Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2014 May 24;70(Pt 6):o714. doi: 10.1107/S1600536814011660

3-(2-Methyl-1,3-benzo­thia­zol-3-ium-3-yl)propane-1-sulfonate monohydrate

Guo-Cui Zhang a, Ming Kong a, Sheng-Li Li a,*
PMCID: PMC4051035  PMID: 24940284

Abstract

In the title hydrated zwitterion, C11H13NO3S2·H2O, the N—C—C—C and C—C—C—S torsion angles in the side-chain are 171.06 (14) and 173.73 (12)°, respectively. In the crystal, inversion-related mol­ecules are π-stacked with an inter­planar separation of 3.3847 (2) Å. O—H⋯O hydrogen bonds link inversion-related mol­ecules with a pair of water mol­ecules to form R 4 2(8) rings. The closest S⋯S contact is 3.4051 (15) Å between inversion-related mol­ecules.

Related literature  

The crystal structure of a related benzo­thia­zole derivative is described by Lynch (2002). An analysis of bond angles in the thia­zole ring system has been given by Muir et al. (1987). Applications of benzo­thia­zole derivatives have been described by Vicini et al. (2003); Bondock et al. (2010); Paramashivappa et al. (2003) and Sayama et al. (2002). graphic file with name e-70-0o714-scheme1.jpg

Experimental  

Crystal data  

  • C11H13NO3S2·H2O

  • M r = 289.36

  • Monoclinic, Inline graphic

  • a = 10.936 (5) Å

  • b = 8.708 (5) Å

  • c = 13.794 (5) Å

  • β = 109.529 (5)°

  • V = 1238.0 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.44 mm−1

  • T = 296 K

  • 0.30 × 0.20 × 0.20 mm

Data collection  

  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001) T min = 0.880, T max = 0.919

  • 8500 measured reflections

  • 2182 independent reflections

  • 2105 reflections with I > 2sσ(I)

  • R int = 0.016

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.030

  • wR(F 2) = 0.080

  • S = 1.01

  • 2182 reflections

  • 164 parameters

  • H-atom parameters constrained

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.42 e Å−3

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablock(s) I, Global. DOI: 10.1107/S1600536814011660/pk2524sup1.cif

e-70-0o714-sup1.cif (17.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814011660/pk2524Isup2.hkl

e-70-0o714-Isup2.hkl (107.3KB, hkl)

Supporting information file. DOI: 10.1107/S1600536814011660/pk2524Isup3.cml

CCDC reference: 1004303

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H11⋯O3i 0.76 2.07 2.831 (2) 176
O4—H12⋯O3 0.82 2.21 2.994 (3) 160
C3—H3A⋯O1ii 0.97 2.39 3.269 (3) 151
C4—H4C⋯O4iii 0.96 2.54 3.487 (3) 169

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

This work was supported by the Anhui Provincial Natural Science Foundation (1308085MB24) and the Educational Commission of Anhui Province of China (KJ2012A025).

supplementary crystallographic information

1. Comment

Benzothiazole, a small and simple heterocyclic molecule, has raised considerable interest. It can be used to synthesize some Schiff bases (Vicini et al., 2003), and other derivatives that are antimicrobial (Bondock et al., 2010) and bioactive (Paramashivappa et al., 2003). They have also been used in dye-sensitized solar cells (Sayama et al., 2002). Spurred by this, we synthesized 3-(2-methylbenzo[d]thiazol-3-ium-3-yl)propane-1-sulfonate (Fig. 1), which contains a sulfonic group, with the aim of increased solubility. The single-crystal structure contains one water molecule. Comparing with C7H5N3O2S1·H2O (Lynch, 2002), both of them are in a hydrogen-bonding network with water molecules. The water H atoms are connected with O atoms of sulfonic moieties and the molecules are interconnected, via hydrogen bonds (Table 1) [O4—H11···O3i, symmetry codes: (i) -x, -y + 1, -z + 1; C3—H3A···O1ii, symmetry codes: (ii) -x, y + 1/2, -z + 3/2; C4—H4C···O4iii, symmetry codes: (iii) -x, y - 1/2, -z + 3/2]. There is a R24(8) ring formed by hydrogen-bonded water to O3—S1 interactions. Two characteristic O4—H12···O3 and O4—H11···O3i distances are 2.994 (3) Å and 2.831 (2) Å, respectively (Fig.2). In the crystal, inversion related (1-x,1-y,2-z) molecules are π-stacked with an interplanar separation of 3.3847 (2) Å. O—H···O hydrogen bonds link inversion-related (-x,1-y,1-z) molecules with a pair of water molecules to form R24(8) rings. The closest ring S···S contact is 3.4051 (15) Å between inversion-related (1-x,-y,2-z) molecules (Fig.3). The bond length between N1 and C5 [1.3216 (2) Å] indicates some double bond character and is conjugated with neighbouring bonds. The two distances of S2—C6 and S2—C5 are nearly the same [1.7327 (19) Å and 1.7024 (18) Å, respectively]. In addition, the large size of the S atom compared with N results in a reduction of the C5—S2—C6 angle [91.069 (8)°] compared with the C5—N1—C11 angle [114.001 (14)°] in thiazole ring. This reveals that the S atom might be using unhybridized p-orbitals for bonding (Muir et al., 1987).

2. Experimental

The title complex, 3-(2-methylbenzo[d]thiazol-3-ium-3-yl)propane-1-sulfonate, was prepared by mixing 2-methylbenzo[d]thiazole (1.49 g, 0.010 mol) with 1,2-oxathiolane 2,2-dioxide (1.47 g, 0.012 mol) in toluene (20 ml). The mixture was heated to reflux for 4 h. After the reaction was complete, the solution was cooled to room temperature. The mixture was filtered and washed with ethanol 3 times to give a white solid. Colorless block-shaped crystals were grown by slow evaporation an acetonitrile/ethanol mixture. 1H NMR: (400 Hz, DMSO-d6), d(p.p.m.): 8.43 (t, 2H), 7.90 (t, 1H), 7.80 (t, 1H), 4.90 (t, 2H), 3.20 (s, 3H), 2.65 (t, 2H), 2.15 (q, 2H).

3. Refinement

The water H atoms were located in a difference map and refined isotropically with Uiso(H) = 1.5 Ueq(O). Other hydrogens were placed in geometrically idealized positions (C—H = 0.93–0.97 Å) and allowed to ride on their parent atoms with Uiso(H) = 1.2 Ueq(C) or 1.5Ueq(CMe).

Figures

Fig. 1.

Fig. 1.

: The molecular structure of the title compound showing 30% probability displacement ellipsoids.

Fig. 2.

Fig. 2.

: View of the R24(8) ring formed by O4—H12···O3 and O4—H11···O3i intermolecular interactions, showing O—H···O hydrogen-bonding interactions as dashed lines.

Fig. 3.

Fig. 3.

: Packing diagram of the title compound.

Crystal data

C11H13NO3S2·H2O F(000) = 608
Mr = 289.36 Dx = 1.552 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71069 Å
Hall symbol: -P 2ybc Cell parameters from 7517 reflections
a = 10.936 (5) Å θ = 2.8–27.1°
b = 8.708 (5) Å µ = 0.44 mm1
c = 13.794 (5) Å T = 296 K
β = 109.529 (5)° Block, white
V = 1238.0 (10) Å3 0.30 × 0.20 × 0.20 mm
Z = 4

Data collection

Bruker SMART CCD area-detector diffractometer 2182 independent reflections
Radiation source: fine-focus sealed tube 2105 reflections with I > 2sσ(I)
Graphite monochromator Rint = 0.016
φ and ω scans θmax = 25.0°, θmin = 2.0°
Absorption correction: multi-scan (SADABS; Bruker, 2001) h = −13→12
Tmin = 0.880, Tmax = 0.919 k = −10→10
8500 measured reflections l = −16→16

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.080 H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0449P)2 + 0.799P] where P = (Fo2 + 2Fc2)/3
2182 reflections (Δ/σ)max < 0.001
164 parameters Δρmax = 0.31 e Å3
0 restraints Δρmin = −0.42 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 −0.04082 (15) 0.49554 (19) 0.80688 (12) 0.0271 (3)
H1A −0.0210 0.6044 0.8110 0.033*
H1B −0.0771 0.4720 0.8604 0.033*
C2 0.08437 (15) 0.4060 (2) 0.82760 (12) 0.0294 (4)
H2A 0.1180 0.4207 0.7715 0.035*
H2B 0.0682 0.2972 0.8327 0.035*
C3 0.18249 (16) 0.46262 (19) 0.92775 (13) 0.0301 (4)
H3A 0.2076 0.5670 0.9186 0.036*
H3B 0.1426 0.4636 0.9809 0.036*
C4 0.23671 (18) 0.2245 (2) 1.09534 (14) 0.0388 (4)
H4A 0.2531 0.2983 1.1499 0.058*
H4B 0.2549 0.1232 1.1240 0.058*
H4C 0.1474 0.2306 1.0522 0.058*
C5 0.32123 (15) 0.25761 (19) 1.03338 (12) 0.0272 (3)
C6 0.49490 (15) 0.26655 (18) 0.95809 (12) 0.0264 (3)
C7 0.60073 (16) 0.2548 (2) 0.92365 (13) 0.0333 (4)
H7 0.6661 0.1832 0.9517 0.040*
C8 0.60501 (18) 0.3533 (2) 0.84639 (14) 0.0390 (4)
H8 0.6733 0.3465 0.8207 0.047*
C9 0.50797 (19) 0.4631 (2) 0.80639 (13) 0.0383 (4)
H9 0.5145 0.5296 0.7556 0.046*
C10 0.40270 (17) 0.4758 (2) 0.83992 (13) 0.0328 (4)
H10 0.3387 0.5494 0.8131 0.039*
C11 0.39668 (15) 0.37330 (18) 0.91581 (12) 0.0258 (3)
N1 0.29980 (13) 0.36398 (15) 0.96126 (10) 0.0257 (3)
O1 −0.18774 (14) 0.29348 (16) 0.68281 (11) 0.0490 (4)
O2 −0.26970 (12) 0.55228 (16) 0.68129 (11) 0.0447 (3)
O3 −0.10098 (14) 0.50116 (19) 0.60890 (10) 0.0487 (4)
O4 0.09084 (19) 0.6948 (3) 0.55198 (17) 0.0951 (8)
H11 0.0932 0.6459 0.5068 0.143*
H12 0.0523 0.6424 0.5819 0.143*
S1 −0.15982 (4) 0.45636 (5) 0.68522 (3) 0.02836 (14)
S2 0.46338 (4) 0.16183 (5) 1.05392 (3) 0.02926 (14)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0260 (8) 0.0278 (8) 0.0252 (8) 0.0026 (7) 0.0053 (6) −0.0020 (6)
C2 0.0262 (8) 0.0304 (8) 0.0289 (8) 0.0044 (7) 0.0058 (7) −0.0041 (7)
C3 0.0282 (8) 0.0283 (8) 0.0295 (8) 0.0087 (7) 0.0039 (7) −0.0034 (6)
C4 0.0365 (9) 0.0464 (11) 0.0353 (9) 0.0047 (8) 0.0144 (8) 0.0022 (8)
C5 0.0269 (8) 0.0271 (8) 0.0238 (7) 0.0020 (6) 0.0035 (6) −0.0043 (6)
C6 0.0265 (8) 0.0243 (8) 0.0254 (8) −0.0021 (6) 0.0049 (6) −0.0043 (6)
C7 0.0266 (8) 0.0352 (9) 0.0368 (9) −0.0014 (7) 0.0089 (7) −0.0075 (7)
C8 0.0353 (10) 0.0461 (11) 0.0382 (10) −0.0124 (8) 0.0156 (8) −0.0107 (8)
C9 0.0457 (11) 0.0394 (10) 0.0283 (9) −0.0146 (8) 0.0102 (8) −0.0020 (7)
C10 0.0351 (9) 0.0292 (9) 0.0269 (8) −0.0042 (7) 0.0010 (7) 0.0001 (7)
C11 0.0253 (8) 0.0245 (8) 0.0244 (7) −0.0025 (6) 0.0039 (6) −0.0052 (6)
N1 0.0247 (7) 0.0250 (7) 0.0243 (6) 0.0036 (5) 0.0038 (5) −0.0029 (5)
O1 0.0500 (8) 0.0333 (7) 0.0562 (9) −0.0105 (6) 0.0079 (7) −0.0086 (6)
O2 0.0295 (7) 0.0515 (8) 0.0460 (8) 0.0109 (6) 0.0032 (6) 0.0044 (6)
O3 0.0504 (8) 0.0678 (10) 0.0303 (7) −0.0090 (7) 0.0166 (6) 0.0000 (6)
O4 0.0798 (13) 0.1204 (18) 0.1083 (16) −0.0428 (13) 0.0622 (12) −0.0642 (14)
S1 0.0254 (2) 0.0311 (2) 0.0257 (2) −0.00197 (15) 0.00465 (17) −0.00040 (15)
S2 0.0295 (2) 0.0272 (2) 0.0296 (2) 0.00697 (16) 0.00785 (17) 0.00262 (16)

Geometric parameters (Å, º)

C1—C2 1.518 (2) C6—C7 1.394 (2)
C1—S1 1.7793 (16) C6—S2 1.7329 (17)
C1—H1A 0.9700 C7—C8 1.381 (3)
C1—H1B 0.9700 C7—H7 0.9300
C2—C3 1.521 (2) C8—C9 1.397 (3)
C2—H2A 0.9700 C8—H8 0.9300
C2—H2B 0.9700 C9—C10 1.381 (3)
C3—N1 1.484 (2) C9—H9 0.9300
C3—H3A 0.9700 C10—C11 1.394 (2)
C3—H3B 0.9700 C10—H10 0.9300
C4—C5 1.482 (2) C11—N1 1.402 (2)
C4—H4A 0.9600 O1—S1 1.4489 (16)
C4—H4B 0.9600 O2—S1 1.4495 (14)
C4—H4C 0.9600 O3—S1 1.4587 (14)
C5—N1 1.322 (2) O4—H11 0.7630
C5—S2 1.7024 (17) O4—H12 0.8203
C6—C11 1.393 (2)
C2—C1—S1 114.11 (11) C11—C6—S2 110.39 (12)
C2—C1—H1A 108.7 C7—C6—S2 128.39 (13)
S1—C1—H1A 108.7 C8—C7—C6 117.63 (17)
C2—C1—H1B 108.7 C8—C7—H7 121.2
S1—C1—H1B 108.7 C6—C7—H7 121.2
H1A—C1—H1B 107.6 C7—C8—C9 120.82 (17)
C1—C2—C3 108.81 (13) C7—C8—H8 119.6
C1—C2—H2A 109.9 C9—C8—H8 119.6
C3—C2—H2A 109.9 C10—C9—C8 122.04 (17)
C1—C2—H2B 109.9 C10—C9—H9 119.0
C3—C2—H2B 109.9 C8—C9—H9 119.0
H2A—C2—H2B 108.3 C9—C10—C11 117.02 (16)
N1—C3—C2 111.67 (13) C9—C10—H10 121.5
N1—C3—H3A 109.3 C11—C10—H10 121.5
C2—C3—H3A 109.3 C6—C11—C10 121.23 (16)
N1—C3—H3B 109.3 C6—C11—N1 111.50 (14)
C2—C3—H3B 109.3 C10—C11—N1 127.25 (15)
H3A—C3—H3B 107.9 C5—N1—C11 114.00 (13)
C5—C4—H4A 109.5 C5—N1—C3 123.89 (14)
C5—C4—H4B 109.5 C11—N1—C3 122.08 (13)
H4A—C4—H4B 109.5 H11—O4—H12 105.3
C5—C4—H4C 109.5 O1—S1—O2 113.43 (9)
H4A—C4—H4C 109.5 O1—S1—O3 112.69 (9)
H4B—C4—H4C 109.5 O2—S1—O3 112.28 (9)
N1—C5—C4 125.63 (15) O1—S1—C1 106.94 (8)
N1—C5—S2 113.01 (12) O2—S1—C1 105.11 (8)
C4—C5—S2 121.31 (13) O3—S1—C1 105.63 (9)
C11—C6—C7 121.22 (16) C5—S2—C6 91.07 (8)
S1—C1—C2—C3 173.73 (12) C4—C5—N1—C3 −3.1 (2)
C1—C2—C3—N1 171.06 (14) S2—C5—N1—C3 179.33 (11)
C11—C6—C7—C8 0.3 (2) C6—C11—N1—C5 −0.11 (19)
S2—C6—C7—C8 −179.16 (13) C10—C11—N1—C5 −178.36 (15)
C6—C7—C8—C9 1.6 (3) C6—C11—N1—C3 −178.26 (13)
C7—C8—C9—C10 −1.6 (3) C10—C11—N1—C3 3.5 (2)
C8—C9—C10—C11 −0.2 (2) C2—C3—N1—C5 −100.77 (18)
C7—C6—C11—C10 −2.2 (2) C2—C3—N1—C11 77.20 (19)
S2—C6—C11—C10 177.37 (12) C2—C1—S1—O1 59.13 (15)
C7—C6—C11—N1 179.47 (14) C2—C1—S1—O2 179.98 (13)
S2—C6—C11—N1 −1.01 (16) C2—C1—S1—O3 −61.12 (15)
C9—C10—C11—C6 2.1 (2) N1—C5—S2—C6 −1.51 (12)
C9—C10—C11—N1 −179.81 (15) C4—C5—S2—C6 −179.18 (14)
C4—C5—N1—C11 178.76 (15) C11—C6—S2—C5 1.41 (12)
S2—C5—N1—C11 1.21 (17) C7—C6—S2—C5 −179.11 (16)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O4—H11···O3i 0.76 2.07 2.831 (2) 176
O4—H12···O3 0.82 2.21 2.994 (3) 160
C3—H3A···O1ii 0.97 2.39 3.269 (3) 151
C4—H4C···O4iii 0.96 2.54 3.487 (3) 169

Symmetry codes: (i) −x, −y+1, −z+1; (ii) −x, y+1/2, −z+3/2; (iii) −x, y−1/2, −z+3/2.

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: PK2524).

References

  1. Bondock, S., Fadaly, W. & Metwally, M. A. (2010). Eur. J. Med. Chem. 45, 3692–3701. [DOI] [PubMed]
  2. Bruker (2001). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Bruker (2007). SMART and SAINT Bruker AXS Inc., Madison. Wisconsin. USA.
  4. Lynch, D. E. (2002). Acta Cryst. E58, o1139–o1141.
  5. Muir, J. A., Gomez, G. M., Muir, M. M., Cox, O. & Cadiz, M. E. (1987). Acta Cryst. C43, 1258–1261.
  6. Paramashivappa, R., Kumar, P. P., Rao, P. V. S. & Rao, A. S. (2003). Bioorg. Med. Chem. Lett. 13, 657–660. [DOI] [PubMed]
  7. Sayama, K., Tsukagoshi, S., Hara, K., Ohga, Y., Shinpou, A., Abe, Y., Suga, S. & Arakawa, H. (2002). J. Phys. Chem. B, 106, 1363–1371.
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Vicini, P., Geronikaki, A., Incerti, M., Busonera, B., Poni, G., Cabras, C. A. & Colla, P. L. (2003). Bioorg. Med. Chem. 11, 4785–4789. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, Global. DOI: 10.1107/S1600536814011660/pk2524sup1.cif

e-70-0o714-sup1.cif (17.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814011660/pk2524Isup2.hkl

e-70-0o714-Isup2.hkl (107.3KB, hkl)

Supporting information file. DOI: 10.1107/S1600536814011660/pk2524Isup3.cml

CCDC reference: 1004303

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES