Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2014 May 24;70(Pt 6):m231–m232. doi: 10.1107/S160053681401157X

1,8-Di­aza­bicyclo­[5.4.0]undec-7-en-8-ium bromido­(phthalocyaninato)zincate

Bartosz Przybył a, Jan Janczak a,*
PMCID: PMC4051024  PMID: 24940212

Abstract

The title compound, (C9H17N2)[ZnBr(C32H16N8)], contains a bromido­(phthalocyaninato)zincate anion and a protonated 1,8-di­aza­bicyclo­[5.4.0]undece-7-ene cation, [DBUH]+. The central ZnII atom has a distorted square-pyramidal geometry, with four iso­indole N atoms of the macrocycle in equatorial positions and a bromide ion in the axial position. The latter has a relatively high displacement parameter, but no evidence for disorder was obtained. The central ZnII atom is displaced by 0.488 (3) Å from the mean plane defined by the four iso­indole N atoms. The [DBUH]+ cation is involved in an almost linear N—H⋯Br hydrogen bond. In the crystal, π–π inter­actions lead to a relatively short distance of 3.366 (3) Å between the phthalocyaninate rings.

Related literature  

For background information on phthalocyanines, see: Nyokong et al. (1987); Gregory (2000); Leznoff & Lever (1996); Tedesco et al. (2003); Ormond & Freeman (2013). For related structures, see: Kobayashi et al. (1971); Mossoyan-Deneux et al. (1985); Zeng et al. (2005); Del Sole et al. (2005); Kubiak et al. (2007); Yang et al. (2008); Janczak et al. (2009, 2011); Janczak & Kubiak (2009); Li et al. (2011); Przybył & Janczak (2014).graphic file with name e-70-0m231-scheme1.jpg

Experimental  

Crystal data  

  • (C9H17N2)[ZnBr(C32H16N8)]

  • M r = 811.05

  • Monoclinic, Inline graphic

  • a = 12.4336 (8) Å

  • b = 22.9278 (16) Å

  • c = 13.3267 (9) Å

  • β = 113.266 (4)°

  • V = 3490.2 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.90 mm−1

  • T = 295 K

  • 0.35 × 0.21 × 0.19 mm

Data collection  

  • Kuma KM-4 with CCD detector diffractometer

  • Absorption correction: numerical (CrysAlis RED; Oxford Diffraction, 2008) T min = 0.562, T max = 0.725

  • 42041 measured reflections

  • 8492 independent reflections

  • 4908 reflections with I > 2σ(I)

  • R int = 0.045

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.057

  • wR(F 2) = 0.143

  • S = 1.00

  • 8492 reflections

  • 478 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.76 e Å−3

  • Δρmin = −1.26 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell refinement: CrysAlis RED (Oxford Diffraction, 2008); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2006); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S160053681401157X/fj2673sup1.cif

e-70-0m231-sup1.cif (36.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681401157X/fj2673Isup2.hkl

e-70-0m231-Isup2.hkl (415.4KB, hkl)

CCDC reference: 1003951

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N10—H10⋯Br1 0.87 (2) 2.44 (2) 3.281 (4) 163 (2)

Acknowledgments

This work was supported by the Ministry of Science and Higher Education (grant No. N N204 397540).

supplementary crystallographic information

1. Comment

Phthalocyanines and metallophthalocyanines (Pcs and MPcs) arouses inter­est because of exhibition of many important features which gives potential application in many fields from industry to medicine (Leznoff & Lever, 1996; Gregory, 2000). The utility of MPc complexes is limited by their relatively low solubility in the most organic solvents. The solubility of MPcs can be enhanced by substitution of the H atoms of Pc macrocycle or/and by ligation an additional ligand the the metal centre of MPcs. Both ways of modification of MPc's lead to improvment of their solubility, due to decreasing of the π···π inter­actions between the Pc macrocycles as well as lowering their aggregation in solution. ZnPc and its derivatives, due to strong absorption in the red region of visible radiation and high triplet quantum yield and long lifetimes, are intensively studied as potential agents in photodynamic therapy (Tedesco et al., 2003; Ormond & Freeman, 2013).

Complex 1 crystallizes as ionic compound in the centrosymmetric space group of monoclinic system. The blue-violet crystals of 1 are built up from bromido(phthalocyaninato)zinc(II) anion (ZnPcBr-) and 1,8-di­aza­bicyclo­[5.4.0]undec-7-en-8-ium cation (DBUH+) (Fig. 1). Both oppositely charged units inter­act via N—H10···Br hydrogen-bond, in which DBUH+ plays role of a donor (Table 1). Due to presence of DBU that accepts H+, phthalocyaninato macrocyle maintains -2 oxidation state, therefore the complex 1 is diamagnetic as show the magnetic susceptibility measurements. This is in contrast to the chloro­(phthalocyaninato)zinc(II) in which ZnPc is oxidised and has +1 charge, and the metal centre is coordinated by phthalocyaninato anion with π-radical character, Pc-. (Mossoyan-Deneux et al., 1985). As an effect of monaxial Zn—Br bond formation, Zn(II) atom exhibits displacement from a plane defined by four iso­indole nitro­gen atoms of Pc(2-) (N4 plane) by 0.488 (3) Å. This is a value situated in the typical range in comparison with other 4+1 complexes of ZnPc reported in the literature (Table S1). Additionally, pyramidal coordination environment of Zn(II) centre is slightly distorted, angle between the normal to the N4 plane and the Zn—Br bond is equal 1.65 (5) ° that is inclined towards the hydrogen-bond. In reported structure Pc(2-) macrocycle has nearly flat conformation though deformation from flat to saucer-like shape is very common among 4+1 MPc complexes arranged in the back-to-back fashion in solids. Almost all nitro­gen and carbon atoms of Pc(2-) exhibit displacement from the mean plane of these atoms smaller than 0.1 Å (only three peripheral carbon atoms slightly exceed this value). Complex of ZnPc with chloride (Mossoyan-Deneux et al., 1985) also exhibits nearly flat conformation of Pc(2-) macrocycle, thus deformation of the molecule into saucer-like shape is probably caused by inter­action with bulky ligands like amines or pyridine derivatives (Table S1). Mutual arrangement of the complex molecules exhibits typical back-to-back fashion, with the distance 3.366 (3) Å, as a consequence of π···π inter­action between Pc(2-) macrocycles. Back-to-back oriented molecules exhibits relatively small shift in plane of Pc(2-) macrorings (Fig. 2).

Thanks to DBU molecule that plays role of acceptor H+, ligation of ZnPc by Br- with the formation of the ionic complex (ZnPcBr-)(DBUH+) maintains -2 oxidation state of the Pc macrocycle . Thus ligation of the central Zn atom of ZnPc by Br- in 1 does not change the colouring properties compared with the parent ZnPc pigment since the energy gap of HOMO-LUMO level is not disturbed. The Q band assigned to HOMO-LUMO transition is observed at almost the same wavelength of ~673 nm in both complexes (ZnPcBr-)(DBUH+) and ZnPc (Nyokong et al., 1987). However, the ionic compound 1 is significantly better soluble than ZnPc pigment and therefore this feature of 1 widnes its potential utility.

2. Experimental

Crystals of 1 were obtained by heating of complex ZnPc—DBU, well characterized in literature (Del Sole et al. 2005, Janczak et al., 2011), with n-pentano­thiol slightly acidified with HBr under solvothermal conditions (evacuated glass elongated ampoule, 130 °C, 5 days). Elemental analysis of the ionic (ZnPcBr-)(DBUH+) crystals was performed with energy dispersive spectroscopy (EDS) as well as with a Perkin-Elmer 2400 elemental analyser. EDS spectra were acquired and analysed using an EDAX Pegasus XM4 spectrometer with SDD Apollo 4D detector mounted on a FEI Nova NanoSEM 230 microscope. Found: Zn, 8.00; Br, 9.95; C, 60.45; N, 17.17 and H, 4.20%. Calculated for C41H33N10ZnBr: Zn, 8.06; Br, 9.84; C, 60.72; N, 17.27 and H, 4.10%.

The temperature dependence of the magnetic susceptibility was performed on Quantum Design SQUID magnetometer (San Diego, CA). The data were recorded at a magnetic field of 0.5 T between 1.8 and 300 K on the sample of 50 mg. Electronic absorption spectrum in solution (CARY Varian SE UV-Vis-NIR spectrometer) exhibits typical for Pc macrocycle two bands: Q (~673 nm, logε=5.55) and B (~350 nm,logε=4.22).

3. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1. During refinement of the crystal structure we have seen the relatively high thermal parameters of Br coordinated to ZnPc. Therefore, the composition of the crystal has been checked with energy dispersive spectroscopy (EDS) as well as with a Perkin-Elmer 2400 elemental analyser. Elemental analysis evidently points to 1:1 proportion of Zn:Br. Therefore the refinement of the crystal structure was performed with the occupation factor of 1 for Br. Hydrogen atoms were placed in calculated positions and refined using a riding model with C—H = 0.97 Å and Uiso(H) = 1.5Ueq(C) for aliphatic and C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C) for aromatic moieties. H atom involved in N—H···Br bond was localized in difference maps and refined with N—H distance restrain of 0.87 (2) Å.

Figures

Fig. 1.

Fig. 1.

Asymmetric part of the unit cell of 1, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

Fig. 2.

Fig. 2.

Unit cell packing in 1, viewed along a. All atoms are represented by spheres. H atoms, except one involved in hydrogen-bond formation, have been omitted for clarity.

Crystal data

(C9H17N2)[ZnBr(C32H16N8)] F(000) = 1656
Mr = 811.05 Dx = 1.544 Mg m3Dm = 1.54 Mg m3Dm measured by floatation
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 3452 reflections
a = 12.4336 (8) Å θ = 2.6–27.5°
b = 22.9278 (16) Å µ = 1.90 mm1
c = 13.3267 (9) Å T = 295 K
β = 113.266 (4)° Parallelepiped, blue-violet
V = 3490.2 (4) Å3 0.35 × 0.21 × 0.19 mm
Z = 4

Data collection

Kuma KM-4 with CCD detector diffractometer 8492 independent reflections
Radiation source: fine-focus sealed tube 4908 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.045
ω scan θmax = 28.8°, θmin = 2.6°
Absorption correction: numerical (CrysAlis RED; Oxford Diffraction, 2008) h = −16→12
Tmin = 0.562, Tmax = 0.725 k = −30→30
42041 measured reflections l = −17→17

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.143 H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.076P)2] where P = (Fo2 + 2Fc2)/3
8492 reflections (Δ/σ)max < 0.001
478 parameters Δρmax = 0.76 e Å3
0 restraints Δρmin = −1.26 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Zn1 0.45113 (3) 0.025014 (16) 0.31931 (3) 0.02443 (12)
Br1 0.34125 (5) 0.06134 (3) 0.13296 (5) 0.07214 (19)
N1 0.4406 (2) 0.14541 (12) 0.4657 (2) 0.0260 (6)
N2 0.3569 (2) 0.04946 (12) 0.4069 (2) 0.0262 (6)
N3 0.2243 (2) −0.03246 (12) 0.3688 (2) 0.0266 (6)
N4 0.3855 (2) −0.05667 (12) 0.3176 (2) 0.0257 (6)
N5 0.5072 (2) −0.11056 (12) 0.2462 (2) 0.0274 (7)
N6 0.5907 (2) −0.01490 (11) 0.3055 (2) 0.0241 (6)
N7 0.7220 (2) 0.06751 (12) 0.3406 (2) 0.0255 (6)
N8 0.5615 (2) 0.09175 (12) 0.3933 (2) 0.0255 (6)
C1 0.3601 (3) 0.10425 (14) 0.4491 (3) 0.0241 (7)
C2 0.2578 (3) 0.11214 (15) 0.4761 (3) 0.0254 (7)
C3 0.2179 (3) 0.15852 (16) 0.5191 (3) 0.0360 (9)
H3 0.2594 0.1934 0.5376 0.043*
C4 0.1140 (3) 0.15119 (18) 0.5335 (3) 0.0392 (10)
H4 0.0851 0.1817 0.5615 0.047*
C5 0.0527 (3) 0.09887 (18) 0.5065 (3) 0.0374 (9)
H5 −0.0170 0.0953 0.5163 0.045*
C6 0.0927 (3) 0.05206 (16) 0.4655 (3) 0.0310 (8)
H6 0.0522 0.0169 0.4497 0.037*
C7 0.1959 (3) 0.05924 (15) 0.4485 (3) 0.0257 (8)
C8 0.2596 (3) 0.02122 (15) 0.4053 (3) 0.0257 (7)
C9 0.2820 (3) −0.06799 (14) 0.3283 (3) 0.0259 (8)
C10 0.2418 (3) −0.12622 (15) 0.2871 (3) 0.0282 (8)
C11 0.1426 (3) −0.15806 (16) 0.2767 (3) 0.0351 (9)
H11 0.0886 −0.1438 0.3030 0.042*
C12 0.1275 (4) −0.21193 (17) 0.2256 (4) 0.0445 (11)
H12 0.0614 −0.2339 0.2167 0.053*
C13 0.2086 (4) −0.23419 (18) 0.1871 (4) 0.0460 (11)
H13 0.1959 −0.2707 0.1542 0.055*
C14 0.3078 (3) −0.20285 (15) 0.1971 (3) 0.0376 (9)
H14 0.3614 −0.2172 0.1704 0.045*
C15 0.3235 (3) −0.14865 (15) 0.2493 (3) 0.0282 (8)
C16 0.4146 (3) −0.10403 (14) 0.2715 (3) 0.0274 (8)
C17 0.5885 (3) −0.06958 (14) 0.2633 (3) 0.0260 (8)
C18 0.6887 (3) −0.07754 (16) 0.2344 (3) 0.0295 (8)
C19 0.7285 (3) −0.12345 (17) 0.1915 (3) 0.0371 (9)
H19 0.6885 −0.1588 0.1745 0.044*
C20 0.8312 (4) −0.11469 (19) 0.1750 (4) 0.0459 (11)
H20 0.8592 −0.1448 0.1453 0.055*
C21 0.8930 (3) −0.06286 (18) 0.2010 (3) 0.0402 (10)
H21 0.9618 −0.0591 0.1897 0.048*
C22 0.8530 (3) −0.01619 (17) 0.2442 (3) 0.0324 (8)
H22 0.8930 0.0191 0.2604 0.039*
C23 0.7526 (3) −0.02415 (15) 0.2619 (3) 0.0285 (8)
C24 0.6867 (3) 0.01334 (14) 0.3065 (3) 0.0240 (7)
C25 0.6642 (3) 0.10279 (14) 0.3824 (3) 0.0238 (7)
C26 0.7048 (3) 0.16120 (14) 0.4240 (3) 0.0259 (8)
C27 0.8037 (3) 0.19329 (16) 0.4326 (3) 0.0325 (9)
H27 0.8576 0.1789 0.4064 0.039*
C28 0.8176 (3) 0.24766 (17) 0.4819 (3) 0.0388 (10)
H28 0.8823 0.2702 0.4885 0.047*
C29 0.7384 (3) 0.26927 (16) 0.5212 (3) 0.0386 (9)
H29 0.7520 0.3054 0.5556 0.046*
C30 0.6399 (3) 0.23853 (15) 0.5107 (3) 0.0343 (9)
H30 0.5853 0.2538 0.5351 0.041*
C31 0.6246 (3) 0.18372 (14) 0.4624 (3) 0.0253 (8)
C32 0.5330 (3) 0.13890 (14) 0.4404 (3) 0.0226 (7)
N9 0.2108 (3) −0.14631 (15) −0.0847 (3) 0.0429 (8)
C34 0.3084 (4) −0.1587 (2) −0.1199 (4) 0.0594 (13)
H34A 0.3181 −0.2006 −0.1233 0.089*
H34B 0.2896 −0.1429 −0.1923 0.089*
C35 0.4196 (4) −0.1325 (2) −0.0422 (4) 0.0561 (12)
H35A 0.4797 −0.1363 −0.0710 0.084*
H35B 0.4458 −0.1530 0.0271 0.084*
C36 0.4004 (4) −0.0697 (2) −0.0254 (4) 0.0532 (12)
H36A 0.4691 −0.0541 0.0332 0.080*
H36B 0.3888 −0.0480 −0.0914 0.080*
N10 0.3005 (3) −0.06292 (16) 0.0010 (3) 0.0476 (9)
H10 0.2977 (9) −0.0324 (8) 0.0388 (8) 0.057*
C37 0.2124 (3) −0.09974 (18) −0.0279 (3) 0.0395 (10)
C38 0.1153 (4) −0.0872 (2) 0.0084 (4) 0.0559 (12)
H38A 0.1389 −0.0553 0.0602 0.084*
H38B 0.1036 −0.1212 0.0461 0.084*
C39 −0.0027 (4) −0.0713 (2) −0.0856 (4) 0.0540 (12)
H39A −0.0530 −0.0533 −0.0543 0.081*
H39B 0.0121 −0.0426 −0.1321 0.081*
C40 −0.0669 (4) −0.1216 (2) −0.1551 (4) 0.0629 (14)
H40A −0.0897 −0.1479 −0.1100 0.094*
H40B −0.1382 −0.1068 −0.2117 0.094*
C41 −0.0026 (4) −0.1557 (2) −0.2082 (4) 0.0668 (15)
H41A 0.0188 −0.1299 −0.2549 0.100*
H41B −0.0548 −0.1852 −0.2545 0.100*
C42 0.1090 (4) −0.18605 (19) −0.1279 (4) 0.0546 (12)
H42A 0.0936 −0.2018 −0.0673 0.082*
H42B 0.1281 −0.2184 −0.1648 0.082*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Zn1 0.0227 (2) 0.0204 (2) 0.0316 (2) −0.00134 (17) 0.01218 (17) −0.00316 (18)
Br1 0.0702 (4) 0.0754 (4) 0.0621 (4) 0.0065 (3) 0.0168 (3) 0.0066 (3)
N1 0.0239 (15) 0.0223 (15) 0.0314 (17) 0.0007 (12) 0.0104 (13) −0.0021 (13)
N2 0.0263 (15) 0.0239 (15) 0.0305 (16) −0.0017 (12) 0.0136 (13) 0.0001 (13)
N3 0.0244 (15) 0.0224 (15) 0.0341 (17) −0.0033 (12) 0.0128 (13) −0.0002 (13)
N4 0.0275 (16) 0.0212 (15) 0.0307 (16) −0.0026 (12) 0.0141 (13) −0.0024 (13)
N5 0.0256 (15) 0.0246 (15) 0.0293 (17) 0.0032 (13) 0.0079 (13) −0.0016 (13)
N6 0.0220 (14) 0.0210 (15) 0.0287 (16) 0.0013 (11) 0.0094 (13) −0.0008 (12)
N7 0.0227 (15) 0.0253 (15) 0.0293 (16) 0.0009 (12) 0.0111 (13) −0.0002 (13)
N8 0.0237 (15) 0.0221 (14) 0.0309 (17) −0.0018 (12) 0.0111 (13) −0.0019 (13)
C1 0.0236 (17) 0.0230 (17) 0.0250 (18) 0.0022 (14) 0.0089 (15) 0.0004 (15)
C2 0.0193 (17) 0.0291 (18) 0.0270 (19) 0.0036 (14) 0.0083 (15) 0.0006 (15)
C3 0.035 (2) 0.028 (2) 0.043 (2) 0.0000 (17) 0.0139 (19) −0.0059 (18)
C4 0.033 (2) 0.042 (2) 0.048 (3) 0.0118 (18) 0.022 (2) −0.001 (2)
C5 0.028 (2) 0.048 (2) 0.039 (2) 0.0058 (18) 0.0154 (18) 0.0071 (19)
C6 0.0262 (19) 0.035 (2) 0.034 (2) −0.0013 (16) 0.0144 (17) 0.0067 (17)
C7 0.0234 (18) 0.0280 (19) 0.0252 (19) 0.0026 (15) 0.0088 (15) 0.0022 (15)
C8 0.0224 (17) 0.0276 (18) 0.0277 (18) −0.0003 (15) 0.0104 (15) 0.0063 (16)
C9 0.0239 (18) 0.0228 (17) 0.0289 (19) −0.0020 (14) 0.0082 (16) 0.0025 (15)
C10 0.0273 (19) 0.0231 (18) 0.030 (2) −0.0029 (15) 0.0061 (16) 0.0034 (15)
C11 0.035 (2) 0.030 (2) 0.036 (2) −0.0078 (17) 0.0096 (18) 0.0049 (17)
C12 0.037 (2) 0.035 (2) 0.052 (3) −0.0131 (18) 0.007 (2) 0.002 (2)
C13 0.053 (3) 0.030 (2) 0.049 (3) −0.012 (2) 0.015 (2) −0.011 (2)
C14 0.041 (2) 0.0218 (19) 0.044 (2) −0.0011 (17) 0.0099 (19) −0.0040 (17)
C15 0.0302 (19) 0.0231 (18) 0.0266 (19) −0.0028 (15) 0.0063 (16) 0.0011 (15)
C16 0.0285 (19) 0.0202 (17) 0.0297 (19) 0.0030 (15) 0.0074 (16) 0.0030 (15)
C17 0.0262 (18) 0.0240 (17) 0.0233 (18) 0.0032 (15) 0.0051 (15) −0.0005 (15)
C18 0.0252 (19) 0.0313 (19) 0.0268 (19) 0.0051 (15) 0.0049 (16) −0.0023 (16)
C19 0.036 (2) 0.034 (2) 0.041 (2) 0.0067 (17) 0.0140 (19) −0.0100 (18)
C20 0.046 (3) 0.043 (2) 0.053 (3) 0.009 (2) 0.025 (2) −0.014 (2)
C21 0.034 (2) 0.050 (3) 0.041 (2) 0.0038 (19) 0.019 (2) −0.002 (2)
C22 0.0306 (19) 0.035 (2) 0.034 (2) 0.0060 (16) 0.0157 (17) 0.0019 (17)
C23 0.0282 (18) 0.0276 (18) 0.0288 (19) 0.0018 (16) 0.0102 (16) 0.0024 (16)
C24 0.0234 (17) 0.0253 (18) 0.0240 (18) 0.0027 (14) 0.0101 (15) 0.0008 (14)
C25 0.0205 (17) 0.0227 (17) 0.0287 (19) −0.0007 (14) 0.0102 (15) 0.0011 (15)
C26 0.0233 (17) 0.0208 (17) 0.0295 (19) −0.0021 (14) 0.0062 (15) 0.0028 (15)
C27 0.0269 (19) 0.032 (2) 0.039 (2) −0.0040 (16) 0.0133 (17) 0.0049 (17)
C28 0.033 (2) 0.029 (2) 0.049 (3) −0.0078 (17) 0.0103 (19) 0.0070 (19)
C29 0.038 (2) 0.0238 (19) 0.047 (2) −0.0064 (17) 0.009 (2) −0.0039 (18)
C30 0.035 (2) 0.0235 (19) 0.042 (2) 0.0027 (16) 0.0131 (18) −0.0008 (17)
C31 0.0243 (18) 0.0190 (17) 0.0286 (19) −0.0013 (14) 0.0062 (15) 0.0015 (14)
C32 0.0195 (16) 0.0198 (16) 0.0267 (18) 0.0012 (13) 0.0071 (15) −0.0004 (14)
N9 0.043 (2) 0.043 (2) 0.041 (2) 0.0002 (17) 0.0150 (17) 0.0038 (17)
C34 0.070 (3) 0.060 (3) 0.059 (3) 0.004 (3) 0.038 (3) −0.002 (3)
C35 0.047 (3) 0.066 (3) 0.059 (3) 0.008 (2) 0.025 (2) 0.013 (3)
C36 0.034 (2) 0.072 (3) 0.044 (3) −0.006 (2) 0.005 (2) 0.014 (2)
N10 0.046 (2) 0.050 (2) 0.037 (2) −0.0004 (18) 0.0054 (17) 0.0001 (17)
C37 0.036 (2) 0.045 (2) 0.031 (2) 0.0023 (19) 0.0059 (18) 0.0049 (19)
C38 0.055 (3) 0.070 (3) 0.044 (3) 0.015 (2) 0.021 (2) 0.007 (2)
C39 0.045 (3) 0.054 (3) 0.067 (3) 0.007 (2) 0.026 (3) 0.019 (2)
C40 0.042 (3) 0.057 (3) 0.078 (4) −0.003 (2) 0.011 (3) 0.021 (3)
C41 0.053 (3) 0.050 (3) 0.070 (4) −0.014 (2) −0.005 (3) 0.002 (3)
C42 0.056 (3) 0.039 (2) 0.061 (3) −0.009 (2) 0.015 (2) 0.006 (2)

Geometric parameters (Å, º)

Zn1—N2 2.032 (3) C19—H19 0.9300
Zn1—N8 2.032 (3) C20—C21 1.383 (6)
Zn1—N6 2.034 (3) C20—H20 0.9300
Zn1—N4 2.040 (3) C21—C22 1.396 (5)
Zn1—Br1 2.4591 (7) C21—H21 0.9300
N1—C32 1.327 (4) C22—C23 1.370 (5)
N1—C1 1.328 (4) C22—H22 0.9300
N2—C8 1.366 (4) C23—C24 1.466 (5)
N2—C1 1.370 (4) C25—C26 1.461 (5)
N3—C8 1.332 (4) C26—C31 1.388 (5)
N3—C9 1.333 (4) C26—C27 1.398 (5)
N4—C16 1.365 (4) C27—C28 1.388 (5)
N4—C9 1.374 (4) C27—H27 0.9300
N5—C16 1.330 (4) C28—C29 1.378 (5)
N5—C17 1.332 (4) C28—H28 0.9300
N6—C24 1.353 (4) C29—C30 1.371 (5)
N6—C17 1.370 (4) C29—H29 0.9300
N7—C24 1.336 (4) C30—C31 1.390 (5)
N7—C25 1.341 (4) C30—H30 0.9300
N8—C32 1.365 (4) C31—C32 1.475 (4)
N8—C25 1.365 (4) N9—C37 1.304 (5)
C1—C2 1.465 (4) N9—C42 1.479 (5)
C2—C3 1.389 (5) N9—C34 1.492 (5)
C2—C7 1.405 (5) C34—C35 1.488 (6)
C3—C4 1.389 (5) C34—H34A 0.9700
C3—H3 0.9300 C34—H34B 0.9700
C4—C5 1.390 (6) C35—C36 1.491 (6)
C4—H4 0.9300 C35—H35A 0.9700
C5—C6 1.383 (5) C35—H35B 0.9700
C5—H5 0.9300 C36—N10 1.428 (5)
C6—C7 1.397 (5) C36—H36A 0.9700
C6—H6 0.9300 C36—H36B 0.9700
C7—C8 1.442 (5) N10—C37 1.314 (5)
C9—C10 1.455 (5) N10—H10 0.87 (2)
C10—C11 1.393 (5) C37—C38 1.495 (6)
C10—C15 1.398 (5) C38—C39 1.551 (6)
C11—C12 1.387 (5) C38—H38A 0.9700
C11—H11 0.9300 C38—H38B 0.9700
C12—C13 1.396 (6) C39—C40 1.496 (7)
C12—H12 0.9300 C39—H39A 0.9700
C13—C14 1.388 (5) C39—H39B 0.9700
C13—H13 0.9300 C40—C41 1.483 (7)
C14—C15 1.400 (5) C40—H40A 0.9700
C14—H14 0.9300 C40—H40B 0.9700
C15—C16 1.467 (5) C41—C42 1.544 (6)
C17—C18 1.454 (5) C41—H41A 0.9700
C18—C19 1.379 (5) C41—H41B 0.9700
C18—C23 1.426 (5) C42—H42A 0.9700
C19—C20 1.393 (5) C42—H42B 0.9700
N2—Zn1—N8 86.86 (11) C23—C22—H22 121.1
N2—Zn1—N6 151.95 (12) C21—C22—H22 121.1
N8—Zn1—N6 86.90 (11) C22—C23—C18 121.5 (3)
N2—Zn1—N4 86.61 (11) C22—C23—C24 133.2 (3)
N8—Zn1—N4 152.57 (12) C18—C23—C24 105.3 (3)
N6—Zn1—N4 86.44 (11) N7—C24—N6 128.2 (3)
N2—Zn1—Br1 105.68 (8) N7—C24—C23 121.5 (3)
N8—Zn1—Br1 103.56 (8) N6—C24—C23 110.3 (3)
N6—Zn1—Br1 102.38 (8) N7—C25—N8 127.6 (3)
N4—Zn1—Br1 103.85 (8) N7—C25—C26 123.3 (3)
C32—N1—C1 123.2 (3) N8—C25—C26 109.0 (3)
C8—N2—C1 108.8 (3) C31—C26—C27 120.7 (3)
C8—N2—Zn1 124.7 (2) C31—C26—C25 106.9 (3)
C1—N2—Zn1 124.0 (2) C27—C26—C25 132.3 (3)
C8—N3—C9 124.1 (3) C28—C27—C26 116.9 (3)
C16—N4—C9 108.8 (3) C28—C27—H27 121.5
C16—N4—Zn1 124.0 (2) C26—C27—H27 121.5
C9—N4—Zn1 124.0 (2) C29—C28—C27 121.9 (3)
C16—N5—C17 123.4 (3) C29—C28—H28 119.0
C24—N6—C17 108.5 (3) C27—C28—H28 119.0
C24—N6—Zn1 124.4 (2) C30—C29—C28 121.3 (4)
C17—N6—Zn1 124.7 (2) C30—C29—H29 119.3
C24—N7—C25 123.0 (3) C28—C29—H29 119.3
C32—N8—C25 109.0 (3) C29—C30—C31 117.7 (4)
C32—N8—Zn1 124.8 (2) C29—C30—H30 121.1
C25—N8—Zn1 124.6 (2) C31—C30—H30 121.1
N1—C1—N2 128.1 (3) C26—C31—C30 121.3 (3)
N1—C1—C2 122.8 (3) C26—C31—C32 106.1 (3)
N2—C1—C2 109.1 (3) C30—C31—C32 132.5 (3)
C3—C2—C7 121.4 (3) N1—C32—N8 127.9 (3)
C3—C2—C1 133.0 (3) N1—C32—C31 123.3 (3)
C7—C2—C1 105.6 (3) N8—C32—C31 108.9 (3)
C2—C3—C4 117.8 (3) C37—N9—C42 123.1 (4)
C2—C3—H3 121.1 C37—N9—C34 120.7 (4)
C4—C3—H3 121.1 C42—N9—C34 115.9 (4)
C3—C4—C5 120.9 (3) C35—C34—N9 110.6 (4)
C3—C4—H4 119.6 C35—C34—H34A 109.5
C5—C4—H4 119.6 N9—C34—H34A 109.5
C6—C5—C4 121.7 (3) C35—C34—H34B 109.5
C6—C5—H5 119.1 N9—C34—H34B 109.5
C4—C5—H5 119.1 H34A—C34—H34B 108.1
C5—C6—C7 117.9 (3) C34—C35—C36 109.6 (4)
C5—C6—H6 121.0 C34—C35—H35A 109.8
C7—C6—H6 121.0 C36—C35—H35A 109.8
C6—C7—C2 120.2 (3) C34—C35—H35B 109.8
C6—C7—C8 132.7 (3) C36—C35—H35B 109.8
C2—C7—C8 107.2 (3) H35A—C35—H35B 108.2
N3—C8—N2 127.3 (3) N10—C36—C35 110.4 (4)
N3—C8—C7 123.4 (3) N10—C36—H36A 109.6
N2—C8—C7 109.3 (3) C35—C36—H36A 109.6
N3—C9—N4 127.1 (3) N10—C36—H36B 109.6
N3—C9—C10 123.6 (3) C35—C36—H36B 109.6
N4—C9—C10 109.3 (3) H36A—C36—H36B 108.1
C11—C10—C15 120.8 (3) C37—N10—C36 124.3 (4)
C11—C10—C9 132.6 (3) C37—N10—H10 118 (1)
C15—C10—C9 106.5 (3) C36—N10—H10 118 (1)
C12—C11—C10 117.3 (4) N9—C37—N10 121.2 (4)
C12—C11—H11 121.4 N9—C37—C38 121.0 (4)
C10—C11—H11 121.4 N10—C37—C38 117.9 (4)
C11—C12—C13 121.9 (4) C37—C38—C39 114.3 (4)
C11—C12—H12 119.0 C37—C38—H38A 108.7
C13—C12—H12 119.0 C39—C38—H38A 108.7
C14—C13—C12 121.3 (4) C37—C38—H38B 108.7
C14—C13—H13 119.4 C39—C38—H38B 108.7
C12—C13—H13 119.4 H38A—C38—H38B 107.6
C13—C14—C15 116.8 (4) C40—C39—C38 114.9 (4)
C13—C14—H14 121.6 C40—C39—H39A 108.5
C15—C14—H14 121.6 C38—C39—H39A 108.5
C10—C15—C14 121.8 (3) C40—C39—H39B 108.5
C10—C15—C16 106.5 (3) C38—C39—H39B 108.5
C14—C15—C16 131.6 (3) H39A—C39—H39B 107.5
N5—C16—N4 127.9 (3) C41—C40—C39 116.5 (4)
N5—C16—C15 123.2 (3) C41—C40—H40A 108.2
N4—C16—C15 109.0 (3) C39—C40—H40A 108.2
N5—C17—N6 127.4 (3) C41—C40—H40B 108.2
N5—C17—C18 122.5 (3) C39—C40—H40B 108.2
N6—C17—C18 110.0 (3) H40A—C40—H40B 107.3
C19—C18—C23 120.4 (3) C40—C41—C42 114.4 (5)
C19—C18—C17 133.7 (3) C40—C41—H41A 108.7
C23—C18—C17 105.9 (3) C42—C41—H41A 108.7
C18—C19—C20 117.2 (4) C40—C41—H41B 108.7
C18—C19—H19 121.4 C42—C41—H41B 108.7
C20—C19—H19 121.4 H41A—C41—H41B 107.6
C21—C20—C19 122.5 (4) N9—C42—C41 112.9 (3)
C21—C20—H20 118.8 N9—C42—H42A 109.0
C19—C20—H20 118.8 C41—C42—H42A 109.0
C20—C21—C22 120.6 (4) N9—C42—H42B 109.0
C20—C21—H21 119.7 C41—C42—H42B 109.0
C22—C21—H21 119.7 H42A—C42—H42B 107.8
C23—C22—C21 117.7 (4)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N10—H10···Br1 0.87 (2) 2.44 (2) 3.281 (4) 163 (2)

Table S1 Comparison of Zn—L bond length and displacement of Zn from N4 plane (Zn—N4) in 1 and different literature ZnPc complexes (Å)

Compound Zn—L Zn—N4 Ref.
ZnPc—(DBU) 2.063 (2) 0.614 (2) Janczak et al., 2011
ZnPc—(4-picoline) 2.166 (3) 0.352 (2) Kubiak et al., 2007
ZnPc—(2-amino-3-picoline) 2.157 (2) 0.470 (2) Janczak et al., 2009
ZnPc—(n-buthylamine) 2.073 (4) 0.494 (4) Przybył & Janczak, 2014
ZnPc—(n-amylamine) 2.087 (3) 0.498 (4) Przybył & Janczak, 2014
ZnPc—(n-heptylamine) 2.097 (2) 0.477 (4) Przybył & Janczak, 2014
ZnPc—(n-hexylamine) 2.178 0.480 Kobayashi et al., 1971
ZnPc—(pyrazine) 2.178 (2) 0.371 (2) Janczak & Kubiak, 2009
(ZnPc)2—(pyrazine) 2.207 (2) 0.296 (2) Janczak & Kubiak, 2009
ZnPc—(4-aminopyridine) 2.092 (3) 0.446 (1) Yang et al., 2008
ZnPc—(1,3-bis(4-pyridyl)propane) 2.130 (5) 0.375 (3) Zeng et al., 2005
(ZnPc)2—(µ2-1,2-bis(4-pyridyl)ethane) 2.125 (7) 0.483 (4) Zeng et al., 2005
(ZnPc)2—(µ2-1,2-bis(4-pyridyl)ethylene) 2.156 (2) 0.347 (2) Zeng et al., 2005
(ZnPc)2—(µ2-N,N'-bis((pyridin-3-yl)methyl)ethanediamide) 2.147 (3) 0.377 (3) Li et al., 2011
ZnPc—Cl 2.35 0.59 Mossoyan-Deneux et al., 1985
ZnPc—Br 2.459 (3) 0.488 (3) this work

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: FJ2673).

References

  1. Brandenburg, K. & Putz, H. (2006). DIAMOND Crystal Impact GbR, Bonn, Germany.
  2. Del Sole, R., De Luca, A., Mele, G. & Vasapollo, G. (2005). J. Porphyrins Phthalocyanines, 9, 519–527.
  3. Gregory, P. (2000). J. Porphyrins Phthalocyanines, 4, 432–437.
  4. Janczak, J. & Kubiak, R. (2009). Polyhedron, 28, 2391–2396.
  5. Janczak, J., Kubiak, R. & Bukowska, E. (2009). J. Mol. Struct. 937, 25–33.
  6. Janczak, J., Kubiak, R. & Lisowski, J. (2011). Polyhedron, 30, 253–258.
  7. Kobayashi, T., Ashida, W., Uyeda, N., Suito, E. & Makudo, M. (1971). Bull. Chem. Soc. Jpn, 44, 2095–2103.
  8. Kubiak, R., Janczak, J., Śledź, M. & Bukowska, E. (2007). Polyhedron, 26, 4179–4186.
  9. Li, X., He, X., Chen, Y., Fan, X. & Zeng, Q. (2011). J. Mol. Struct. 1002, 145–150.
  10. Leznoff, C. C. & Lever, A. B. P. (1996). Editors. Phthalocyanines: Properties and Applications, Vol. 4. New York: VCH Publishers.
  11. Mossoyan-Deneux, M., Benlian, D., Pierrot, M., Fournel, A. & Sorbier, J. P. (1985). Inorg. Chem. 24, 1878–1882.
  12. Nyokong, T., Gasyna, Z. & Stillman, M. J. (1987). Inorg. Chem. 26, 1087–1095.
  13. Ormond, A. B. & Freeman, H. S. (2013). Materials, 6, 817-840. [DOI] [PMC free article] [PubMed]
  14. Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED, Oxford Diffraction, Wrocław, Poland.
  15. Przybył, B. & Janczak, J. (2014). Dyes Pigments, 100, 247–254.
  16. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  17. Tedesco, A. C., Rott, J. C. G. & Lunardi, C. N. (2003). Curr. Org. Chem. 7, 187–196.
  18. Yang, F.-J., Fang, X., Yu, H.-Y. & Wang, J.-D. (2008). Acta Cryst. C64, m375–m377. [DOI] [PubMed]
  19. Zeng, Q., Wu, D., Wang, C., Lu, J., Ma, B., Shu, C., Ma, H., Li, Y. & Bai, C. (2005). CrystEngComm, 7, 243–248.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S160053681401157X/fj2673sup1.cif

e-70-0m231-sup1.cif (36.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681401157X/fj2673Isup2.hkl

e-70-0m231-Isup2.hkl (415.4KB, hkl)

CCDC reference: 1003951

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES