Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2014 May 17;70(Pt 6):m215. doi: 10.1107/S1600536814010678

Chlorido­{2-[(di­methyl­amino)­meth­yl]benzene­seleno­lato-κ2 N,Se}(tri­phenyl­phosphane-κP)palladium(II)

Esther M Takaluoma a, Raija Oilunkaniemi a,*, Risto S Laitinen a
PMCID: PMC4051070  PMID: 24940202

Abstract

The asymmetric unit of the title compound, [PdCl(C9H12NSe)(C18H15P)], contains two independent mol­ecules. In both cases, the Pd2+ cations are coordinated by the Se and N atoms of the chelating bidentate 2-[(di­methyl­amino)­meth­yl]benzene­seleno­late ligand. The chloride ligand lies trans to selenium and the tri­phenyl­phosphane ligand is trans to nitro­gen. The Pd—Se bond lengths in the two independent coordination environments of Pd are 2.3801 (4) and 2.3852 (4) Å, the Pd—P bond lengths are 2.2562 (8) and 2.2471 (8) Å, the Pd—N bond lengths are 2.172 (2) and 2.158 (2) Å, and the Pd—Cl bond lengths are 2.3816 (8) and 2.3801 (8) Å. The square-planar coordination around one Pd2+ cation is less distorted than that around the other.

Related literature  

For the related structure of a palladium complex with an iodide ligand, see: Chakraborty et al. (2011). For examples of mononuclear platinum complexes, see: Hannu et al. (2000); Hannu-Kuure et al. (2003a ). For mononuclear palladium complexes, see: Risto et al. (2007). For di- and polynuclear palladium complexes, see: Hannu-Kuure et al. (2003b , 2004); Wagner et al. (2005).graphic file with name e-70-0m215-scheme1.jpg

Experimental  

Crystal data  

  • [PdCl(C9H12NSe)(C18H15P)]

  • M r = 617.28

  • Triclinic, Inline graphic

  • a = 13.3528 (3) Å

  • b = 15.0683 (4) Å

  • c = 15.0721 (3) Å

  • α = 78.857 (1)°

  • β = 66.385 (1)°

  • γ = 63.820 (1)°

  • V = 2493.06 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.39 mm−1

  • T = 120 K

  • 0.10 × 0.10 × 0.08 mm

Data collection  

  • Bruker–Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SADABS in SHELXTL; Sheldrick, 2008) T min = 0.796, T max = 0.832

  • 36674 measured reflections

  • 9759 independent reflections

  • 7312 reflections with I > 2σ(I)

  • R int = 0.044

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.031

  • wR(F 2) = 0.058

  • S = 0.99

  • 9759 reflections

  • 581 parameters

  • H-atom parameters constrained

  • Δρmax = 0.65 e Å−3

  • Δρmin = −0.40 e Å−3

Data collection: COLLECT (Bruker, 2008); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: WinGX (Farrugia, 2012).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536814010678/nk2221sup1.cif

e-70-0m215-sup1.cif (38.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814010678/nk2221Isup2.hkl

e-70-0m215-Isup2.hkl (467.6KB, hkl)

CCDC reference: 1002116

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

Financial support from the Jenni and Antti Wihuri Foundation (EMT) and the Academy of Finland is gratefully acknowledged.

supplementary crystallographic information

1. Comment

The ligand exchange reactions of [MCl2(PPh3)2] (M = Pd, Pt) by organoselenolates afford mononuclear metal complexes in the case of platinum, (see for instance, Hannu et al., 2000, Hannu-Kuure et al., 2003a), but in case of palladium dinuclear or complexes of even higher nuclearity are generally obtained, as exemplified by Hannu-Kuure et al. (2003b, 2004) and Wagner et al. (2005). Mononuclear palladium complexes can be obtained by using chelating phosphines such as 1,2-bis(diphenylphosphino)ethane (Risto et al., 2007). Organoselenolates containing additional donor atoms can also form stable monomeric palladium complexes. We are interested in the use of the monomeric palladium chalcogenolato complexes as building blocks for the systematic construction of polynuclear metal complexes.

[PdX(C9H12NSe)(C18H15P)] (X = Br, I) has recently been prepared by the oxidative addition of [2-(N,N-dimethylamino)methyl]phenylselenenylbromide or -iodide to [(Ph3P)4Pd] by Chakraborty et al. (2011). They also reported the crystal structure of [PdI(C9H12NSe)(C18H15P)]. In this work, the title compound, [PdCl(C9H12NSe)(C18H15P)], was formed by the ligand exchange reaction of [PdCl2(PPh3)2] and lithium [2-(N,N-dimethylamino)methyl]benzeneselenolate. The 77Se NMR spectrum showed, in addition to the chemical shift of the title compound at 258 p.p.m., also a resonance at 422 p.p.m.. It is possible that the selenolate has been oxidized during the reaction and formed a diselenide, the chemical shift of which has also been reported by Chakraborty et al. (2011).

The asymmetric unit of the title compound contains two discrete complexes. Both Pd atoms show a distorted square-planar coordination. The bidentate [2-(N,N-dimethylamino)methyl]benzeneselenolato chelating ligand is bonded to the metal center via selenium and nitrogen donor atoms. The chlorido ligand lies trans to selenium and the triphenylphosphine ligand trans to nitrogen. While the P—Pd—Cl and Cl—Pd—N angles in both independent complexes in the asymmetric unit are almost identical (P1—Pd1—Cl1 86.56 (3)°, P2—Pd2—Cl2 86.75 (3)° and Cl1—Pd1—N1 90.80 (7)°, Cl2—Pd2—N2 90.79 (7)°), the differences are more prominent in the case of the P—Pd—Se and Se—Pd—N angles (P1—Pd1—Se1 90.14 (2)°, P2—Pd2—Se2 88.69 (2)° and Se1—Pd1—N1 92.62 (6)°, Se2—Pd2—N2 94.53 (7)°). The sum of the bond angles around Pd1 is 360.12° and around Pd2 360.76°. However, the computation of the least-squares planes of the square-planar coordination environments involving Pd1 and Pd2 indicates that in both cases the atoms deviate from planarity. The distortion is more prominent for Pd2 than for Pd1.

The bond lengths and angles around the Pd atoms are shown in Table 1. The Pd1—Se1 bond length is 2.3801 (4) Å and Pd2—Se2 2.3852 (4) Å. They are consistent with the Pd—Se bond (2.4218 (3) Å, 295 (2) K) in the iodido analogue (Chakraborty et al., 2011). The Pd—N bond lengths are 2.172 (2) Å and 2.158 (2) Å, the Pd—Cl are lengths 2.3816 (8) Å and 2.3801 (8) Å, and the Pd—P lengths are 2.2562 (8) Å and 2.2471 (8) Å. The Pd—N and Pd—P lengths in the iodido complex are 2.1958 (18) Å and 2.2429 (5) Å, respectively (Chakraborty et al., 2011).

2. Experimental

Freshly prepared diethyl ether solution of lithium[2-(N,N-dimethylamino)methyl]benzeneselenolate (2 ml; 0.089 mmol/ml) was added to [PdCl2(PPh3)2] (0.051 g, 0.073 mmol) in 4 ml of THF in an 10 mm NMR tube under an argon atmosphere. The solution immediately turned red and the 31P and 77Se NMR spectra were recorded. Slow evaporation of the solution gave a small crop of red crystals of [PdCl(C9H12NSe)(C18H15P)]. NMR data of the title compound: 77Se NMR 258 p.p.m., 31P NMR 32.2 p.p.m..

3. Refinement

H atoms were positioned geometrically and refined using a riding model with C—H = 0.95 Å and with Uiso(H) = 1.2 Ueq(C) and 0.98 Å and Uiso(H) = 1.2 Ueq(C) for the aryl and methyl H atoms, respectively.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound indicating the numbering of the atoms. The thermal ellipsoids have been drawn at 50% probability. The hydrogen atoms have been omitted for clarity.

Crystal data

[PdCl(C9H12NSe)(C18H15P)] Z = 4
Mr = 617.28 F(000) = 1232
Triclinic, P1 Dx = 1.645 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 13.3528 (3) Å Cell parameters from 7312 reflections
b = 15.0683 (4) Å θ = 1.5–26.0°
c = 15.0721 (3) Å µ = 2.39 mm1
α = 78.857 (1)° T = 120 K
β = 66.385 (1)° Block, red
γ = 63.820 (1)° 0.1 × 0.1 × 0.08 mm
V = 2493.06 (10) Å3

Data collection

Bruker–Nonius KappaCCD diffractometer 9759 independent reflections
Radiation source: fine-focus sealed tube 7312 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.044
φ scans, and ω scans with κ offsets θmax = 26.0°, θmin = 1.5°
Absorption correction: multi-scan (SADABS in SHELXTL; Sheldrick, 2008) h = −16→15
Tmin = 0.796, Tmax = 0.832 k = −18→18
36674 measured reflections l = −18→18

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.058 H-atom parameters constrained
S = 0.99 w = 1/[σ2(Fo2) + (0.0251P)2] where P = (Fo2 + 2Fc2)/3
9759 reflections (Δ/σ)max = 0.001
581 parameters Δρmax = 0.65 e Å3
0 restraints Δρmin = −0.40 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C11 0.1449 (3) 0.2371 (2) 0.5732 (2) 0.0164 (7)
C12 0.2527 (3) 0.2295 (2) 0.4999 (2) 0.0164 (7)
C13 0.3578 (3) 0.1528 (2) 0.5048 (2) 0.0220 (8)
H13 0.4318 0.1468 0.4548 0.026*
C14 0.3564 (3) 0.0852 (3) 0.5809 (3) 0.0280 (9)
H14 0.4292 0.0346 0.5846 0.034*
C15 0.2487 (3) 0.0916 (3) 0.6518 (2) 0.0270 (8)
H15 0.2471 0.0441 0.7034 0.032*
C16 0.1434 (3) 0.1667 (3) 0.6478 (2) 0.0235 (8)
H16 0.0694 0.1703 0.6963 0.028*
C17 0.2546 (3) 0.3041 (2) 0.4188 (2) 0.0179 (7)
H17A 0.3387 0.2939 0.3802 0.022*
H17B 0.2127 0.3710 0.4464 0.022*
C18 0.2621 (3) 0.2010 (2) 0.3097 (2) 0.0229 (8)
H18A 0.2318 0.1997 0.2608 0.034*
H18B 0.2498 0.1514 0.3605 0.034*
H18C 0.3477 0.1863 0.2792 0.034*
C19 0.2155 (3) 0.3743 (3) 0.2741 (2) 0.0270 (9)
H19A 0.3012 0.3583 0.2413 0.040*
H19B 0.1753 0.4402 0.3019 0.040*
H19C 0.1820 0.3735 0.2273 0.040*
C21 0.9319 (3) 0.2784 (2) −0.0904 (2) 0.0158 (7)
C22 0.9714 (3) 0.2729 (2) −0.0157 (2) 0.0166 (7)
C23 1.0138 (3) 0.3420 (3) −0.0142 (2) 0.0216 (8)
H23 1.0387 0.3398 0.0374 0.026*
C24 1.0201 (3) 0.4135 (3) −0.0864 (2) 0.0225 (8)
H24 1.0509 0.4591 −0.0853 0.027*
C25 0.9815 (3) 0.4183 (3) −0.1603 (2) 0.0235 (8)
H25 0.9867 0.4669 −0.2105 0.028*
C26 0.9355 (3) 0.3528 (2) −0.1612 (2) 0.0203 (8)
H26 0.9058 0.3585 −0.2107 0.024*
C27 0.9727 (3) 0.1921 (3) 0.0590 (2) 0.0204 (8)
H27A 1.0165 0.1934 0.0981 0.024*
H27B 1.0176 0.1280 0.0258 0.024*
C28 0.8720 (3) 0.1153 (3) 0.1977 (2) 0.0330 (10)
H28A 0.9178 0.1220 0.2313 0.050*
H28B 0.9170 0.0521 0.1643 0.050*
H28C 0.7950 0.1173 0.2450 0.050*
C29 0.7846 (3) 0.2930 (3) 0.1772 (2) 0.0301 (9)
H29A 0.7102 0.2933 0.2278 0.045*
H29B 0.7661 0.3475 0.1309 0.045*
H29C 0.8334 0.3011 0.2067 0.045*
C111 −0.2885 (3) 0.4327 (2) 0.5935 (2) 0.0146 (7)
C112 −0.3750 (3) 0.5292 (2) 0.6058 (2) 0.0192 (8)
H112 −0.3854 0.5696 0.5507 0.023*
C113 −0.4464 (3) 0.5669 (3) 0.6979 (2) 0.0233 (8)
H113 −0.5050 0.6330 0.7053 0.028*
C114 −0.4328 (3) 0.5097 (3) 0.7779 (2) 0.0238 (8)
H114 −0.4816 0.5361 0.8408 0.029*
C115 −0.3473 (3) 0.4126 (3) 0.7673 (2) 0.0219 (8)
H115 −0.3381 0.3726 0.8230 0.026*
C116 −0.2757 (3) 0.3745 (2) 0.6758 (2) 0.0191 (7)
H116 −0.2174 0.3082 0.6688 0.023*
C121 −0.2355 (3) 0.2802 (2) 0.4760 (2) 0.0147 (7)
C122 −0.1492 (3) 0.1870 (2) 0.4420 (2) 0.0174 (7)
H122 −0.0671 0.1758 0.4160 0.021*
C123 −0.1819 (3) 0.1108 (2) 0.4459 (2) 0.0222 (8)
H123 −0.1225 0.0472 0.4231 0.027*
C124 −0.3016 (3) 0.1273 (3) 0.4829 (2) 0.0260 (8)
H124 −0.3243 0.0753 0.4846 0.031*
C125 −0.3882 (3) 0.2190 (3) 0.5175 (2) 0.0260 (8)
H125 −0.4702 0.2301 0.5431 0.031*
C126 −0.3553 (3) 0.2948 (3) 0.5148 (2) 0.0200 (8)
H126 −0.4150 0.3576 0.5396 0.024*
C131 −0.2533 (3) 0.4777 (2) 0.3930 (2) 0.0143 (7)
C132 −0.2229 (3) 0.5584 (2) 0.3751 (2) 0.0178 (7)
H132 −0.1716 0.5601 0.4032 0.021*
C133 −0.2671 (3) 0.6358 (3) 0.3165 (2) 0.0222 (8)
H133 −0.2480 0.6917 0.3057 0.027*
C134 −0.3391 (3) 0.6323 (3) 0.2736 (2) 0.0228 (8)
H134 −0.3688 0.6853 0.2326 0.027*
C135 −0.3678 (3) 0.5526 (3) 0.2899 (2) 0.0241 (8)
H135 −0.4171 0.5504 0.2598 0.029*
C136 −0.3258 (3) 0.4747 (2) 0.3500 (2) 0.0186 (7)
H136 −0.3467 0.4198 0.3614 0.022*
C211 0.7140 (3) 0.0859 (2) −0.1210 (2) 0.0146 (7)
C212 0.7818 (3) −0.0143 (2) −0.1386 (2) 0.0195 (8)
H212 0.7871 −0.0598 −0.0857 0.023*
C213 0.8420 (3) −0.0487 (3) −0.2323 (2) 0.0213 (8)
H213 0.8891 −0.1174 −0.2435 0.026*
C214 0.8334 (3) 0.0167 (3) −0.3097 (2) 0.0203 (8)
H214 0.8748 −0.0067 −0.3741 0.024*
C215 0.7646 (3) 0.1163 (3) −0.2930 (2) 0.0229 (8)
H215 0.7576 0.1612 −0.3461 0.028*
C216 0.7056 (3) 0.1514 (2) −0.1993 (2) 0.0198 (8)
H216 0.6593 0.2202 −0.1886 0.024*
C221 0.5052 (3) 0.2371 (2) 0.0011 (2) 0.0165 (7)
C222 0.4255 (3) 0.2250 (3) −0.0284 (2) 0.0236 (8)
H222 0.4429 0.1620 −0.0481 0.028*
C223 0.3209 (3) 0.3047 (3) −0.0290 (2) 0.0295 (9)
H223 0.2650 0.2956 −0.0464 0.035*
C224 0.2978 (3) 0.3969 (3) −0.0045 (2) 0.0337 (10)
H224 0.2267 0.4516 −0.0062 0.040*
C225 0.3771 (3) 0.4106 (3) 0.0227 (2) 0.0313 (9)
H225 0.3611 0.4745 0.0392 0.038*
C226 0.4803 (3) 0.3304 (2) 0.0255 (2) 0.0227 (8)
H226 0.5348 0.3396 0.0445 0.027*
C231 0.6093 (3) 0.0362 (2) 0.0808 (2) 0.0156 (7)
C232 0.7025 (3) −0.0437 (2) 0.1021 (2) 0.0212 (8)
H232 0.7822 −0.0488 0.0694 0.025*
C233 0.6809 (3) −0.1148 (3) 0.1694 (2) 0.0249 (8)
H233 0.7454 −0.1700 0.1814 0.030*
C234 0.5645 (3) −0.1058 (3) 0.2197 (2) 0.0258 (8)
H234 0.5488 −0.1535 0.2682 0.031*
C235 0.4721 (3) −0.0279 (3) 0.1993 (2) 0.0246 (8)
H235 0.3924 −0.0222 0.2337 0.029*
C236 0.4932 (3) 0.0425 (2) 0.1294 (2) 0.0195 (7)
H236 0.4287 0.0950 0.1145 0.023*
N1 0.1976 (2) 0.30004 (19) 0.35255 (17) 0.0147 (6)
N2 0.8515 (2) 0.1977 (2) 0.12601 (18) 0.0190 (6)
P1 −0.19223 (7) 0.38005 (6) 0.47282 (6) 0.01370 (18)
P2 0.64356 (7) 0.13454 (6) 0.00150 (6) 0.01466 (18)
Cl1 0.00473 (7) 0.31983 (6) 0.26248 (5) 0.01847 (18)
Cl2 0.59361 (7) 0.18539 (6) 0.21434 (5) 0.02087 (19)
Se1 −0.00116 (3) 0.34635 (3) 0.57421 (2) 0.02091 (9)
Se2 0.87847 (3) 0.18355 (3) −0.10148 (2) 0.02016 (8)
Pd1 0.00710 (2) 0.335783 (18) 0.415702 (17) 0.01296 (6)
Pd2 0.74755 (2) 0.175273 (18) 0.060536 (17) 0.01408 (6)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C11 0.0159 (17) 0.0198 (19) 0.0172 (17) −0.0060 (15) −0.0080 (15) −0.0068 (15)
C12 0.0178 (17) 0.0214 (19) 0.0167 (17) −0.0086 (15) −0.0094 (15) −0.0062 (15)
C13 0.0183 (18) 0.025 (2) 0.0248 (19) −0.0054 (16) −0.0098 (16) −0.0074 (16)
C14 0.028 (2) 0.024 (2) 0.032 (2) −0.0002 (17) −0.0180 (18) −0.0084 (17)
C15 0.041 (2) 0.024 (2) 0.0214 (19) −0.0131 (18) −0.0179 (18) 0.0029 (16)
C16 0.0261 (19) 0.031 (2) 0.0172 (18) −0.0149 (17) −0.0081 (16) 0.0001 (16)
C17 0.0152 (17) 0.024 (2) 0.0187 (18) −0.0103 (15) −0.0035 (15) −0.0076 (15)
C18 0.0153 (17) 0.029 (2) 0.0243 (19) −0.0041 (16) −0.0086 (15) −0.0100 (16)
C19 0.029 (2) 0.039 (2) 0.0212 (19) −0.0238 (18) −0.0107 (17) 0.0099 (17)
C21 0.0094 (15) 0.0208 (19) 0.0161 (17) −0.0059 (14) −0.0022 (14) −0.0038 (14)
C22 0.0100 (16) 0.0215 (19) 0.0143 (17) −0.0027 (14) −0.0033 (14) −0.0033 (14)
C23 0.0132 (17) 0.037 (2) 0.0186 (18) −0.0087 (16) −0.0074 (15) −0.0080 (16)
C24 0.0144 (17) 0.027 (2) 0.027 (2) −0.0096 (16) −0.0025 (16) −0.0098 (17)
C25 0.0199 (18) 0.025 (2) 0.0208 (19) −0.0079 (16) −0.0051 (16) 0.0003 (16)
C26 0.0179 (17) 0.029 (2) 0.0146 (18) −0.0093 (16) −0.0062 (15) −0.0006 (15)
C27 0.0108 (16) 0.032 (2) 0.0183 (18) −0.0068 (15) −0.0058 (14) −0.0038 (16)
C28 0.0223 (19) 0.060 (3) 0.024 (2) −0.0245 (19) −0.0142 (17) 0.0173 (19)
C29 0.0189 (18) 0.048 (3) 0.029 (2) −0.0178 (18) −0.0016 (17) −0.0186 (19)
C111 0.0108 (16) 0.0181 (18) 0.0164 (17) −0.0092 (14) −0.0012 (14) −0.0036 (14)
C112 0.0151 (17) 0.022 (2) 0.0256 (19) −0.0114 (15) −0.0066 (15) −0.0017 (16)
C113 0.0178 (18) 0.0162 (19) 0.034 (2) −0.0076 (15) −0.0020 (16) −0.0110 (16)
C114 0.0224 (19) 0.030 (2) 0.0216 (19) −0.0173 (17) 0.0020 (16) −0.0126 (17)
C115 0.0247 (19) 0.033 (2) 0.0164 (18) −0.0208 (17) −0.0053 (16) 0.0008 (16)
C116 0.0172 (17) 0.0212 (19) 0.0223 (19) −0.0103 (15) −0.0070 (15) −0.0018 (15)
C121 0.0197 (17) 0.0166 (18) 0.0119 (16) −0.0098 (15) −0.0096 (14) 0.0059 (14)
C122 0.0180 (17) 0.0203 (19) 0.0133 (17) −0.0078 (15) −0.0051 (14) 0.0002 (14)
C123 0.032 (2) 0.0174 (19) 0.0165 (18) −0.0094 (16) −0.0065 (16) −0.0049 (15)
C124 0.040 (2) 0.027 (2) 0.024 (2) −0.0241 (19) −0.0130 (18) 0.0017 (17)
C125 0.0245 (19) 0.034 (2) 0.027 (2) −0.0195 (18) −0.0089 (17) 0.0005 (17)
C126 0.0179 (18) 0.022 (2) 0.0199 (18) −0.0068 (15) −0.0077 (15) −0.0010 (15)
C131 0.0114 (16) 0.0131 (18) 0.0130 (17) −0.0006 (14) −0.0032 (14) −0.0021 (14)
C132 0.0174 (17) 0.022 (2) 0.0151 (17) −0.0086 (15) −0.0070 (15) 0.0010 (15)
C133 0.0261 (19) 0.022 (2) 0.0163 (18) −0.0127 (16) −0.0025 (16) 0.0008 (15)
C134 0.0246 (19) 0.023 (2) 0.0169 (18) −0.0066 (16) −0.0093 (16) 0.0031 (15)
C135 0.0249 (19) 0.030 (2) 0.0226 (19) −0.0097 (17) −0.0154 (16) 0.0010 (16)
C136 0.0152 (17) 0.0168 (19) 0.0234 (19) −0.0069 (14) −0.0051 (15) −0.0025 (15)
C211 0.0117 (16) 0.0195 (19) 0.0138 (17) −0.0085 (14) −0.0026 (14) −0.0016 (14)
C212 0.0176 (17) 0.022 (2) 0.0196 (18) −0.0043 (15) −0.0106 (15) −0.0026 (15)
C213 0.0172 (17) 0.021 (2) 0.027 (2) −0.0041 (15) −0.0100 (16) −0.0070 (16)
C214 0.0158 (17) 0.031 (2) 0.0145 (18) −0.0111 (16) −0.0020 (15) −0.0059 (16)
C215 0.0257 (19) 0.028 (2) 0.0177 (18) −0.0148 (17) −0.0067 (16) 0.0006 (16)
C216 0.0216 (18) 0.0163 (19) 0.0206 (19) −0.0078 (15) −0.0054 (15) −0.0026 (15)
C221 0.0169 (17) 0.0217 (19) 0.0079 (16) −0.0065 (15) −0.0038 (14) 0.0014 (14)
C222 0.0185 (18) 0.032 (2) 0.0182 (18) −0.0051 (16) −0.0064 (15) −0.0085 (16)
C223 0.0161 (18) 0.048 (3) 0.021 (2) −0.0057 (18) −0.0103 (16) −0.0032 (18)
C224 0.025 (2) 0.038 (3) 0.019 (2) 0.0052 (18) −0.0094 (17) −0.0032 (18)
C225 0.037 (2) 0.025 (2) 0.020 (2) −0.0004 (18) −0.0109 (18) −0.0052 (17)
C226 0.0244 (19) 0.025 (2) 0.0177 (18) −0.0084 (16) −0.0084 (16) −0.0006 (16)
C231 0.0204 (18) 0.0168 (18) 0.0111 (16) −0.0090 (15) −0.0046 (14) −0.0023 (14)
C232 0.0197 (18) 0.028 (2) 0.0166 (18) −0.0102 (16) −0.0061 (15) −0.0002 (16)
C233 0.031 (2) 0.023 (2) 0.0191 (19) −0.0068 (17) −0.0103 (17) −0.0027 (16)
C234 0.039 (2) 0.021 (2) 0.0196 (19) −0.0161 (18) −0.0081 (17) 0.0008 (16)
C235 0.026 (2) 0.032 (2) 0.0208 (19) −0.0188 (18) −0.0019 (16) −0.0065 (17)
C236 0.0209 (18) 0.0200 (19) 0.0200 (18) −0.0085 (15) −0.0072 (15) −0.0052 (15)
N1 0.0144 (14) 0.0196 (15) 0.0125 (14) −0.0097 (12) −0.0042 (11) 0.0005 (12)
N2 0.0173 (14) 0.0288 (17) 0.0142 (14) −0.0112 (13) −0.0069 (12) 0.0001 (13)
P1 0.0127 (4) 0.0143 (5) 0.0145 (4) −0.0053 (4) −0.0048 (4) −0.0016 (4)
P2 0.0136 (4) 0.0166 (5) 0.0137 (4) −0.0053 (4) −0.0051 (4) −0.0016 (4)
Cl1 0.0187 (4) 0.0233 (5) 0.0154 (4) −0.0082 (4) −0.0076 (3) −0.0022 (3)
Cl2 0.0169 (4) 0.0301 (5) 0.0160 (4) −0.0119 (4) −0.0004 (3) −0.0076 (4)
Se1 0.01454 (17) 0.0306 (2) 0.01433 (18) −0.00349 (15) −0.00578 (14) −0.00631 (15)
Se2 0.02192 (18) 0.0287 (2) 0.01329 (17) −0.01509 (16) −0.00248 (15) −0.00404 (15)
Pd1 0.01155 (12) 0.01608 (14) 0.01212 (13) −0.00552 (10) −0.00456 (10) −0.00157 (10)
Pd2 0.01134 (12) 0.01862 (15) 0.01210 (13) −0.00543 (11) −0.00354 (10) −0.00296 (10)

Geometric parameters (Å, º)

C11—C16 1.390 (4) C123—C124 1.384 (5)
C11—C12 1.391 (4) C123—H123 0.9500
C11—Se1 1.915 (3) C124—C125 1.380 (5)
C12—C13 1.388 (4) C124—H124 0.9500
C12—C17 1.493 (4) C125—C126 1.382 (4)
C13—C14 1.380 (5) C125—H125 0.9500
C13—H13 0.9500 C126—H126 0.9500
C14—C15 1.381 (5) C131—C136 1.384 (4)
C14—H14 0.9500 C131—C132 1.391 (4)
C15—C16 1.377 (5) C131—P1 1.822 (3)
C15—H15 0.9500 C132—C133 1.379 (4)
C16—H16 0.9500 C132—H132 0.9500
C17—N1 1.501 (4) C133—C134 1.380 (4)
C17—H17A 0.9900 C133—H133 0.9500
C17—H17B 0.9900 C134—C135 1.366 (5)
C18—N1 1.476 (4) C134—H134 0.9500
C18—H18A 0.9800 C135—C136 1.388 (4)
C18—H18B 0.9800 C135—H135 0.9500
C18—H18C 0.9800 C136—H136 0.9500
C19—N1 1.485 (4) C211—C212 1.387 (4)
C19—H19A 0.9800 C211—C216 1.392 (4)
C19—H19B 0.9800 C211—P2 1.831 (3)
C19—H19C 0.9800 C212—C213 1.385 (4)
C21—C26 1.395 (4) C212—H212 0.9500
C21—C22 1.398 (4) C213—C214 1.381 (4)
C21—Se2 1.914 (3) C213—H213 0.9500
C22—C23 1.394 (4) C214—C215 1.379 (5)
C22—C27 1.489 (4) C214—H214 0.9500
C23—C24 1.380 (5) C215—C216 1.387 (4)
C23—H23 0.9500 C215—H215 0.9500
C24—C25 1.381 (4) C216—H216 0.9500
C24—H24 0.9500 C221—C226 1.383 (4)
C25—C26 1.378 (4) C221—C222 1.396 (4)
C25—H25 0.9500 C221—P2 1.813 (3)
C26—H26 0.9500 C222—C223 1.385 (4)
C27—N2 1.500 (4) C222—H222 0.9500
C27—H27A 0.9900 C223—C224 1.376 (5)
C27—H27B 0.9900 C223—H223 0.9500
C28—N2 1.485 (4) C224—C225 1.380 (5)
C28—H28A 0.9800 C224—H224 0.9500
C28—H28B 0.9800 C225—C226 1.385 (5)
C28—H28C 0.9800 C225—H225 0.9500
C29—N2 1.482 (4) C226—H226 0.9500
C29—H29A 0.9800 C231—C236 1.392 (4)
C29—H29B 0.9800 C231—C232 1.397 (4)
C29—H29C 0.9800 C231—P2 1.819 (3)
C111—C112 1.390 (4) C232—C233 1.370 (4)
C111—C116 1.398 (4) C232—H232 0.9500
C111—P1 1.837 (3) C233—C234 1.385 (5)
C112—C113 1.387 (4) C233—H233 0.9500
C112—H112 0.9500 C234—C235 1.372 (5)
C113—C114 1.367 (5) C234—H234 0.9500
C113—H113 0.9500 C235—C236 1.381 (4)
C114—C115 1.392 (5) C235—H235 0.9500
C114—H114 0.9500 C236—H236 0.9500
C115—C116 1.383 (4) N1—Pd1 2.172 (2)
C115—H115 0.9500 N2—Pd2 2.158 (2)
C116—H116 0.9500 P1—Pd1 2.2562 (8)
C121—C126 1.392 (4) P2—Pd2 2.2471 (8)
C121—C122 1.392 (4) Cl1—Pd1 2.3816 (8)
C121—P1 1.822 (3) Cl2—Pd2 2.3801 (8)
C122—C123 1.383 (4) Se1—Pd1 2.3801 (4)
C122—H122 0.9500 Se2—Pd2 2.3852 (4)
C16—C11—C12 119.9 (3) C136—C131—P1 123.6 (2)
C16—C11—Se1 119.7 (2) C132—C131—P1 116.8 (2)
C12—C11—Se1 120.4 (2) C133—C132—C131 120.1 (3)
C13—C12—C11 118.9 (3) C133—C132—H132 120.0
C13—C12—C17 121.0 (3) C131—C132—H132 120.0
C11—C12—C17 120.1 (3) C132—C133—C134 120.0 (3)
C14—C13—C12 121.0 (3) C132—C133—H133 120.0
C14—C13—H13 119.5 C134—C133—H133 120.0
C12—C13—H13 119.5 C135—C134—C133 120.1 (3)
C13—C14—C15 119.6 (3) C135—C134—H134 119.9
C13—C14—H14 120.2 C133—C134—H134 119.9
C15—C14—H14 120.2 C134—C135—C136 120.7 (3)
C16—C15—C14 120.2 (3) C134—C135—H135 119.7
C16—C15—H15 119.9 C136—C135—H135 119.7
C14—C15—H15 119.9 C131—C136—C135 119.5 (3)
C15—C16—C11 120.3 (3) C131—C136—H136 120.3
C15—C16—H16 119.8 C135—C136—H136 120.3
C11—C16—H16 119.8 C212—C211—C216 118.8 (3)
C12—C17—N1 114.1 (2) C212—C211—P2 121.7 (2)
C12—C17—H17A 108.7 C216—C211—P2 119.3 (2)
N1—C17—H17A 108.7 C213—C212—C211 120.8 (3)
C12—C17—H17B 108.7 C213—C212—H212 119.6
N1—C17—H17B 108.7 C211—C212—H212 119.6
H17A—C17—H17B 107.6 C214—C213—C212 120.0 (3)
N1—C18—H18A 109.5 C214—C213—H213 120.0
N1—C18—H18B 109.5 C212—C213—H213 120.0
H18A—C18—H18B 109.5 C215—C214—C213 119.7 (3)
N1—C18—H18C 109.5 C215—C214—H214 120.2
H18A—C18—H18C 109.5 C213—C214—H214 120.2
H18B—C18—H18C 109.5 C214—C215—C216 120.5 (3)
N1—C19—H19A 109.5 C214—C215—H215 119.7
N1—C19—H19B 109.5 C216—C215—H215 119.7
H19A—C19—H19B 109.5 C215—C216—C211 120.1 (3)
N1—C19—H19C 109.5 C215—C216—H216 119.9
H19A—C19—H19C 109.5 C211—C216—H216 119.9
H19B—C19—H19C 109.5 C226—C221—C222 118.8 (3)
C26—C21—C22 119.2 (3) C226—C221—P2 119.9 (2)
C26—C21—Se2 118.7 (2) C222—C221—P2 121.2 (3)
C22—C21—Se2 122.1 (2) C223—C222—C221 120.1 (3)
C23—C22—C21 119.1 (3) C223—C222—H222 119.9
C23—C22—C27 120.4 (3) C221—C222—H222 119.9
C21—C22—C27 120.5 (3) C224—C223—C222 120.0 (3)
C24—C23—C22 121.0 (3) C224—C223—H223 120.0
C24—C23—H23 119.5 C222—C223—H223 120.0
C22—C23—H23 119.5 C223—C224—C225 120.5 (3)
C23—C24—C25 119.7 (3) C223—C224—H224 119.7
C23—C24—H24 120.2 C225—C224—H224 119.7
C25—C24—H24 120.2 C224—C225—C226 119.4 (4)
C26—C25—C24 120.1 (3) C224—C225—H225 120.3
C26—C25—H25 119.9 C226—C225—H225 120.3
C24—C25—H25 119.9 C221—C226—C225 121.0 (3)
C25—C26—C21 120.8 (3) C221—C226—H226 119.5
C25—C26—H26 119.6 C225—C226—H226 119.5
C21—C26—H26 119.6 C236—C231—C232 118.6 (3)
C22—C27—N2 114.7 (3) C236—C231—P2 122.9 (2)
C22—C27—H27A 108.6 C232—C231—P2 118.1 (2)
N2—C27—H27A 108.6 C233—C232—C231 121.0 (3)
C22—C27—H27B 108.6 C233—C232—H232 119.5
N2—C27—H27B 108.6 C231—C232—H232 119.5
H27A—C27—H27B 107.6 C232—C233—C234 119.7 (3)
N2—C28—H28A 109.5 C232—C233—H233 120.1
N2—C28—H28B 109.5 C234—C233—H233 120.1
H28A—C28—H28B 109.5 C235—C234—C233 119.8 (3)
N2—C28—H28C 109.5 C235—C234—H234 120.1
H28A—C28—H28C 109.5 C233—C234—H234 120.1
H28B—C28—H28C 109.5 C234—C235—C236 120.9 (3)
N2—C29—H29A 109.5 C234—C235—H235 119.6
N2—C29—H29B 109.5 C236—C235—H235 119.6
H29A—C29—H29B 109.5 C235—C236—C231 119.8 (3)
N2—C29—H29C 109.5 C235—C236—H236 120.1
H29A—C29—H29C 109.5 C231—C236—H236 120.1
H29B—C29—H29C 109.5 C18—N1—C19 108.6 (3)
C112—C111—C116 118.6 (3) C18—N1—C17 108.6 (2)
C112—C111—P1 121.9 (2) C19—N1—C17 105.9 (2)
C116—C111—P1 119.5 (2) C18—N1—Pd1 109.80 (18)
C113—C112—C111 120.6 (3) C19—N1—Pd1 107.16 (19)
C113—C112—H112 119.7 C17—N1—Pd1 116.46 (18)
C111—C112—H112 119.7 C29—N2—C28 109.0 (3)
C114—C113—C112 120.4 (3) C29—N2—C27 108.9 (2)
C114—C113—H113 119.8 C28—N2—C27 106.3 (2)
C112—C113—H113 119.8 C29—N2—Pd2 111.12 (19)
C113—C114—C115 120.0 (3) C28—N2—Pd2 105.39 (19)
C113—C114—H114 120.0 C27—N2—Pd2 115.78 (18)
C115—C114—H114 120.0 C121—P1—C131 107.71 (14)
C116—C115—C114 120.0 (3) C121—P1—C111 101.72 (14)
C116—C115—H115 120.0 C131—P1—C111 102.65 (14)
C114—C115—H115 120.0 C121—P1—Pd1 114.11 (10)
C115—C116—C111 120.5 (3) C131—P1—Pd1 107.54 (10)
C115—C116—H116 119.8 C111—P1—Pd1 121.91 (10)
C111—C116—H116 119.8 C221—P2—C231 109.16 (14)
C126—C121—C122 118.8 (3) C221—P2—C211 104.05 (14)
C126—C121—P1 120.6 (2) C231—P2—C211 105.09 (14)
C122—C121—P1 120.6 (2) C221—P2—Pd2 112.71 (11)
C123—C122—C121 120.6 (3) C231—P2—Pd2 105.96 (10)
C123—C122—H122 119.7 C211—P2—Pd2 119.38 (10)
C121—C122—H122 119.7 C11—Se1—Pd1 100.25 (9)
C122—C123—C124 119.8 (3) C21—Se2—Pd2 101.44 (9)
C122—C123—H123 120.1 N1—Pd1—P1 176.14 (7)
C124—C123—H123 120.1 N1—Pd1—Se1 92.62 (6)
C125—C124—C123 120.3 (3) P1—Pd1—Se1 90.14 (2)
C125—C124—H124 119.9 N1—Pd1—Cl1 90.80 (7)
C123—C124—H124 119.9 P1—Pd1—Cl1 86.56 (3)
C124—C125—C126 119.9 (3) Se1—Pd1—Cl1 175.71 (2)
C124—C125—H125 120.0 N2—Pd2—P2 173.26 (8)
C126—C125—H125 120.0 N2—Pd2—Cl2 90.79 (7)
C125—C126—C121 120.7 (3) P2—Pd2—Cl2 86.75 (3)
C125—C126—H126 119.7 N2—Pd2—Se2 94.53 (7)
C121—C126—H126 119.7 P2—Pd2—Se2 88.69 (2)
C136—C131—C132 119.6 (3) Cl2—Pd2—Se2 171.36 (2)
C16—C11—C12—C13 −2.1 (4) C122—C121—P1—C131 117.2 (2)
Se1—C11—C12—C13 176.0 (2) C126—C121—P1—C111 43.0 (3)
C16—C11—C12—C17 179.0 (3) C122—C121—P1—C111 −135.3 (2)
Se1—C11—C12—C17 −2.9 (4) C126—C121—P1—Pd1 176.2 (2)
C11—C12—C13—C14 −0.4 (5) C122—C121—P1—Pd1 −2.1 (3)
C17—C12—C13—C14 178.4 (3) C136—C131—P1—C121 3.9 (3)
C12—C13—C14—C15 2.4 (5) C132—C131—P1—C121 −175.5 (2)
C13—C14—C15—C16 −1.8 (5) C136—C131—P1—C111 −103.0 (3)
C14—C15—C16—C11 −0.8 (5) C132—C131—P1—C111 77.6 (3)
C12—C11—C16—C15 2.7 (5) C136—C131—P1—Pd1 127.3 (2)
Se1—C11—C16—C15 −175.4 (2) C132—C131—P1—Pd1 −52.1 (3)
C13—C12—C17—N1 113.2 (3) C112—C111—P1—C121 −116.8 (3)
C11—C12—C17—N1 −68.0 (4) C116—C111—P1—C121 62.8 (3)
C26—C21—C22—C23 −0.2 (5) C112—C111—P1—C131 −5.4 (3)
Se2—C21—C22—C23 177.3 (2) C116—C111—P1—C131 174.2 (2)
C26—C21—C22—C27 −177.8 (3) C112—C111—P1—Pd1 114.9 (2)
Se2—C21—C22—C27 −0.2 (4) C116—C111—P1—Pd1 −65.6 (3)
C21—C22—C23—C24 −1.7 (5) C226—C221—P2—C231 124.1 (3)
C27—C22—C23—C24 175.9 (3) C222—C221—P2—C231 −59.3 (3)
C22—C23—C24—C25 1.5 (5) C226—C221—P2—C211 −124.2 (3)
C23—C24—C25—C26 0.8 (5) C222—C221—P2—C211 52.5 (3)
C24—C25—C26—C21 −2.8 (5) C226—C221—P2—Pd2 6.6 (3)
C22—C21—C26—C25 2.5 (5) C222—C221—P2—Pd2 −176.7 (2)
Se2—C21—C26—C25 −175.2 (2) C236—C231—P2—C221 1.5 (3)
C23—C22—C27—N2 114.0 (3) C232—C231—P2—C221 −171.0 (2)
C21—C22—C27—N2 −68.4 (4) C236—C231—P2—C211 −109.6 (3)
C116—C111—C112—C113 0.5 (4) C232—C231—P2—C211 77.9 (3)
P1—C111—C112—C113 −179.9 (2) C236—C231—P2—Pd2 123.1 (2)
C111—C112—C113—C114 −0.1 (5) C232—C231—P2—Pd2 −49.4 (3)
C112—C113—C114—C115 −0.3 (5) C212—C211—P2—C221 −145.9 (3)
C113—C114—C115—C116 0.4 (5) C216—C211—P2—C221 38.1 (3)
C114—C115—C116—C111 0.0 (5) C212—C211—P2—C231 −31.2 (3)
C112—C111—C116—C115 −0.4 (4) C216—C211—P2—C231 152.8 (2)
P1—C111—C116—C115 −180.0 (2) C212—C211—P2—Pd2 87.4 (3)
C126—C121—C122—C123 0.6 (4) C216—C211—P2—Pd2 −88.6 (2)
P1—C121—C122—C123 179.0 (2) C16—C11—Se1—Pd1 −128.3 (2)
C121—C122—C123—C124 0.6 (5) C12—C11—Se1—Pd1 53.6 (2)
C122—C123—C124—C125 −1.1 (5) C26—C21—Se2—Pd2 −135.3 (2)
C123—C124—C125—C126 0.2 (5) C22—C21—Se2—Pd2 47.1 (3)
C124—C125—C126—C121 1.1 (5) C18—N1—Pd1—P1 −106.3 (10)
C122—C121—C126—C125 −1.5 (5) C19—N1—Pd1—P1 11.5 (12)
P1—C121—C126—C125 −179.8 (2) C17—N1—Pd1—P1 129.8 (10)
C136—C131—C132—C133 1.5 (5) C18—N1—Pd1—Se1 117.90 (19)
P1—C131—C132—C133 −179.1 (2) C19—N1—Pd1—Se1 −124.29 (19)
C131—C132—C133—C134 −1.7 (5) C17—N1—Pd1—Se1 −6.0 (2)
C132—C133—C134—C135 0.7 (5) C18—N1—Pd1—Cl1 −59.52 (19)
C133—C134—C135—C136 0.4 (5) C19—N1—Pd1—Cl1 58.29 (19)
C132—C131—C136—C135 −0.4 (5) C17—N1—Pd1—Cl1 176.5 (2)
P1—C131—C136—C135 −179.8 (2) C121—P1—Pd1—N1 115.4 (11)
C134—C135—C136—C131 −0.5 (5) C131—P1—Pd1—N1 −4.0 (11)
C216—C211—C212—C213 1.1 (5) C111—P1—Pd1—N1 −121.9 (11)
P2—C211—C212—C213 −174.9 (2) C121—P1—Pd1—Se1 −108.76 (10)
C211—C212—C213—C214 −0.9 (5) C131—P1—Pd1—Se1 131.84 (11)
C212—C213—C214—C215 −0.1 (5) C111—P1—Pd1—Se1 13.97 (12)
C213—C214—C215—C216 1.1 (5) C121—P1—Pd1—Cl1 68.50 (11)
C214—C215—C216—C211 −0.9 (5) C131—P1—Pd1—Cl1 −50.90 (11)
C212—C211—C216—C215 −0.2 (5) C111—P1—Pd1—Cl1 −168.77 (13)
P2—C211—C216—C215 175.9 (2) C11—Se1—Pd1—N1 −40.01 (12)
C226—C221—C222—C223 −2.7 (5) C11—Se1—Pd1—P1 142.68 (10)
P2—C221—C222—C223 −179.4 (3) C11—Se1—Pd1—Cl1 103.0 (3)
C221—C222—C223—C224 2.7 (5) C29—N2—Pd2—P2 −127.4 (6)
C222—C223—C224—C225 −1.2 (5) C28—N2—Pd2—P2 −9.4 (8)
C223—C224—C225—C226 −0.3 (5) C27—N2—Pd2—P2 107.8 (6)
C222—C221—C226—C225 1.1 (5) C29—N2—Pd2—Cl2 −58.9 (2)
P2—C221—C226—C225 177.9 (3) C28—N2—Pd2—Cl2 59.1 (2)
C224—C225—C226—C221 0.4 (5) C27—N2—Pd2—Cl2 176.3 (2)
C236—C231—C232—C233 0.0 (5) C29—N2—Pd2—Se2 114.3 (2)
P2—C231—C232—C233 172.8 (2) C28—N2—Pd2—Se2 −127.74 (19)
C231—C232—C233—C234 −2.3 (5) C27—N2—Pd2—Se2 −10.6 (2)
C232—C233—C234—C235 2.5 (5) C221—P2—Pd2—N2 138.4 (6)
C233—C234—C235—C236 −0.4 (5) C231—P2—Pd2—N2 19.1 (6)
C234—C235—C236—C231 −1.9 (5) C211—P2—Pd2—N2 −99.1 (6)
C232—C231—C236—C235 2.1 (4) C221—P2—Pd2—Cl2 69.70 (11)
P2—C231—C236—C235 −170.4 (2) C231—P2—Pd2—Cl2 −49.62 (11)
C12—C17—N1—C18 −59.8 (3) C211—P2—Pd2—Cl2 −167.78 (12)
C12—C17—N1—C19 −176.3 (3) C221—P2—Pd2—Se2 −102.97 (11)
C12—C17—N1—Pd1 64.7 (3) C231—P2—Pd2—Se2 137.71 (11)
C22—C27—N2—C29 −59.3 (3) C211—P2—Pd2—Se2 19.56 (12)
C22—C27—N2—C28 −176.6 (3) C21—Se2—Pd2—N2 −34.07 (12)
C22—C27—N2—Pd2 66.7 (3) C21—Se2—Pd2—P2 151.86 (10)
C126—C121—P1—C131 −64.5 (3) C21—Se2—Pd2—Cl2 93.78 (19)

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: NK2221).

References

  1. Brandenburg, K. (2006). DIAMOND Crystal Impact GmbH, Bonn, Germany.
  2. Bruker (2008). COLLECT Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Chakraborty, T., Srivastava, K., Singh, H. B. & Butcher, R. J. (2011). J. Organomet. Chem. 696, 2782–2788.
  4. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  5. Hannu, M. S., Oilunkaniemi, R., Laitinen, R. S. & Ahlgren, M. (2000). Inorg. Chem. Commun. 3, 397–399.
  6. Hannu-Kuure, M. S., Komulainen, J., Oilunkaniemi, R., Laitinen, R. S., Suontamo, R. & Ahlgren, M. (2003a). J. Organomet. Chem. 666, 111–120.
  7. Hannu-Kuure, M. S., Oilunkaniemi, R., Laitinen, R. S. & Ahlgren, M. (2004). Acta Cryst. E60, m214–m216.
  8. Hannu-Kuure, M. S., Paldan, K., Oilunkaniemi, R., Laitinen, R. S. & Ahlgren, M. (2003b). J. Organomet. Chem. 687, 538–544.
  9. Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  10. Risto, M., Jahr, E. M., Hannu-Kuure, M. S., Oilunkaniemi, R. & Laitinen, R. S. (2007). J. Organomet. Chem. 692, 2193–2204.
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  12. Wagner, A., Hannu-Kuure, M. S., Oilunkaniemi, R. & Laitinen, R. S. (2005). Acta Cryst. E61, m2198–m2200.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536814010678/nk2221sup1.cif

e-70-0m215-sup1.cif (38.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814010678/nk2221Isup2.hkl

e-70-0m215-Isup2.hkl (467.6KB, hkl)

CCDC reference: 1002116

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES