.8 (3) | C26—C31—C32 | 106.1 (3) |
| N2—C1—C2 | 109.1 (3) | C30—C31—C32 | 132.5 (3) |
| C3—C2—C7 | 121.4 (3) | N1—C32—N8 | 127.9 (3) |
| C3—C2—C1 | 133.0 (3) | N1—C32—C31 | 123.3 (3) |
| C7—C2—C1 | 105.6 (3) | N8—C32—C31 | 108.9 (3) |
| C2—C3—C4 | 117.8 (3) | C37—N9—C42 | 123.1 (4) |
| C2—C3—H3 | 121.1 | C37—N9—C34 | 120.7 (4) |
| C4—C3—H3 | 121.1 | C42—N9—C34 | 115.9 (4) |
| C3—C4—C5 | 120.9 (3) | C35—C34—N9 | 110.6 (4) |
| C3—C4—H4 | 119.6 | C35—C34—H34A | 109.5 |
| C5—C4—H4 | 119.6 | N9—C34—H34A | 109.5 |
| C6—C5—C4 | 121.7 (3) | C35—C34—H34B | 109.5 |
| C6—C5—H5 | 119.1 | N9—C34—H34B | 109.5 |
| C4—C5—H5 | 119.1 | H34A—C34—H34B | 108.1 |
| C5—C6—C7 | 117.9 (3) | C34—C35—C36 | 109.6 (4) |
| C5—C6—H6 | 121.0 | C34—C35—H35A | 109.8 |
| C7—C6—H6 | 121.0 | C36—C35—H35A | 109.8 |
| C6—C7—C2 | 120.2 (3) | C34—C35—H35B | 109.8 |
| C6—C7—C8 | 132.7 (3) | C36—C35—H35B | 109.8 |
| C2—C7—C8 | 107.2 (3) | H35A—C35—H35B | 108.2 |
| N3—C8—N2 | 127.3 (3) | N10—C36—C35 | 110.4 (4) |
| N3—C8—C7 | 123.4 (3) | N10—C36—H36A | 109.6 |
| N2—C8—C7 | 109.3 (3) | C35—C36—H36A | 109.6 |
| N3—C9—N4 | 127.1 (3) | N10—C36—H36B | 109.6 |
| N3—C9—C10 | 123.6 (3) | C35—C36—H36B | 109.6 |
| N4—C9—C10 | 109.3 (3) | H36A—C36—H36B | 108.1 |
| C11—C10—C15 | 120.8 (3) | C37—N10—C36 | 124.3 (4) |
| C11—C10—C9 | 132.6 (3) | C37—N10—H10 | 118 (1) |
| C15—C10—C9 | 106.5 (3) | C36—N10—H10 | 118 (1) |
| C12—C11—C10 | 117.3 (4) | N9—C37—N10 | 121.2 (4) |
| C12—C11—H11 | 121.4 | N9—C37—C38 | 121.0 (4) |
| C10—C11—H11 | 121.4 | N10—C37—C38 | 117.9 (4) |
| C11—C12—C13 | 121.9 (4) | C37—C38—C39 | 114.3 (4) |
| C11—C12—H12 | 119.0 | C37—C38—H38A | 108.7 |
| C13—C12—H12 | 119.0 | C39—C38—H38A | 108.7 |
| C14—C13—C12 | 121.3 (4) | C37—C38—H38B | 108.7 |
| C14—C13—H13 | 119.4 | C39—C38—H38B | 108.7 |
| C12—C13—H13 | 119.4 | H38A—C38—H38B | 107.6 |
| C13—C14—C15 | 116.8 (4) | C40—C39—C38 | 114.9 (4) |
| C13—C14—H14 | 121.6 | C40—C39—H39A | 108.5 |
| C15—C14—H14 | 121.6 | C38—C39—H39A | 108.5 |
| C10—C15—C14 | 121.8 (3) | C40—C39—H39B | 108.5 |
| C10—C15—C16 | 106.5 (3) | C38—C39—H39B | 108.5 |
| C14—C15—C16 | 131.6 (3) | H39A—C39—H39B | 107.5 |
| N5—C16—N4 | 127.9 (3) | C41—C40—C39 | 116.5 (4) |
| N5—C16—C15 | 123.2 (3) | C41—C40—H40A | 108.2 |
| N4—C16—C15 | 109.0 (3) | C39—C40—H40A | 108.2 |
| N5—C17—N6 | 127.4 (3) | C41—C40—H40B | 108.2 |
| N5—C17—C18 | 122.5 (3) | C39—C40—H40B | 108.2 |
| N6—C17—C18 | 110.0 (3) | H40A—C40—H40B | 107.3 |
| C19—C18—C23 | 120.4 (3) | C40—C41—C42 | 114.4 (5) |
| C19—C18—C17 | 133.7 (3) | C40—C41—H41A | 108.7 |
| C23—C18—C17 | 105.9 (3) | C42—C41—H41A | 108.7 |
| C18—C19—C20 | 117.2 (4) | C40—C41—H41B | 108.7 |
| C18—C19—H19 | 121.4 | C42—C41—H41B | 108.7 |
| C20—C19—H19 | 121.4 | H41A—C41—H41B | 107.6 |
| C21—C20—C19 | 122.5 (4) | N9—C42—C41 | 112.9 (3) |
| C21—C20—H20 | 118.8 | N9—C42—H42A | 109.0 |
| C19—C20—H20 | 118.8 | C41—C42—H42A | 109.0 |
| C20—C21—C22 | 120.6 (4) | N9—C42—H42B | 109.0 |
| C20—C21—H21 | 119.7 | C41—C42—H42B | 109.0 |
| C22—C21—H21 | 119.7 | H42A—C42—H42B | 107.8 |
| C23—C22—C21 | 117.7 (4) |
Hydrogen-bond geometry (Å, º)
| D—H···A | D—H | H···A | D···A | D—H···A |
| N10—H10···Br1 | 0.87 (2) | 2.44 (2) | 3.281 (4) | 163 (2) |
Table S1 Comparison of Zn—L bond length and displacement of Zn from N4 plane (Zn—N4) in 1 and different literature ZnPc complexes (Å)
| Compound | Zn—L | Zn—N4 | Ref. |
| ZnPc—(DBU) | 2.063 (2) | 0.614 (2) | Janczak et al., 2011 |
| ZnPc—(4-picoline) | 2.166 (3) | 0.352 (2) | Kubiak et al., 2007 |
| ZnPc—(2-amino-3-picoline) | 2.157 (2) | 0.470 (2) | Janczak et al., 2009 |
| ZnPc—(n-buthylamine) | 2.073 (4) | 0.494 (4) | Przybył & Janczak, 2014 |
| ZnPc—(n-amylamine) | 2.087 (3) | 0.498 (4) | Przybył & Janczak, 2014 |
| ZnPc—(n-heptylamine) | 2.097 (2) | 0.477 (4) | Przybył & Janczak, 2014 |
| ZnPc—(n-hexylamine) | 2.178 | 0.480 | Kobayashi et al., 1971 |
| ZnPc—(pyrazine) | 2.178 (2) | 0.371 (2) | Janczak & Kubiak, 2009 |
| (ZnPc)2—(pyrazine) | 2.207 (2) | 0.296 (2) | Janczak & Kubiak, 2009 |
| ZnPc—(4-aminopyridine) | 2.092 (3) | 0.446 (1) | Yang et al., 2008 |
| ZnPc—(1,3-bis(4-pyridyl)propane) | 2.130 (5) | 0.375 (3) | Zeng et al., 2005 |
| (ZnPc)2—(µ2-1,2-bis(4-pyridyl)ethane) | 2.125 (7) | 0.483 (4) | Zeng et al., 2005 |
| (ZnPc)2—(µ2-1,2-bis(4-pyridyl)ethylene) | 2.156 (2) | 0.347 (2) | Zeng et al., 2005 |
| (ZnPc)2—(µ2-N,N'-bis((pyridin-3-yl)methyl)ethanediamide) | 2.147 (3) | 0.377 (3) | Li et al., 2011 |
| ZnPc—Cl | 2.35 | 0.59 | Mossoyan-Deneux et al., 1985 |
| ZnPc—Br | 2.459 (3) | 0.488 (3) | this work |
Footnotes
Supporting information for this paper is available from the IUCr electronic archives (Reference: FJ2673).
References
- Brandenburg, K. & Putz, H. (2006). DIAMOND Crystal Impact GbR, Bonn, Germany.
- Del Sole, R., De Luca, A., Mele, G. & Vasapollo, G. (2005). J. Porphyrins Phthalocyanines, 9, 519–527.
- Gregory, P. (2000). J. Porphyrins Phthalocyanines, 4, 432–437.
- Janczak, J. & Kubiak, R. (2009). Polyhedron, 28, 2391–2396.
- Janczak, J., Kubiak, R. & Bukowska, E. (2009). J. Mol. Struct. 937, 25–33.
- Janczak, J., Kubiak, R. & Lisowski, J. (2011). Polyhedron, 30, 253–258.
- Kobayashi, T., Ashida, W., Uyeda, N., Suito, E. & Makudo, M. (1971). Bull. Chem. Soc. Jpn, 44, 2095–2103.
- Kubiak, R., Janczak, J., Śledź, M. & Bukowska, E. (2007). Polyhedron, 26, 4179–4186.
- Li, X., He, X., Chen, Y., Fan, X. & Zeng, Q. (2011). J. Mol. Struct. 1002, 145–150.
- Leznoff, C. C. & Lever, A. B. P. (1996). Editors. Phthalocyanines: Properties and Applications, Vol. 4. New York: VCH Publishers.
- Mossoyan-Deneux, M., Benlian, D., Pierrot, M., Fournel, A. & Sorbier, J. P. (1985). Inorg. Chem. 24, 1878–1882.
- Nyokong, T., Gasyna, Z. & Stillman, M. J. (1987). Inorg. Chem. 26, 1087–1095.
- Ormond, A. B. & Freeman, H. S. (2013). Materials, 6, 817-840. [DOI] [PMC free article] [PubMed]
- Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED, Oxford Diffraction, Wrocław, Poland.
- Przybył, B. & Janczak, J. (2014). Dyes Pigments, 100, 247–254.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
- Tedesco, A. C., Rott, J. C. G. & Lunardi, C. N. (2003). Curr. Org. Chem. 7, 187–196.
- Yang, F.-J., Fang, X., Yu, H.-Y. & Wang, J.-D. (2008). Acta Cryst. C64, m375–m377. [DOI] [PubMed]
- Zeng, Q., Wu, D., Wang, C., Lu, J., Ma, B., Shu, C., Ma, H., Li, Y. & Bai, C. (2005). CrystEngComm, 7, 243–248.
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablock(s) I. DOI: 10.1107/S160053681401157X/fj2673sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681401157X/fj2673Isup2.hkl
CCDC reference: 1003951
Additional supporting information: crystallographic information; 3D view; checkCIF report


