Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2014 May 24;70(Pt 6):o705. doi: 10.1107/S1600536814011404

3-[3-(2-Fluoro­benzo­yl)thio­ureido]propionic acid

Nurziana Ngah a,*, Nor Azanita Mohamed a, Bohari M Yamin b, Hamizah Mohd Zaki c,d
PMCID: PMC4051025  PMID: 24940277

Abstract

In the title compound, C10H11FN3O3S, the 2-fluoro­benzoyl and proponic acid groups maintain a trans–cis conformation with respect to the thiono C=S bond across their C—N bonds. The propionic acid group adopts an anti conformation about the C—C bond, with an N—C—C—C torsion angle of 173.8 (2)°. The amino groups are involved in the formation of intra­molecular N—H⋯O and N—H⋯F hydrogen bonds. In the crystal, pairs of O—H⋯O hydrogen bonds link mol­ecules into inversion dimers.

Related literature  

For related structures, see: Yusof et al. (2003); Ngah et al. (2006).graphic file with name e-70-0o705-scheme1.jpg

Experimental  

Crystal data  

  • C11H11FN2O3S

  • M r = 270.28

  • Monoclinic, Inline graphic

  • a = 11.7103 (7) Å

  • b = 11.1289 (7) Å

  • c = 9.6760 (7) Å

  • β = 108.407 (2)°

  • V = 1196.49 (14) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.29 mm−1

  • T = 296 K

  • 0.41 × 0.30 × 0.28 mm

Data collection  

  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000) T min = 0.892, T max = 0.924

  • 21544 measured reflections

  • 2188 independent reflections

  • 1816 reflections with I > 2/s(I)

  • R int = 0.032

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.043

  • wR(F 2) = 0.134

  • S = 1.13

  • 2188 reflections

  • 167 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.31 e Å−3

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536814011404/cv5458sup1.cif

e-70-0o705-sup1.cif (17.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814011404/cv5458Isup2.hkl

e-70-0o705-Isup2.hkl (107.6KB, hkl)

Supporting information file. DOI: 10.1107/S1600536814011404/cv5458Isup3.cml

CCDC reference: 1003660

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯F1 0.86 2.04 2.708 (3) 134
N2—H2A⋯O1 0.86 1.97 2.642 (3) 135
O3—H3A⋯O2i 0.83 (2) 1.82 (2) 2.645 (3) 175 (4)

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors thanks the Ministry of Higher Education of Malaysia for funding the synthetic chemistry project under research grant scheme FRGS11–002-0150, Inter­national Islamic University Malaysia, Universiti Kebangsaan Malaysia and Universiti Teknologi MARA for providing access to research facilities.

supplementary crystallographic information

1. Comment

In continuation of our study of thiourea derivatives containing propionic acid fragments (Yusof et al., 2003; Ngah et al., 2006), we report here the crystal structure of the title compound (I).

In (I) (Fig.1), all bond lengths and angles are normal and correspond well to those observed in the related compounds (Yusof et al., 2003; Ngah et al., 2006). However, the C11—O3 is slightly shorter [1.306 (3) Å] compared to its analogue [1.325 (4) Å; Ngah et al. (2006)] due to electron delocalization along carboxyl group. The molecule maintains its trans-cis configuration with respect to the positions of 2-fluorobenzoyl and propionic acid relative to the thino C=S bond across the C8—N1 and C8—N2, respectively. The molecule adopts an anti conformation with N2—C9—C10—C11 torsion angle of 173.8 (2)°. In the contrary the analogue adopts a gauche conformation with torsion angle of 64.9 (4)°. The 2-fluorophenyl [C1—C6/F1], thiourea [N1/C8/N2/S1] and propionic acid [C9/C10C11/O2/O3] fragments are essentially planar with maximum deviation of 031 (2) Å for atom C10 from the least square plane of propionic acid. The thiourea makes dihedral angles of 20.84 (12)° and 85.78 (11)° with 2-fluorophenyl and propionic acid fragments, respectively. The 2-fluorophenyl is inclined to propionic acid fragments by 65.65 (13)°, compared to 54.29 (19)° in the analogue. There are two intramolecular N1—H1A···F1 and N2—H2A···O1 hydrogen bonds (Table 1) furnishing in the formation of two pseudo six-membered rings (N1—H1A—F1—C5—C6—C7) and (N2—H2A—O1—C7—N1—C8), respectively.

In the crystal structure, the molecules are connected via O3—H3A···O2 intermolecular hydrogen bonds to form centrosymmetric dimers (Fig. 2).

2. Experimental

30 ml acetone solution of β-alanine (2.92 g, 32.80 mmol) was added into a round-bottom flask containing a solution of 2-fluorobenzoylchloride (5.21 g, 32.80 mmol) and ammonium thiocyanate (2.50 g, 32.80 mmol). The solution mixture was refluxed for 5 h then filtered off into a beaker containing some ice and left to evaporate at room temperature. The yellowish precipitate obtained was washed with water and cold ethanol. The yellowish crytals were obtained by recrystallization of the precipitate in acetonitrile, suitable for X-ray analysis.

3. Refinement

The hydroxyl H-atom [O3—H3A] was located from Fourrier map and refined isotropically. Other H atoms were positioned geometrically and refined using riding model with C—H = 0.93–0.97 Å and N—H = 0.86 Å with Uiso(H) = 1.2Ueq(C & N).

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I), with displacement ellipsods drawn at the 50% probability level. Dashed lines denote intramolecular hydrogen bonds.

Fig. 2.

Fig. 2.

A portion of the molecular packing of (I) viewed down the c axis. Dashed lines denote intermolecular O—H···O hydrogen bonds.

Crystal data

C11H11FN2O3S F(000) = 560
Mr = 270.28 Dx = 1.500 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 13325 reflections
a = 11.7103 (7) Å θ = 2.9–25.5°
b = 11.1289 (7) Å µ = 0.29 mm1
c = 9.6760 (7) Å T = 296 K
β = 108.407 (2)° Block, colourless
V = 1196.49 (14) Å3 0.41 × 0.30 × 0.28 mm
Z = 4

Data collection

Bruker SMART APEX CCD area-detector diffractometer 2188 independent reflections
Radiation source: fine-focus sealed tube 1816 reflections with I > 2/s(I)
Graphite monochromator Rint = 0.032
Detector resolution: 83.66 pixels mm-1 θmax = 25.5°, θmin = 2.9°
ω scan h = −12→14
Absorption correction: multi-scan (SADABS; Bruker, 2000) k = −13→13
Tmin = 0.892, Tmax = 0.924 l = −11→11
21544 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.134 H atoms treated by a mixture of independent and constrained refinement
S = 1.13 w = 1/[σ2(Fo2) + (0.059P)2 + 0.9312P] where P = (Fo2 + 2Fc2)/3
2188 reflections (Δ/σ)max < 0.001
167 parameters Δρmax = 0.23 e Å3
1 restraint Δρmin = −0.31 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
F1 0.40942 (16) 0.72653 (14) 0.75758 (18) 0.0567 (5)
S1 0.36160 (7) 0.36649 (6) 0.92829 (10) 0.0596 (3)
O1 0.16343 (16) 0.70323 (15) 0.9833 (2) 0.0502 (5)
O2 0.07405 (16) 0.12040 (15) 1.06970 (18) 0.0453 (4)
O3 −0.0317 (2) 0.09343 (17) 0.8376 (2) 0.0585 (6)
N1 0.30302 (18) 0.59538 (16) 0.9185 (2) 0.0398 (5)
H1A 0.3627 0.6022 0.8853 0.048*
N2 0.17782 (18) 0.46625 (17) 0.9899 (2) 0.0411 (5)
H2A 0.1364 0.5295 0.9928 0.049*
C1 0.2683 (2) 0.9209 (2) 0.9548 (3) 0.0471 (6)
H1 0.2171 0.9175 1.0112 0.056*
C2 0.3106 (3) 1.0305 (2) 0.9274 (4) 0.0548 (7)
H2 0.2883 1.1001 0.9656 0.066*
C3 0.3859 (2) 1.0375 (2) 0.8437 (3) 0.0501 (7)
H3 0.4143 1.1118 0.8250 0.060*
C4 0.4193 (2) 0.9348 (2) 0.7879 (3) 0.0476 (6)
H4 0.4704 0.9388 0.7314 0.057*
C5 0.3761 (2) 0.8260 (2) 0.8168 (3) 0.0388 (5)
C6 0.3002 (2) 0.8147 (2) 0.9001 (3) 0.0359 (5)
C7 0.2487 (2) 0.7005 (2) 0.9367 (3) 0.0367 (5)
C8 0.2736 (2) 0.4784 (2) 0.9472 (3) 0.0385 (5)
C9 0.1380 (2) 0.3521 (2) 1.0327 (3) 0.0417 (6)
H9A 0.0899 0.3673 1.0960 0.050*
H9B 0.2079 0.3057 1.0873 0.050*
C10 0.0648 (2) 0.2795 (2) 0.9026 (3) 0.0414 (6)
H10A −0.0095 0.3218 0.8541 0.050*
H10B 0.1095 0.2716 0.8341 0.050*
C11 0.0357 (2) 0.1574 (2) 0.9458 (3) 0.0363 (5)
H3A −0.041 (3) 0.0267 (17) 0.871 (4) 0.079 (11)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
F1 0.0767 (11) 0.0438 (9) 0.0639 (10) 0.0036 (7) 0.0428 (9) −0.0009 (7)
S1 0.0532 (4) 0.0281 (3) 0.1082 (7) 0.0000 (3) 0.0408 (4) −0.0041 (3)
O1 0.0457 (10) 0.0338 (9) 0.0824 (14) −0.0014 (7) 0.0365 (10) −0.0019 (8)
O2 0.0572 (11) 0.0356 (9) 0.0410 (10) −0.0121 (8) 0.0124 (8) 0.0000 (7)
O3 0.0773 (14) 0.0440 (11) 0.0450 (11) −0.0249 (10) 0.0063 (9) 0.0003 (9)
N1 0.0378 (11) 0.0265 (9) 0.0618 (13) −0.0024 (8) 0.0253 (10) 0.0007 (9)
N2 0.0407 (11) 0.0271 (10) 0.0597 (13) −0.0051 (8) 0.0217 (10) −0.0010 (9)
C1 0.0442 (14) 0.0329 (12) 0.0716 (18) 0.0012 (10) 0.0290 (13) −0.0010 (12)
C2 0.0538 (16) 0.0296 (13) 0.085 (2) 0.0008 (11) 0.0277 (15) −0.0019 (13)
C3 0.0485 (15) 0.0344 (13) 0.0655 (17) −0.0057 (11) 0.0154 (13) 0.0111 (12)
C4 0.0499 (15) 0.0473 (14) 0.0492 (15) −0.0023 (11) 0.0205 (12) 0.0103 (12)
C5 0.0429 (13) 0.0344 (12) 0.0395 (12) 0.0026 (10) 0.0132 (10) 0.0029 (10)
C6 0.0341 (12) 0.0275 (11) 0.0452 (13) 0.0013 (9) 0.0111 (10) 0.0027 (9)
C7 0.0358 (12) 0.0275 (11) 0.0472 (13) −0.0017 (9) 0.0138 (10) −0.0004 (9)
C8 0.0382 (12) 0.0280 (11) 0.0498 (14) −0.0040 (9) 0.0143 (11) −0.0021 (10)
C9 0.0471 (14) 0.0331 (12) 0.0483 (14) −0.0098 (10) 0.0200 (11) 0.0000 (10)
C10 0.0452 (14) 0.0359 (12) 0.0441 (13) −0.0097 (10) 0.0156 (11) 0.0013 (10)
C11 0.0362 (12) 0.0347 (12) 0.0404 (13) −0.0060 (9) 0.0156 (10) −0.0031 (10)

Geometric parameters (Å, º)

F1—C5 1.360 (3) C2—C3 1.375 (4)
S1—C8 1.663 (2) C2—H2 0.9300
O1—C7 1.219 (3) C3—C4 1.372 (4)
O2—C11 1.212 (3) C3—H3 0.9300
O3—C11 1.306 (3) C4—C5 1.375 (3)
O3—H3A 0.830 (10) C4—H4 0.9300
N1—C7 1.369 (3) C5—C6 1.380 (3)
N1—C8 1.397 (3) C6—C7 1.497 (3)
N1—H1A 0.8600 C9—C10 1.514 (3)
N2—C8 1.319 (3) C9—H9A 0.9700
N2—C9 1.458 (3) C9—H9B 0.9700
N2—H2A 0.8600 C10—C11 1.491 (3)
C1—C2 1.373 (4) C10—H10A 0.9700
C1—C6 1.393 (3) C10—H10B 0.9700
C1—H1 0.9300
C11—O3—H3A 107 (3) C5—C6—C7 126.7 (2)
C7—N1—C8 128.1 (2) C1—C6—C7 117.0 (2)
C7—N1—H1A 115.9 O1—C7—N1 122.5 (2)
C8—N1—H1A 115.9 O1—C7—C6 120.3 (2)
C8—N2—C9 123.9 (2) N1—C7—C6 117.2 (2)
C8—N2—H2A 118.0 N2—C8—N1 116.4 (2)
C9—N2—H2A 118.0 N2—C8—S1 125.12 (18)
C2—C1—C6 121.6 (2) N1—C8—S1 118.43 (17)
C2—C1—H1 119.2 N2—C9—C10 112.2 (2)
C6—C1—H1 119.2 N2—C9—H9A 109.2
C1—C2—C3 120.1 (2) C10—C9—H9A 109.2
C1—C2—H2 120.0 N2—C9—H9B 109.2
C3—C2—H2 120.0 C10—C9—H9B 109.2
C4—C3—C2 120.0 (2) H9A—C9—H9B 107.9
C4—C3—H3 120.0 C11—C10—C9 111.9 (2)
C2—C3—H3 120.0 C11—C10—H10A 109.2
C3—C4—C5 118.9 (2) C9—C10—H10A 109.2
C3—C4—H4 120.5 C11—C10—H10B 109.2
C5—C4—H4 120.5 C9—C10—H10B 109.2
F1—C5—C4 117.3 (2) H10A—C10—H10B 107.9
F1—C5—C6 119.7 (2) O2—C11—O3 123.3 (2)
C4—C5—C6 123.0 (2) O2—C11—C10 122.7 (2)
C5—C6—C1 116.3 (2) O3—C11—C10 114.0 (2)
C6—C1—C2—C3 0.3 (4) C5—C6—C7—O1 −163.9 (2)
C1—C2—C3—C4 −0.3 (4) C1—C6—C7—O1 15.8 (4)
C2—C3—C4—C5 0.2 (4) C5—C6—C7—N1 17.5 (4)
C3—C4—C5—F1 178.9 (2) C1—C6—C7—N1 −162.8 (2)
C3—C4—C5—C6 −0.1 (4) C9—N2—C8—N1 −176.3 (2)
F1—C5—C6—C1 −178.8 (2) C9—N2—C8—S1 2.6 (4)
C4—C5—C6—C1 0.1 (4) C7—N1—C8—N2 3.9 (4)
F1—C5—C6—C7 0.9 (4) C7—N1—C8—S1 −175.0 (2)
C4—C5—C6—C7 179.8 (2) C8—N2—C9—C10 −82.4 (3)
C2—C1—C6—C5 −0.2 (4) N2—C9—C10—C11 173.8 (2)
C2—C1—C6—C7 −180.0 (2) C9—C10—C11—O2 −4.5 (3)
C8—N1—C7—O1 0.2 (4) C9—C10—C11—O3 177.3 (2)
C8—N1—C7—C6 178.8 (2)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1A···F1 0.86 2.04 2.708 (3) 134
N2—H2A···O1 0.86 1.97 2.642 (3) 135
O3—H3A···O2i 0.83 (2) 1.82 (2) 2.645 (3) 175 (4)

Symmetry code: (i) −x, −y, −z+2.

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: CV5458).

References

  1. Bruker (2000). SADABS, SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Ngah, N., Darman, N. & Yamin, B. M. (2006). Acta Cryst. E62, o3369–o3371.
  3. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  4. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  5. Yusof, M. S. M. & Yamin, B. M. (2003). Acta Cryst. E59, o828–o829.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536814011404/cv5458sup1.cif

e-70-0o705-sup1.cif (17.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814011404/cv5458Isup2.hkl

e-70-0o705-Isup2.hkl (107.6KB, hkl)

Supporting information file. DOI: 10.1107/S1600536814011404/cv5458Isup3.cml

CCDC reference: 1003660

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES