Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2014 May 24;70(Pt 6):o709. doi: 10.1107/S1600536814010617

Methyl (E)-3-(2-formyl­phen­oxy)acrylate

S Karthikeyan a, K Sethusankar a,*, R Selvakumar b, M Bakthadoss b
PMCID: PMC4051041  PMID: 24940280

Abstract

In the title compound, C11H10O4, the methyl acrylate sub­stituent adopts an extended E conformation with all torsion angles close to 180°. The conformation of the keto group with respect to the olefinic double bond is typically S-trans. In the crystal, mol­ecules are linked via pairs of C—H⋯O hydrogen bonds, forming inversion dimers with an R 2 2(8) graph-set motif. The dimers are further linked via C—H⋯O hydrogen bonds, forming chains along [001], which enclose R 3 2(16) graph-set ring motifs. The keto group O atomaccepts two C—H⋯O interactions.

Related literature  

For applications of acrylate derivatives, see: Xiao et al. (2008); De et al. (2011); Sharma (2011). For related crystal structures, see: Karthikeyan et al. (2012). For E-conformation aspects, see: Dunitz & Schweizer (1982). For resonance effects of acrylate, see: Merlino (1971); Varghese et al. (1986). For graph-set motif notation, see: Bernstein et al. (1995).graphic file with name e-70-0o709-scheme1.jpg

Experimental  

Crystal data  

  • C11H10O4

  • M r = 206.19

  • Monoclinic, Inline graphic

  • a = 17.7458 (8) Å

  • b = 4.0629 (2) Å

  • c = 14.5745 (7) Å

  • β = 107.868 (3)°

  • V = 1000.13 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 293 K

  • 0.20 × 0.15 × 0.10 mm

Data collection  

  • Bruker SMART APEXII CCD diffractometer

  • 13052 measured reflections

  • 2015 independent reflections

  • 1523 reflections with I > 2σ(I)

  • R int = 0.027

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.045

  • wR(F 2) = 0.155

  • S = 1.06

  • 2015 reflections

  • 137 parameters

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.17 e Å−3

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536814010617/su2732sup1.cif

e-70-0o709-sup1.cif (15.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814010617/su2732Isup2.hkl

e-70-0o709-Isup2.hkl (99.1KB, hkl)

Supporting information file. DOI: 10.1107/S1600536814010617/su2732Isup3.cml

CCDC reference: 1001914

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H9⋯O2i 0.93 2.54 3.440 (2) 164
C8—H8⋯O4ii 0.93 2.61 3.529 (2) 171
C11—H11C⋯O2iii 0.96 2.63 3.578 (2) 168

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

SK and KS thank Dr D. Velmurugan, CAS in Crystallography and Biophysics, University of Madras, Maraimalai Campus, Chennai, India, for the X-ray intensity data collection.

supplementary crystallographic information

1. Comment

Cinnamic acid derivatives have received attention in medicinal research as traditional as well as recent synthetic antitumor agents (De et al., 2011). They also posses significant antibacterial activities against staphylococcus aureus (Xiao et al., 2008). Different substitutions on the basic moiety lead to various pharmacological activities, such as antioxidant, hepatoprotective, anxiolytic, insect repellent, antidiabetic, and anticholesterolemic (Sharma, 2011).

In the title molecule, Fig. 1, the methyl acrylate group is essentially planar, with a maximum deviation of 0.0264 (19) Å for atom C9. Its mean plane forms a dihedral angle of 31.74 (6)° with the benzene ring (C2—C7). The molecular dimensions are in excellent agreement with the those reported for a closely related compound (Karthikeyan et al., 2012).

The configuration of the keto group with respect to the olefinic double bond is typically S-trans, with the O2═C10—C9═C8 torsion angle = 178.78 (19)°. The methyl acrylate group adopts an extended E conformation with torsion angles C8═C9—C10═O2 = 178.78 (19)°, C8═ C9—C10—O1 = -1.2 (3)°, C9—C10—O1—C11 = -178.82 (16)° and O2═ C10—O1—C11 = 1.2 (3)°. The extended conformation is supported by the fact that the bond angles involving carbonyl O atoms are invariably enlarged (Dunitz & Schweizer, 1982).

The significant difference in the bond lengths C10—O1 = 1.342 (2) Å and C11—O1 = 1.438 (2) Å is attributed to a partial contribution from the O-—C═O+—C resonance structure of the O2═C10—O1—C11 group (Merlino, 1971). This feature, commonly observed for the carboxylic ester group of substituents in various compounds gives average values of 1.340 Å and 1.447 Å, respectively (Varghese et al., 1986).

The crystal packing (Fig. 2 and Table 1) is stabilized by C—H···O intermolecular interactions. The molecules are linked into inversion dimers via C9—H9···O2 interactions resulting in an R22(8) graph-set motif (Bernstein et al., 1995). The dimers are further consolidated by R23(16) graph-set ring motifs via C8—H8···O4 and C11—H11C···O2 interactions resulting in chains of molecules running parallel to the c axis; the keto group O atom (O2) is involved in bifurcated hydrogen bonding.

2. Experimental

Salicylaldehyde (1 mmol) was dissolved in an aqueous solution of K2CO3 (1 mmol) and methyl propiolate (1 mmol) was added. The reaction mixture was stirred vigorously at room temperature. A turbid solution was formed by consumption of salicylaldehyde (monitored by TLC) in 5 min, the reaction mixture then became clear. The title compound was precipitated as a solid in water. The product was isolated by filtration without further purification [Yield 75%]. Block-like colourless crystals were obtained by slow evaporation of a solution in ethylacetate.

3. Refinement

The H atoms could all be located in difference electron-density maps. In the final cycles of refinement they were treated as riding atoms: C—H = 0.93 and 0.96 Å for CH and CH3 H atoms, respectively, with Uiso(H) = 1.5 Ueq(C– methyl) and = 1.2Ueq(C) for other H atoms.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title molecule, with atom labelling. Displacement ellipsoids are drawn at the 30% probability level.

Fig. 2.

Fig. 2.

The crystal packing of the title compound viewed along the b axis, showing the formation of the R22(8) graph-set motif. The dimers are further consolidated by R23(16) graph-set ring motifs. Hydrogen bonds are shown as dashed lines (see Table 1 for details; H atoms not involved in these interactions have been omitted for clarity).)

Crystal data

C11H10O4 F(000) = 432
Mr = 206.19 Dx = 1.369 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -p 2ybc Cell parameters from 2015 reflections
a = 17.7458 (8) Å θ = 1.2–26.3°
b = 4.0629 (2) Å µ = 0.11 mm1
c = 14.5745 (7) Å T = 293 K
β = 107.868 (3)° Block, colorless
V = 1000.13 (8) Å3 0.20 × 0.15 × 0.10 mm
Z = 4

Data collection

Bruker SMART APEXII CCD diffractometer 1523 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.027
Graphite monochromator θmax = 26.3°, θmin = 1.2°
ω scans h = −22→21
13052 measured reflections k = −5→5
2015 independent reflections l = −18→18

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.155 H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.1001P)2 + 0.0957P] where P = (Fo2 + 2Fc2)/3
2015 reflections (Δ/σ)max < 0.001
137 parameters Δρmax = 0.23 e Å3
0 restraints Δρmin = −0.17 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.19462 (11) 0.6483 (5) 1.09554 (11) 0.0570 (5)
H1 0.2426 0.7588 1.1079 0.068*
C2 0.16126 (8) 0.4928 (4) 1.00055 (10) 0.0437 (4)
C3 0.08802 (9) 0.3378 (4) 0.97865 (12) 0.0518 (5)
H3 0.0621 0.3250 1.0252 0.062*
C4 0.05341 (10) 0.2034 (5) 0.88901 (13) 0.0574 (5)
H4 0.0040 0.1033 0.8746 0.069*
C5 0.09250 (10) 0.2182 (5) 0.82056 (12) 0.0545 (5)
H5 0.0692 0.1265 0.7600 0.065*
C6 0.16554 (9) 0.3671 (4) 0.84083 (11) 0.0484 (4)
H6 0.1918 0.3734 0.7946 0.058*
C7 0.19943 (8) 0.5068 (4) 0.93033 (10) 0.0425 (4)
C8 0.30241 (9) 0.7868 (4) 0.88985 (11) 0.0463 (4)
H8 0.2706 0.8014 0.8260 0.056*
C9 0.37579 (9) 0.8937 (5) 0.91462 (12) 0.0542 (5)
H9 0.4075 0.8649 0.9780 0.065*
C10 0.40974 (9) 1.0549 (5) 0.84737 (12) 0.0516 (4)
C11 0.39059 (12) 1.2299 (6) 0.68764 (14) 0.0655 (5)
H11A 0.4103 1.4452 0.7097 0.098*
H11B 0.3494 1.2484 0.6272 0.098*
H11C 0.4329 1.0976 0.6794 0.098*
O1 0.35946 (7) 1.0781 (3) 0.75754 (8) 0.0598 (4)
O2 0.47632 (7) 1.1596 (4) 0.86851 (10) 0.0723 (5)
O3 0.27287 (6) 0.6544 (3) 0.95771 (7) 0.0541 (4)
O4 0.16367 (9) 0.6413 (5) 1.15808 (9) 0.0821 (5)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0536 (10) 0.0738 (13) 0.0448 (8) 0.0075 (8) 0.0171 (7) 0.0039 (8)
C2 0.0403 (8) 0.0498 (10) 0.0419 (8) 0.0095 (6) 0.0142 (6) 0.0084 (7)
C3 0.0432 (9) 0.0604 (11) 0.0562 (9) 0.0071 (7) 0.0220 (7) 0.0119 (8)
C4 0.0442 (9) 0.0590 (11) 0.0665 (11) −0.0046 (8) 0.0134 (8) 0.0077 (8)
C5 0.0531 (10) 0.0542 (10) 0.0504 (9) 0.0009 (8) 0.0074 (7) 0.0007 (8)
C6 0.0485 (9) 0.0547 (10) 0.0443 (8) 0.0048 (7) 0.0175 (7) 0.0049 (7)
C7 0.0357 (7) 0.0485 (10) 0.0429 (7) 0.0054 (6) 0.0115 (6) 0.0082 (6)
C8 0.0411 (8) 0.0565 (10) 0.0435 (8) 0.0025 (7) 0.0162 (6) 0.0013 (7)
C9 0.0425 (8) 0.0710 (12) 0.0490 (9) −0.0019 (8) 0.0137 (7) −0.0027 (8)
C10 0.0383 (8) 0.0609 (11) 0.0580 (9) −0.0018 (7) 0.0184 (7) −0.0063 (8)
C11 0.0639 (11) 0.0721 (13) 0.0669 (11) −0.0039 (10) 0.0297 (9) 0.0095 (10)
O1 0.0487 (7) 0.0767 (9) 0.0553 (7) −0.0123 (6) 0.0181 (5) 0.0033 (6)
O2 0.0431 (7) 0.1021 (13) 0.0731 (8) −0.0180 (7) 0.0197 (6) −0.0050 (7)
O3 0.0403 (6) 0.0800 (9) 0.0427 (6) −0.0071 (5) 0.0139 (5) 0.0042 (5)
O4 0.0787 (10) 0.1250 (15) 0.0509 (7) −0.0008 (9) 0.0322 (7) −0.0084 (7)

Geometric parameters (Å, º)

C1—O4 1.200 (2) C7—O3 1.3778 (18)
C1—C2 1.471 (2) C8—C9 1.314 (2)
C1—H1 0.9300 C8—O3 1.3640 (18)
C2—C3 1.390 (2) C8—H8 0.9300
C2—C7 1.3910 (19) C9—C10 1.454 (2)
C3—C4 1.375 (3) C9—H9 0.9300
C3—H3 0.9300 C10—O2 1.2035 (19)
C4—C5 1.380 (2) C10—O1 1.342 (2)
C4—H4 0.9300 C11—O1 1.438 (2)
C5—C6 1.378 (2) C11—H11A 0.9600
C5—H5 0.9300 C11—H11B 0.9600
C6—C7 1.380 (2) C11—H11C 0.9600
C6—H6 0.9300
O4—C1—C2 123.98 (17) O3—C7—C2 115.83 (13)
O4—C1—H1 118.0 C6—C7—C2 120.61 (14)
C2—C1—H1 118.0 C9—C8—O3 120.00 (14)
C3—C2—C7 118.80 (14) C9—C8—H8 120.0
C3—C2—C1 119.24 (14) O3—C8—H8 120.0
C7—C2—C1 121.91 (15) C8—C9—C10 122.98 (15)
C4—C3—C2 120.77 (15) C8—C9—H9 118.5
C4—C3—H3 119.6 C10—C9—H9 118.5
C2—C3—H3 119.6 O2—C10—O1 122.10 (15)
C3—C4—C5 119.52 (16) O2—C10—C9 124.32 (16)
C3—C4—H4 120.2 O1—C10—C9 113.58 (14)
C5—C4—H4 120.2 O1—C11—H11A 109.5
C6—C5—C4 120.83 (15) O1—C11—H11B 109.5
C6—C5—H5 119.6 H11A—C11—H11B 109.5
C4—C5—H5 119.6 O1—C11—H11C 109.5
C5—C6—C7 119.46 (15) H11A—C11—H11C 109.5
C5—C6—H6 120.3 H11B—C11—H11C 109.5
C7—C6—H6 120.3 C10—O1—C11 115.85 (13)
O3—C7—C6 123.51 (13) C8—O3—C7 120.10 (12)
O4—C1—C2—C3 2.7 (3) C3—C2—C7—C6 −0.5 (2)
O4—C1—C2—C7 −179.85 (17) C1—C2—C7—C6 −178.03 (15)
C7—C2—C3—C4 −0.6 (2) O3—C8—C9—C10 −176.28 (16)
C1—C2—C3—C4 176.94 (17) C8—C9—C10—O2 178.78 (19)
C2—C3—C4—C5 1.0 (3) C8—C9—C10—O1 −1.2 (3)
C3—C4—C5—C6 −0.3 (3) O2—C10—O1—C11 1.2 (3)
C4—C5—C6—C7 −0.9 (3) C9—C10—O1—C11 −178.82 (16)
C5—C6—C7—O3 178.55 (15) C9—C8—O3—C7 −172.25 (16)
C5—C6—C7—C2 1.3 (2) C6—C7—O3—C8 26.2 (2)
C3—C2—C7—O3 −178.02 (14) C2—C7—O3—C8 −156.37 (14)
C1—C2—C7—O3 4.5 (2)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C9—H9···O2i 0.93 2.54 3.440 (2) 164
C8—H8···O4ii 0.93 2.61 3.529 (2) 171
C11—H11C···O2iii 0.96 2.63 3.578 (2) 168

Symmetry codes: (i) −x+1, −y+2, −z+2; (ii) x, −y+3/2, z−1/2; (iii) −x+1, y−1/2, −z+3/2.

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: SU2732).

References

  1. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  2. Bruker (2008). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  3. De, P., Baltas, M. & Bedos-Belvan, F. (2011). Curr. Med. Chem. 18, 1672–1703. [DOI] [PubMed]
  4. Dunitz, J. D. & Schweizer, B. W. (1982). Helv. Chim. Acta, 65, 1547–1554.
  5. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  6. Karthikeyan, S., Sethusankar, K., Devaraj, A. & Bakthadoss, M. (2012). Acta Cryst. E68, o1273. [DOI] [PMC free article] [PubMed]
  7. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
  8. Merlino, S. (1971). Acta Cryst. B27, 2491–2492.
  9. Sharma, P. (2011). J. Chem. Pharm. Res. 3, 403–423.
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  12. Varghese, B., Srinivasan, S., Padmanabhan, P. V. & Ramadas, S. R. (1986). Acta Cryst. C42, 1544–1546.
  13. Xiao, Z.-P., Fang, R.-Q., Li, H.-Q., Xue, J.-Y., Zheng, Y. & Zhu, H.-L. (2008). Eur. J. Med. Chem. 43, 1828–1836. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536814010617/su2732sup1.cif

e-70-0o709-sup1.cif (15.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814010617/su2732Isup2.hkl

e-70-0o709-Isup2.hkl (99.1KB, hkl)

Supporting information file. DOI: 10.1107/S1600536814010617/su2732Isup3.cml

CCDC reference: 1001914

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES