Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2014 May 3;70(Pt 6):m198–m199. doi: 10.1107/S1600536814008745

Poly[[di­aqua­[μ-1,4-bis(pyridin-4-ylmeth­yl)piperazine-κ2 N:N′]{μ-2,2′-[(1,4-phenyl­ene)bis(­oxy)]di­acetato-κ2 O:O′}cobalt(II)] penta­hydrate]

Alexander D Sample a, Robert L LaDuca a,*
PMCID: PMC4051029  PMID: 24940193

Abstract

In the title compound, {[Co(C10H8O6)(C16H20N4)(H2O)2]·5H2O}n, octa­hedrally coordinated CoII ions on crystallographic inversion centres are bound by trans O atoms belonging to two hydro­quinone-O,O′-di­acetate (hqda) anions {systematic name: 2,2′-[(1,4-phenyl­ene)bis­(­oxy)]di­acetate}, two trans-pyridine N-donor atoms from two bis­(pyridin-4-ylmeth­yl)piperazine (4-bpmp) ligands, and two trans aqua ligands. The exobidentate hqda and 4-bpmp ligands form [Co(hqda)(4-bpmp)(H2O)2]n coordination polymer layers parallel to (110) that are anchored into the full crystal structure by O—H⋯O hydrogen bonding between aqua ligands and ligated hqda O atoms. Disordered water mol­ecules of crystallization occupy incipient channels along [100]. However, these could not modeled reliably and so they were treated with SQUEEZE in PLATON [Spek (2009). Acta Cryst. D65, 148–155]; the crystal data take the presence of these mol­ecules into account. The crystal under investigation was twinned by non-merohedry, the twin fraction of the components being 53.3% and 46.7%. Only data from the major twin component were used in the refinement.

Related literature  

For the preparation of bis­(4-pyridymeth­yl)piperazine, see: Niu et al. (2001). For the preparation of divalent metal terephthalate coordination polymers containing 4-bpmp, see: Farnum et al. (2013).graphic file with name e-70-0m198-scheme1.jpg

Experimental  

Crystal data  

  • [Co(C10H8O6)(C16H20N4)(H2O)2]·5H2O

  • M r = 677.57

  • Triclinic, Inline graphic

  • a = 5.7727 (8) Å

  • b = 10.3421 (15) Å

  • c = 13.1675 (19) Å

  • α = 87.175 (2)°

  • β = 78.856 (2)°

  • γ = 81.474 (2)°

  • V = 762.61 (19) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.63 mm−1

  • T = 173 K

  • 0.19 × 0.17 × 0.05 mm

Data collection  

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (TWINABS; Sheldrick, 2003) T min = 0.676, T max = 0.745

  • 13385 measured reflections

  • 2786 independent reflections

  • 2032 reflections with I > 2σ(I)

  • R int = 0.053

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.093

  • wR(F 2) = 0.228

  • S = 1.10

  • 2786 reflections

  • 179 parameters

  • H-atom parameters constrained

  • Δρmax = 0.71 e Å−3

  • Δρmin = −0.89 e Å−3

Data collection: APEX2 (Bruker, 2012); cell refinement: SAINT (Bruker, 2012); data reduction: SAINT (Bruker, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2.

Supplementary Material

Crystal structure: contains datablock(s) I, pub. DOI: 10.1107/S1600536814008745/tk5308sup1.cif

e-70-0m198-sup1.cif (19.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814008745/tk5308Isup2.hkl

e-70-0m198-Isup2.hkl (136.8KB, hkl)

CCDC reference: 997809

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4A⋯O1i 0.91 2.28 2.945 (7) 130
O4—H4B⋯O2 0.91 1.85 2.636 (7) 143

Symmetry code: (i) Inline graphic.

Acknowledgments

We gratefully acknowledge Lyman Briggs College of Michigan State University for funding this work.

supplementary crystallographic information

1. Chemical context

Some divalent metal terephthalate coordination polymers with bis­(pyridin-4-yl­methyl)­piperazine (4-bpmp) coligands show intriguing entangled topologies. (Farnum et al., 2013). We hoped to expand the scope of these materials by using a para aromatic di­carboxyl­ate with longer pendant arms, such as hydro­quinone-O,O'-di­acetic acid (H2hqda). The title compound was obtained as pink crystals through the hydro­thermal reaction of cobalt nitrate, H2hqda, and 4-bpmp.

2. Structural commentary

The asymmetric unit of the title compound contains a divalent cobalt atom on a crystallographic inversion centre, an aqua ligand, half of a hqda ligand whose centroid rests on another crystallographic inversion centre, and one half of a 4-bpmp ligand whose centroid rests on a third crystallographic inversion centre.

The cobalt atom is o­cta­hedrally coordinated (Fig. 1), with the equatorial plane containing trans pyridyl N atom donors from two 4-bpmp ligands and trans O atom donors from monodentate carboxyl­ate groups belonging to two hqda ligands. The aqua ligands are located in the axial positions.

The Co atoms are connected by exobidentate, bis­(monodentate) hqda ligands to form [Co(hqda)(H2O)2]n coordination polymer chains that are oriented parallel to [0 1 0]. Each individual chain is linked to two others by tethering 4-bpmp ligands, to construct [Co(hqda)(4-bpmp)(H2O)2]n coordination polymer layers parallel to (110) (Fig. 2). As each cobalt atom is connected to four others, the underlying topology of the layer is a (4,4) re­cta­ngular grid. The inter­nuclear Co···Co through-space distances across the grid apertures are 13.17 Å and 25.14 Å.

3. Supra­molecular features

Individual [Co(hqda)(4-bpmp)(H2O)2]n layers stack in a AAA pattern along the a crystal direction (Fig. 3). The supra­molecular O—H···O hydrogen bonding between aqua ligands in one layer and ligated hqda O atoms in two others provides the impetus for the formation of the three-dimensional crystal structure of the title compound.

Disordered water molecules of crystallization occupy incipient channels along [1 0 0]. These could not be refined well, and thus their electron density was modeled using the SQUEEZE subroutine of PLATON (Spek, 2009). The resulting analysis indicated the presence of approximately five water molecules per unit cell, in a region comprising 20.6% of the total unit cell volume.

4. Database survey

This compound was not previously reported in the CCDC.

5. Synthesis and crystallization

Cobalt(II) nitrate hexahydrate and hydro­quinone-O,O'-di­acetic acid (H2hqda) were obtained commercially. Bis(4-pyridymethyl)­piperazine (4-bpmp) was prepared via a published procedure (Niu et al., 2001). A mixture of cobalt(II) nitrate hexahydrate (68 mg, 0.23 mmol), H2hqda (84 mg, 0.37 mmol), 4-bpmp (99 mg, 0.37 mmol), 0.25 ml of a 1.0 M NaOH solution and 10.0 g water (550 mmol) was placed into a 23 ml Teflon-lined Parr acid digestion bomb, which was then heated under autogenous pressure at 393 K for 24 h. Pink plates of the title compound were obtained in a multi-phase mixture.

6. Refinement

All H atoms bound to C atoms were placed in calculated positions, with C—H = 0.95–0.99 Å, and refined in riding mode with Uiso = 1.2Ueq(C). The H atoms within the aqua ligand were found in a difference Fourier map, restrained with O—H = 0.85 Å and refined with Uiso = 1.5Ueq(O).

Figures

Fig. 1.

Fig. 1.

The octahedral coordination environment of the title compound, showing 50% probability ellipsoids and atom numbering scheme. Hydrogen atom positions are shown as gray sticks. Color codes: dark blue Co, red O, light blue N, black C. Symmetry code: (i) -x + 1, -y, -z.

Fig. 2.

Fig. 2.

A single [Co(hqda)(4-bpmp)(H2O)2]n coordination polymer layer.

Fig. 3.

Fig. 3.

Stacking of coordination polymer layers within the title compound.

Crystal data

[Co(C10H8O6)(C16H20N4)(H2O)2]·5H2O Z = 1
Mr = 677.57 F(000) = 357
Triclinic, P1 Dx = 1.475 Mg m3
a = 5.7727 (8) Å Mo Kα radiation, λ = 0.71073 Å
b = 10.3421 (15) Å Cell parameters from 2300 reflections
c = 13.1675 (19) Å θ = 2.5–25.0°
α = 87.175 (2)° µ = 0.63 mm1
β = 78.856 (2)° T = 173 K
γ = 81.474 (2)° Plate, pink
V = 762.61 (19) Å3 0.19 × 0.17 × 0.05 mm

Data collection

Bruker APEXII CCD diffractometer 2786 independent reflections
Radiation source: fine-focus sealed tube 2032 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.053
φ and ω scans θmax = 25.4°, θmin = 2.0°
Absorption correction: multi-scan (TWINABS; Sheldrick, 2003) h = −6→6
Tmin = 0.676, Tmax = 0.745 k = −12→12
13385 measured reflections l = 0→15

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.093 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.228 H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.0164P)2 + 9.3P] where P = (Fo2 + 2Fc2)/3
2786 reflections (Δ/σ)max < 0.001
179 parameters Δρmax = 0.71 e Å3
0 restraints Δρmin = −0.89 e Å3

Special details

Experimental. TWINABS-2012/1 (Bruker,2012) was used for absorption correction.For component 1: wR2(int) was 0.0549 before and 0.0460 after correction. The Ratio of minimum to maximum transmission is 0.91. The λ/2 correction factor is Not presentFor component 2: wR2(int) was 0.0664 before and 0.0469 after correction. The Ratio of minimum to maximum transmission not present. The λ/2 correction factor is Not presentFinal HKLF 4 output contains 13385 reflections, Rint = 0.0533 (6718 with I > 3sig(I), Rint = 0.0400)
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Co1 0.5000 0.0000 0.0000 0.0217 (4)
O4 0.8245 (8) 0.0527 (5) −0.0875 (4) 0.0259 (11)
H4A 0.9116 0.0861 −0.0468 0.039*
H4B 0.7974 0.1148 −0.1372 0.039*
O1 0.2947 (8) 0.1293 (4) −0.0851 (4) 0.0284 (12)
O2 0.5742 (10) 0.1838 (6) −0.2164 (4) 0.0437 (15)
O3 −0.0339 (10) 0.3206 (5) −0.1427 (5) 0.0442 (15)
N1 0.4646 (10) 0.1467 (5) 0.1144 (5) 0.0262 (14)
N2 0.1474 (11) 0.4777 (6) 0.4001 (5) 0.0335 (15)
C13 0.3664 (14) 0.1882 (7) −0.1687 (6) 0.0318 (18)
C12 0.1723 (15) 0.2740 (8) −0.2163 (7) 0.043 (2)
H12A 0.2401 0.3498 −0.2528 0.052*
H12B 0.1244 0.2227 −0.2684 0.052*
C10 −0.0057 (15) 0.4091 (8) −0.0716 (8) 0.042 (2)
C9 −0.2010 (14) 0.4424 (8) 0.0052 (8) 0.042 (2)
H9 −0.3397 0.4018 0.0088 0.051*
C5 0.6335 (14) 0.1602 (8) 0.1688 (7) 0.038 (2)
H5 0.7780 0.1009 0.1571 0.046*
C1 0.2635 (13) 0.2314 (7) 0.1348 (6) 0.0335 (18)
H1 0.1390 0.2231 0.0988 0.040*
C6 0.3746 (14) 0.4588 (9) 0.3307 (6) 0.0380 (19)
H6A 0.5028 0.4440 0.3719 0.046*
H6B 0.3944 0.5396 0.2883 0.046*
C8 0.1075 (14) 0.6027 (8) 0.4482 (6) 0.0378 (19)
H8A 0.1156 0.6725 0.3939 0.045*
H8B 0.2350 0.6077 0.4878 0.045*
C7 0.1316 (15) 0.3748 (8) 0.4801 (6) 0.040 (2)
H7A 0.2605 0.3745 0.5200 0.048*
H7B 0.1524 0.2886 0.4475 0.048*
C11 0.1974 (15) 0.4660 (8) −0.0770 (7) 0.042 (2)
H11 0.3332 0.4424 −0.1295 0.051*
C2 0.2273 (13) 0.3304 (7) 0.2053 (6) 0.0305 (17)
H2 0.0812 0.3883 0.2166 0.037*
C3 0.4032 (13) 0.3448 (7) 0.2590 (6) 0.0301 (17)
C4 0.6070 (14) 0.2550 (8) 0.2401 (7) 0.043 (2)
H4 0.7311 0.2593 0.2773 0.051*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Co1 0.0171 (7) 0.0232 (7) 0.0226 (8) 0.0000 (5) −0.0008 (5) −0.0004 (5)
O4 0.022 (3) 0.031 (3) 0.025 (3) −0.006 (2) −0.003 (2) 0.008 (2)
O1 0.027 (3) 0.022 (2) 0.036 (3) 0.002 (2) −0.011 (2) 0.003 (2)
O2 0.036 (3) 0.059 (4) 0.035 (3) −0.018 (3) −0.001 (3) 0.022 (3)
O3 0.035 (3) 0.037 (3) 0.066 (4) −0.006 (3) −0.024 (3) 0.007 (3)
N1 0.021 (3) 0.023 (3) 0.031 (4) 0.001 (2) 0.000 (3) −0.002 (3)
N2 0.036 (4) 0.035 (4) 0.026 (4) 0.001 (3) −0.001 (3) −0.004 (3)
C13 0.037 (5) 0.033 (4) 0.027 (4) −0.010 (4) −0.009 (4) 0.007 (3)
C12 0.046 (5) 0.043 (5) 0.046 (6) −0.021 (4) −0.017 (4) 0.028 (4)
C10 0.036 (5) 0.027 (4) 0.070 (7) −0.010 (4) −0.024 (4) 0.019 (4)
C9 0.023 (4) 0.028 (4) 0.078 (7) −0.004 (3) −0.019 (4) 0.012 (4)
C5 0.028 (4) 0.041 (5) 0.047 (5) 0.004 (4) −0.012 (4) −0.013 (4)
C1 0.027 (4) 0.034 (4) 0.037 (5) 0.009 (3) −0.010 (3) −0.003 (3)
C6 0.035 (4) 0.054 (5) 0.025 (4) −0.010 (4) 0.000 (3) −0.012 (4)
C8 0.035 (5) 0.040 (5) 0.034 (5) 0.001 (4) −0.001 (4) 0.004 (4)
C7 0.038 (5) 0.040 (5) 0.039 (5) 0.014 (4) −0.012 (4) −0.009 (4)
C11 0.033 (5) 0.035 (5) 0.059 (6) −0.004 (4) −0.010 (4) 0.009 (4)
C2 0.024 (4) 0.033 (4) 0.030 (4) 0.008 (3) −0.001 (3) −0.002 (3)
C3 0.027 (4) 0.034 (4) 0.025 (4) −0.008 (3) 0.008 (3) 0.000 (3)
C4 0.027 (4) 0.045 (5) 0.058 (6) 0.002 (4) −0.012 (4) −0.019 (4)

Geometric parameters (Å, º)

Co1—O4 2.131 (4) C9—H9 0.9500
Co1—O4i 2.131 (4) C9—C11ii 1.375 (12)
Co1—O1 2.084 (5) C5—H5 0.9500
Co1—O1i 2.084 (5) C5—C4 1.363 (11)
Co1—N1 2.151 (6) C1—H1 0.9500
Co1—N1i 2.151 (6) C1—C2 1.382 (10)
O4—H4A 0.9131 C6—H6A 0.9900
O4—H4B 0.9130 C6—H6B 0.9900
O1—C13 1.260 (9) C6—C3 1.517 (10)
O2—C13 1.237 (9) C8—H8A 0.9900
O3—C12 1.421 (11) C8—H8B 0.9900
O3—C10 1.388 (10) C8—C7iii 1.508 (11)
N1—C5 1.343 (10) C7—C8iii 1.508 (11)
N1—C1 1.337 (9) C7—H7A 0.9900
N2—C6 1.440 (10) C7—H7B 0.9900
N2—C8 1.435 (10) C11—C9ii 1.375 (12)
N2—C7 1.461 (10) C11—H11 0.9500
C13—C12 1.535 (11) C2—H2 0.9500
C12—H12A 0.9900 C2—C3 1.373 (11)
C12—H12B 0.9900 C3—C4 1.376 (11)
C10—C9 1.376 (13) C4—H4 0.9500
C10—C11 1.377 (11)
O4—Co1—O4i 180.0 C11ii—C9—C10 120.6 (8)
O4—Co1—N1i 85.7 (2) C11ii—C9—H9 119.7
O4i—Co1—N1i 94.3 (2) N1—C5—H5 118.5
O4—Co1—N1 94.3 (2) N1—C5—C4 123.0 (7)
O4i—Co1—N1 85.7 (2) C4—C5—H5 118.5
O1i—Co1—O4 87.77 (19) N1—C1—H1 118.2
O1—Co1—O4i 87.77 (18) N1—C1—C2 123.5 (7)
O1i—Co1—O4i 92.23 (19) C2—C1—H1 118.2
O1—Co1—O4 92.23 (19) N2—C6—H6A 108.9
O1i—Co1—O1 180.0 N2—C6—H6B 108.9
O1i—Co1—N1i 90.1 (2) N2—C6—C3 113.4 (7)
O1—Co1—N1 90.1 (2) H6A—C6—H6B 107.7
O1i—Co1—N1 89.9 (2) C3—C6—H6A 108.9
O1—Co1—N1i 89.9 (2) C3—C6—H6B 108.9
N1—Co1—N1i 180.0 (3) N2—C8—H8A 109.3
Co1—O4—H4A 112.0 N2—C8—H8B 109.3
Co1—O4—H4B 111.7 N2—C8—C7iii 111.8 (7)
H4A—O4—H4B 106.8 H8A—C8—H8B 107.9
C13—O1—Co1 127.2 (5) C7iii—C8—H8A 109.3
C10—O3—C12 116.7 (7) C7iii—C8—H8B 109.3
C5—N1—Co1 124.3 (5) N2—C7—C8iii 110.0 (6)
C1—N1—Co1 119.6 (5) N2—C7—H7A 109.7
C1—N1—C5 116.2 (6) N2—C7—H7B 109.7
C6—N2—C7 111.1 (6) C8iii—C7—H7A 109.7
C8—N2—C6 110.9 (7) C8iii—C7—H7B 109.7
C8—N2—C7 109.3 (6) H7A—C7—H7B 108.2
O1—C13—C12 115.8 (7) C10—C11—H11 120.5
O2—C13—O1 127.3 (7) C9ii—C11—C10 119.1 (9)
O2—C13—C12 116.9 (7) C9ii—C11—H11 120.5
O3—C12—C13 113.7 (7) C1—C2—H2 120.1
O3—C12—H12A 108.8 C3—C2—C1 119.8 (7)
O3—C12—H12B 108.8 C3—C2—H2 120.1
C13—C12—H12A 108.8 C2—C3—C6 120.6 (7)
C13—C12—H12B 108.8 C2—C3—C4 116.6 (7)
H12A—C12—H12B 107.7 C4—C3—C6 122.8 (7)
C9—C10—O3 115.6 (7) C5—C4—C3 121.0 (8)
C9—C10—C11 120.3 (9) C5—C4—H4 119.5
C11—C10—O3 124.1 (9) C3—C4—H4 119.5
C10—C9—H9 119.7
Co1—O1—C13—O2 −1.8 (12) N1—C1—C2—C3 −0.3 (12)
Co1—O1—C13—C12 177.7 (5) N2—C6—C3—C2 48.1 (10)
Co1—N1—C5—C4 179.3 (7) N2—C6—C3—C4 −135.2 (8)
Co1—N1—C1—C2 −178.6 (6) C12—O3—C10—C9 −173.6 (7)
O4—Co1—O1—C13 12.3 (6) C12—O3—C10—C11 8.8 (11)
O4i—Co1—O1—C13 −167.7 (6) C10—O3—C12—C13 66.9 (9)
O4i—Co1—N1—C5 125.5 (6) C9—C10—C11—C9ii −0.8 (13)
O4—Co1—N1—C5 −54.5 (6) C5—N1—C1—C2 1.5 (12)
O4—Co1—N1—C1 125.6 (6) C1—N1—C5—C4 −0.8 (12)
O4i—Co1—N1—C1 −54.4 (6) C1—C2—C3—C6 175.3 (7)
O1i—Co1—N1—C5 33.2 (6) C1—C2—C3—C4 −1.6 (12)
O1—Co1—N1—C5 −146.8 (6) C6—N2—C8—C7iii 179.1 (7)
O1—Co1—N1—C1 33.3 (6) C6—N2—C7—C8iii 179.8 (7)
O1i—Co1—N1—C1 −146.7 (6) C6—C3—C4—C5 −174.6 (8)
O1—C13—C12—O3 26.2 (10) C8—N2—C6—C3 −166.4 (7)
O2—C13—C12—O3 −154.2 (7) C8—N2—C7—C8iii 57.0 (10)
O3—C10—C9—C11ii −176.9 (7) C7—N2—C6—C3 71.8 (9)
O3—C10—C11—C9ii 176.7 (7) C7—N2—C8—C7iii −58.1 (9)
N1—Co1—O1—C13 106.6 (6) C11—C10—C9—C11ii 0.8 (13)
N1i—Co1—O1—C13 −73.4 (6) C2—C3—C4—C5 2.2 (13)
N1—C5—C4—C3 −1.1 (14)

Symmetry codes: (i) −x+1, −y, −z; (ii) −x, −y+1, −z; (iii) −x, −y+1, −z+1.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O4—H4A···O1iv 0.91 2.28 2.945 (7) 130
O4—H4B···O2 0.91 1.85 2.636 (7) 143

Symmetry code: (iv) x+1, y, z.

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: TK5308).

References

  1. Bruker (2012). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  3. Farnum, G. A., Murray, N. H. & LaDuca, R. L. (2013). Inorg. Chim. Acta, 406, 65—72.
  4. Niu, Y., Hou, H., Wei, Y., Fan, Y., Zhu, Y., Du, C. & Xin, X. (2001). Inorg. Chem. Commun. 4, 358–361.
  5. Sheldrick, G. M. (2003). TWINABS University of Göttingen, Germany.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, pub. DOI: 10.1107/S1600536814008745/tk5308sup1.cif

e-70-0m198-sup1.cif (19.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814008745/tk5308Isup2.hkl

e-70-0m198-Isup2.hkl (136.8KB, hkl)

CCDC reference: 997809

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES