Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2014 May 21;70(Pt 6):m224. doi: 10.1107/S1600536814011076

Bis(μ2-di­phenyl­phosphinamide-κ2 O:O)bis­[bis(di­phenyl­phosphinamide-κO)lithium] dichloride aceto­nitrile disolvate

Ai-Hong Li a, Jun-Ping Han b, Jing Li a,*
PMCID: PMC4051072  PMID: 24940208

Abstract

The asymmetric unit of the title compound, [Li2(C12H12NOP)6]Cl2·2CH3CN, contains one-half of the centrosymmetric dication, one chloride anion and one aceto­nitrile solvent mol­ecule. Each Li atom is coordinated by four O atoms [Li—O 1.891 (3) and 2.025 (3) Å] from the four di­phenyl­phosphinamide ligands in a distorted tetra­hedral geometry. In the crystal, weak N—H⋯Cl hydrogen bonds link the anions and dications into columns extending along [100].

Related literature  

For reviews of related phospho­rus–nitro­gen transition-metal compounds, see: Roesky & Lucke (1989); Wong et al. (1997). For the crystal structures of related compounds, see: Oliva et al. (1981); Pisareva et al. (2004).graphic file with name e-70-0m224-scheme1.jpg

Experimental  

Crystal data  

  • [Li2(C12H12NOP)6]Cl2·2C2H3N

  • M r = 1470.06

  • Triclinic, Inline graphic

  • a = 11.5625 (7) Å

  • b = 12.5552 (8) Å

  • c = 13.7686 (9) Å

  • α = 82.559 (1)°

  • β = 76.515 (1)°

  • γ = 89.897 (1)°

  • V = 1926.5 (2) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.26 mm−1

  • T = 296 K

  • 0.30 × 0.25 × 0.20 mm

Data collection  

  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1997) T min = 0.925, T max = 0.949

  • 13486 measured reflections

  • 6790 independent reflections

  • 5174 reflections with I > 2σ(I)

  • R int = 0.024

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.035

  • wR(F 2) = 0.093

  • S = 1.01

  • 6790 reflections

  • 452 parameters

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.29 e Å−3

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL/PC (Sheldrick, 2008); software used to prepare material for publication: SHELXTL/PC.

Supplementary Material

Crystal structure: contains datablock(s) I, New_Global_Publ_Block. DOI: 10.1107/S1600536814011076/cv5450sup1.cif

e-70-0m224-sup1.cif (31KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814011076/cv5450Isup2.hkl

e-70-0m224-Isup2.hkl (332.3KB, hkl)

CCDC reference: 1002945

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1C⋯Cl1i 0.84 2.61 3.4351 (17) 169
N1—H1D⋯Cl1ii 0.83 2.70 3.4534 (17) 152
N2—H2C⋯Cl1iii 0.83 2.50 3.2789 (18) 158
N2—H2D⋯Cl1iv 0.84 2.55 3.3776 (18) 169
N3—H3C⋯Cl1iv 0.88 2.58 3.3967 (19) 154

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Acknowledgments

This work was carried out under the sponsorship of the National Natural Science Foundation of China (No. 20872084).

supplementary crystallographic information

1. Comment

The π-electron-rich phosphorus-nitrogen compounds had been known as a type of potential precursors for inorganic polymers with unusual properties, and led to considerable interest in their syntheses and coordination chemistry toward transition metals (Roesky & Lucke, 1989; Wong et al., 1997). The title lithium compound is a by-product in the preparation of this type compounds. Treatment of 1,2-dicyanobenzene with the equivalent LiN(SiMe3)2 and then the equivalent diphenylphosphinic chloride did not give the π-electron-rich phosphorus-nitrogen compound. The unexpectd title compound was obtained after csystallization in acetonitrile. The crystal structure was ascertained by elemental analysis.

The crystal structure of the compound showed that it has triclinic symmetry. Every lithium ion is coordinated via four oxygen of the ligands to give a tetrahedral geometry. The average bond length of Li—O is 1.945 Å. This value is comparable to the analogous lithium compound (Pisareva et al., 2004). The square-plane ring is formed by the two lithium ion and bridged O atoms in which the bond angle of O1—Li1—O1A is 91.28 (17)°. The average bond length of phosphors-nitrogen in the title compound is 1.623 Å. It is very similar to the bond length of phosphors-nitrogen in the crystal structure of diphenylphosphinamide determined in 1981 (Oliva et al., 1981).

2. Experimental

All reactions were carried out under nitrogen atmosphere in flamed Schlenk-type glassware on a dualmanifold Schlenk line. n-Butyllithium (1.8 cm3, 5 mmol) and NH(SiMe3)2 (1.06 cm3, 5 mmol) were dissolveded in THF (20 cm3) at 0°C. The resultant yellow solution was warmed to room temperature and stirred for an additional 2 h. A solution of 1,2-Dicyanobenzene (0.64 g, 5 mmol) in THF (10 cm3) was slowly added to the reaction mixture which was stirred at 0°C for two hours before warming up to room temperature. Then diphenylphosphinic chloride (0.95 cm3,5 mmol) was added to the mixture at -78°C for an hour before warming up to room temperature and allowed to react overnight. Solvent was then removed in vacuum. The residue was extracted with dichloromethane and the solution was filtered. The solvent of the filtrate was removed in vacuum and was dissolveded in CH3CN at room temperature. Finally a coulourless product was obtained. Yield: 0.43 g, 0.83 mmol, 35%. Elemental analysis cacld (%) for C72H72N6O6P6Li2Cl2·0.75CH3CN·0.25H2O: C 65.28, H 5.57, N 6.99; found: C 65.12, H 5.50, N 7.05.

3. Refinement

H atoms of phenyl were placed in their idealized positions and allowed to ride on the respective parent atoms with C—H 0.93 Å, and with Uiso(H) = 1.2Ueq. H atoms of acetonitrile were placed in their idealized positions and allowed to ride on the respective parent atoms with C—H 0.96 Å, and with Uiso(H) = 1.5Ueq. H atoms of amino were found from difference Fourier map and N—H bond restraint of 0.84 Å was applied, and with Uiso(H) = 1.2Ueq.

Figures

Fig. 1.

Fig. 1.

A view of the molecular structure of the title compound, with displacement ellipsoids drawn at the 30% probability level. H atoms and the labels of C atoms were omitted for clarity [symmetry code: (A) 2 - x,-y,-z].

Crystal data

[Li2(C12H12NOP)6]Cl2·2C2H3N Z = 1
Mr = 1470.06 F(000) = 768
Triclinic, P1 Dx = 1.267 Mg m3
a = 11.5625 (7) Å Mo Kα radiation, λ = 0.71073 Å
b = 12.5552 (8) Å Cell parameters from 5610 reflections
c = 13.7686 (9) Å θ = 2.4–26.3°
α = 82.559 (1)° µ = 0.26 mm1
β = 76.515 (1)° T = 296 K
γ = 89.897 (1)° Block, colourless
V = 1926.5 (2) Å3 0.30 × 0.25 × 0.20 mm

Data collection

Bruker SMART CCD diffractometer 6790 independent reflections
Radiation source: fine-focus sealed tube 5174 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.024
ω scan θmax = 25.0°, θmin = 1.5°
Absorption correction: multi-scan (SADABS; Sheldrick, 1997) h = −13→13
Tmin = 0.925, Tmax = 0.949 k = −14→14
13486 measured reflections l = −16→16

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.093 H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0401P)2 + 0.5389P] where P = (Fo2 + 2Fc2)/3
6790 reflections (Δ/σ)max = 0.001
452 parameters Δρmax = 0.25 e Å3
0 restraints Δρmin = −0.29 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
P1 1.17820 (4) 0.13701 (4) 0.04663 (4) 0.03162 (13)
O1 1.08254 (11) 0.07098 (10) 0.02456 (9) 0.0363 (3)
N1 1.30710 (14) 0.08603 (13) 0.04165 (13) 0.0437 (4)
H1C 1.3528 0.0844 −0.0155 0.052*
H1D 1.3211 0.0412 0.0874 0.052*
C1 1.13169 (17) 0.17935 (15) 0.16940 (14) 0.0347 (4)
C2 1.02395 (18) 0.23041 (17) 0.19186 (16) 0.0444 (5)
H2A 0.9759 0.2364 0.1460 0.053*
C3 0.9875 (2) 0.27232 (19) 0.28161 (17) 0.0562 (6)
H3A 0.9164 0.3085 0.2950 0.067*
C4 1.0562 (2) 0.2606 (2) 0.35105 (17) 0.0602 (7)
H4A 1.0315 0.2887 0.4116 0.072*
C5 1.1608 (3) 0.2079 (2) 0.33147 (17) 0.0609 (7)
H5A 1.2061 0.1986 0.3794 0.073*
C6 1.1998 (2) 0.16818 (18) 0.24046 (16) 0.0490 (5)
H6A 1.2721 0.1339 0.2270 0.059*
C7 1.20818 (17) 0.25753 (15) −0.04187 (14) 0.0362 (4)
C8 1.3130 (2) 0.31763 (18) −0.05706 (18) 0.0559 (6)
H8A 1.3701 0.2945 −0.0220 0.067*
C9 1.3330 (2) 0.4112 (2) −0.1235 (2) 0.0742 (8)
H9A 1.4032 0.4514 −0.1328 0.089*
C10 1.2495 (3) 0.4455 (2) −0.1764 (2) 0.0720 (8)
H10A 1.2638 0.5079 −0.2222 0.086*
C11 1.1448 (3) 0.3874 (2) −0.16130 (18) 0.0625 (7)
H11A 1.0879 0.4111 −0.1963 0.075*
C12 1.1239 (2) 0.29339 (17) −0.09390 (16) 0.0468 (5)
H12A 1.0528 0.2544 −0.0837 0.056*
P2 0.69875 (5) 0.20933 (4) 0.06022 (4) 0.03561 (13)
O3 0.81395 (12) 0.15618 (11) 0.05724 (11) 0.0479 (4)
N2 0.59011 (15) 0.15019 (13) 0.03084 (13) 0.0458 (4)
H2C 0.5927 0.1419 −0.0284 0.055*
H2D 0.5557 0.0987 0.0726 0.055*
C13 0.63198 (17) 0.23950 (15) 0.18497 (15) 0.0367 (4)
C14 0.5256 (2) 0.29275 (18) 0.20447 (17) 0.0512 (6)
H14A 0.4873 0.3120 0.1527 0.061*
C15 0.4761 (2) 0.3175 (2) 0.29941 (18) 0.0610 (7)
H15A 0.4048 0.3533 0.3117 0.073*
C16 0.5318 (2) 0.2895 (2) 0.37561 (18) 0.0655 (7)
H16A 0.4990 0.3074 0.4396 0.079*
C17 0.6362 (2) 0.2350 (2) 0.35852 (18) 0.0700 (8)
H17A 0.6731 0.2150 0.4111 0.084*
C18 0.6866 (2) 0.21000 (19) 0.26293 (16) 0.0521 (6)
H18A 0.7574 0.1733 0.2513 0.063*
C19 0.72346 (17) 0.33430 (15) −0.02247 (14) 0.0377 (5)
C20 0.8251 (2) 0.39536 (17) −0.02838 (18) 0.0540 (6)
H20A 0.8786 0.3709 0.0099 0.065*
C21 0.8479 (2) 0.49210 (19) −0.0904 (2) 0.0681 (7)
H21A 0.9160 0.5327 −0.0930 0.082*
C22 0.7717 (3) 0.52853 (19) −0.1478 (2) 0.0662 (7)
H22A 0.7871 0.5940 −0.1893 0.079*
C23 0.6720 (2) 0.4685 (2) −0.1442 (2) 0.0715 (8)
H23A 0.6203 0.4926 −0.1845 0.086*
C24 0.6473 (2) 0.37226 (19) −0.08125 (18) 0.0581 (6)
H24A 0.5784 0.3327 −0.0786 0.070*
P3 0.81312 (5) −0.10015 (4) 0.29783 (4) 0.04037 (14)
O5 0.87404 (14) −0.02105 (12) 0.21222 (10) 0.0544 (4)
N3 0.69211 (16) −0.16261 (16) 0.28927 (14) 0.0554 (5)
H3C 0.6382 −0.1215 0.2687 0.066*
H3D 0.7038 −0.2141 0.2565 0.066*
C25 0.77229 (18) −0.03918 (16) 0.41151 (14) 0.0402 (5)
C26 0.8565 (2) 0.02739 (18) 0.43200 (16) 0.0518 (6)
H26A 0.9291 0.0416 0.3857 0.062*
C27 0.8337 (2) 0.0727 (2) 0.52018 (18) 0.0631 (7)
H27A 0.8912 0.1167 0.5335 0.076*
C28 0.7262 (3) 0.0530 (2) 0.58840 (18) 0.0645 (7)
H28A 0.7108 0.0839 0.6478 0.077*
C29 0.6420 (2) −0.0118 (2) 0.56917 (18) 0.0661 (7)
H29A 0.5692 −0.0247 0.6156 0.079*
C30 0.6637 (2) −0.05871 (19) 0.48111 (16) 0.0535 (6)
H30A 0.6060 −0.1031 0.4686 0.064*
C31 0.91044 (19) −0.20680 (18) 0.32190 (15) 0.0456 (5)
C32 0.8707 (2) −0.2984 (2) 0.38919 (18) 0.0624 (7)
H32A 0.7914 −0.3058 0.4242 0.075*
C33 0.9491 (4) −0.3790 (2) 0.4044 (2) 0.0868 (10)
H33A 0.9222 −0.4405 0.4495 0.104*
C34 1.0650 (4) −0.3682 (3) 0.3537 (3) 0.1030 (13)
H34A 1.1170 −0.4228 0.3640 0.124*
C35 1.1063 (3) −0.2777 (3) 0.2874 (3) 0.0959 (11)
H35A 1.1861 −0.2708 0.2536 0.115*
C36 1.0290 (2) −0.1965 (2) 0.27084 (19) 0.0653 (7)
H36A 1.0567 −0.1353 0.2256 0.078*
Cl1 0.52785 (5) 0.08079 (5) 0.82677 (4) 0.05126 (16)
Li1 0.9102 (3) 0.0364 (2) 0.0743 (2) 0.0338 (7)
C37 0.6237 (4) 0.4221 (4) 0.5809 (3) 0.1075 (12)
C38 0.5623 (5) 0.3318 (4) 0.6414 (3) 0.1495 (18)
H38A 0.5694 0.3316 0.7095 0.224*
H38B 0.5957 0.2677 0.6166 0.224*
H38C 0.4799 0.3342 0.6396 0.224*
N4 0.6733 (4) 0.4948 (4) 0.5345 (4) 0.190 (2)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
P1 0.0277 (3) 0.0330 (3) 0.0350 (3) −0.0010 (2) −0.0076 (2) −0.0068 (2)
O1 0.0300 (7) 0.0412 (8) 0.0391 (7) −0.0042 (6) −0.0064 (6) −0.0134 (6)
N1 0.0338 (9) 0.0485 (10) 0.0467 (10) 0.0059 (8) −0.0074 (8) −0.0030 (8)
C1 0.0375 (11) 0.0321 (10) 0.0342 (10) −0.0050 (8) −0.0085 (8) −0.0035 (8)
C2 0.0412 (12) 0.0518 (13) 0.0423 (12) −0.0009 (10) −0.0100 (9) −0.0144 (10)
C3 0.0518 (14) 0.0628 (15) 0.0524 (14) −0.0001 (12) −0.0009 (11) −0.0228 (12)
C4 0.0794 (19) 0.0614 (16) 0.0369 (13) −0.0162 (14) −0.0028 (12) −0.0157 (11)
C5 0.0848 (19) 0.0636 (16) 0.0404 (13) −0.0067 (14) −0.0274 (13) −0.0057 (12)
C6 0.0555 (14) 0.0513 (13) 0.0444 (13) 0.0034 (11) −0.0211 (11) −0.0043 (10)
C7 0.0366 (11) 0.0371 (11) 0.0340 (10) 0.0012 (9) −0.0050 (9) −0.0077 (8)
C8 0.0427 (13) 0.0513 (14) 0.0677 (16) −0.0068 (11) −0.0073 (11) 0.0040 (12)
C9 0.0607 (17) 0.0562 (16) 0.092 (2) −0.0126 (13) −0.0018 (15) 0.0137 (15)
C10 0.093 (2) 0.0471 (15) 0.0616 (17) 0.0027 (15) 0.0004 (15) 0.0115 (12)
C11 0.0855 (19) 0.0569 (16) 0.0498 (14) 0.0174 (14) −0.0263 (13) −0.0055 (12)
C12 0.0546 (14) 0.0444 (12) 0.0446 (12) 0.0026 (10) −0.0181 (10) −0.0068 (10)
P2 0.0356 (3) 0.0325 (3) 0.0403 (3) 0.0050 (2) −0.0125 (2) −0.0040 (2)
O3 0.0442 (8) 0.0468 (8) 0.0541 (9) 0.0159 (7) −0.0150 (7) −0.0058 (7)
N2 0.0512 (11) 0.0453 (10) 0.0426 (10) −0.0075 (8) −0.0142 (8) −0.0056 (8)
C13 0.0383 (11) 0.0311 (10) 0.0416 (11) 0.0015 (8) −0.0119 (9) −0.0031 (8)
C14 0.0510 (14) 0.0583 (14) 0.0471 (13) 0.0165 (11) −0.0165 (11) −0.0080 (11)
C15 0.0592 (15) 0.0651 (16) 0.0564 (15) 0.0216 (13) −0.0076 (12) −0.0109 (12)
C16 0.0775 (19) 0.0726 (17) 0.0430 (14) 0.0147 (15) −0.0046 (13) −0.0126 (12)
C17 0.0782 (19) 0.093 (2) 0.0424 (14) 0.0209 (16) −0.0232 (13) −0.0078 (13)
C18 0.0486 (13) 0.0623 (15) 0.0470 (13) 0.0131 (11) −0.0152 (11) −0.0058 (11)
C19 0.0372 (11) 0.0365 (11) 0.0388 (11) 0.0048 (9) −0.0076 (9) −0.0059 (9)
C20 0.0544 (14) 0.0439 (13) 0.0661 (16) −0.0025 (11) −0.0216 (12) −0.0026 (11)
C21 0.0652 (17) 0.0464 (15) 0.089 (2) −0.0149 (13) −0.0131 (15) −0.0029 (14)
C22 0.0773 (19) 0.0415 (14) 0.0688 (17) −0.0003 (13) −0.0034 (15) 0.0087 (12)
C23 0.0721 (18) 0.0641 (17) 0.0740 (18) 0.0065 (14) −0.0257 (15) 0.0217 (14)
C24 0.0476 (14) 0.0564 (15) 0.0689 (16) −0.0031 (11) −0.0230 (12) 0.0139 (12)
P3 0.0419 (3) 0.0473 (3) 0.0304 (3) 0.0046 (2) −0.0076 (2) −0.0010 (2)
O5 0.0662 (10) 0.0590 (10) 0.0312 (8) 0.0009 (8) −0.0027 (7) 0.0030 (7)
N3 0.0509 (11) 0.0658 (13) 0.0553 (12) 0.0068 (10) −0.0212 (9) −0.0136 (10)
C25 0.0447 (12) 0.0420 (12) 0.0309 (10) 0.0076 (9) −0.0070 (9) 0.0029 (9)
C26 0.0543 (14) 0.0566 (14) 0.0402 (12) −0.0008 (11) −0.0027 (10) −0.0059 (11)
C27 0.0796 (19) 0.0640 (16) 0.0475 (14) 0.0011 (14) −0.0153 (13) −0.0136 (12)
C28 0.089 (2) 0.0661 (17) 0.0374 (13) 0.0203 (15) −0.0096 (13) −0.0113 (12)
C29 0.0615 (16) 0.0847 (19) 0.0411 (14) 0.0193 (15) 0.0067 (12) −0.0023 (13)
C30 0.0476 (13) 0.0661 (15) 0.0409 (13) 0.0044 (11) −0.0018 (10) −0.0012 (11)
C31 0.0515 (13) 0.0547 (13) 0.0357 (11) 0.0107 (11) −0.0161 (10) −0.0135 (10)
C32 0.0811 (18) 0.0611 (16) 0.0476 (14) 0.0170 (14) −0.0233 (13) −0.0021 (12)
C33 0.135 (3) 0.073 (2) 0.0621 (18) 0.039 (2) −0.044 (2) −0.0075 (15)
C34 0.125 (3) 0.125 (3) 0.079 (2) 0.076 (3) −0.052 (2) −0.037 (2)
C35 0.069 (2) 0.146 (3) 0.085 (2) 0.052 (2) −0.0269 (18) −0.042 (2)
C36 0.0544 (15) 0.0855 (19) 0.0595 (16) 0.0155 (14) −0.0153 (13) −0.0188 (14)
Cl1 0.0512 (3) 0.0653 (4) 0.0356 (3) 0.0019 (3) −0.0094 (2) −0.0017 (2)
Li1 0.0315 (17) 0.0380 (18) 0.0317 (17) 0.0030 (13) −0.0069 (13) −0.0054 (14)
C37 0.107 (3) 0.103 (3) 0.109 (3) −0.012 (2) −0.016 (2) −0.018 (2)
C38 0.202 (5) 0.141 (4) 0.098 (3) −0.060 (4) −0.027 (3) −0.002 (3)
N4 0.174 (4) 0.132 (3) 0.226 (5) −0.038 (3) 0.006 (4) 0.012 (3)

Geometric parameters (Å, º)

P1—O1 1.4928 (13) C19—C24 1.375 (3)
P1—N1 1.6112 (16) C19—C20 1.385 (3)
P1—C7 1.795 (2) C20—C21 1.379 (3)
P1—C1 1.7991 (19) C20—H20A 0.9300
O1—Li1 1.980 (3) C21—C22 1.357 (4)
O1—Li1i 2.025 (3) C21—H21A 0.9300
N1—H1C 0.8423 C22—C23 1.366 (4)
N1—H1D 0.8335 C22—H22A 0.9300
C1—C6 1.386 (3) C23—C24 1.381 (3)
C1—C2 1.388 (3) C23—H23A 0.9300
C2—C3 1.381 (3) C24—H24A 0.9300
C2—H2A 0.9300 P3—O5 1.4777 (15)
C3—C4 1.373 (3) P3—N3 1.6405 (19)
C3—H3A 0.9300 P3—C25 1.795 (2)
C4—C5 1.366 (3) P3—C31 1.795 (2)
C4—H4A 0.9300 O5—Li1 1.891 (3)
C5—C6 1.386 (3) N3—H3C 0.8823
C5—H5A 0.9300 N3—H3D 0.8287
C6—H6A 0.9300 C25—C26 1.385 (3)
C7—C12 1.381 (3) C25—C30 1.390 (3)
C7—C8 1.388 (3) C26—C27 1.377 (3)
C8—C9 1.377 (3) C26—H26A 0.9300
C8—H8A 0.9300 C27—C28 1.373 (3)
C9—C10 1.376 (4) C27—H27A 0.9300
C9—H9A 0.9300 C28—C29 1.363 (4)
C10—C11 1.373 (4) C28—H28A 0.9300
C10—H10A 0.9300 C29—C30 1.387 (3)
C11—C12 1.387 (3) C29—H29A 0.9300
C11—H11A 0.9300 C30—H30A 0.9300
C12—H12A 0.9300 C31—C36 1.385 (3)
P2—O3 1.4831 (14) C31—C32 1.385 (3)
P2—N2 1.6159 (17) C32—C33 1.385 (4)
P2—C19 1.796 (2) C32—H32A 0.9300
P2—C13 1.800 (2) C33—C34 1.357 (5)
O3—Li1 1.892 (3) C33—H33A 0.9300
N2—H2C 0.8286 C34—C35 1.372 (5)
N2—H2D 0.8393 C34—H34A 0.9300
C13—C18 1.379 (3) C35—C36 1.386 (4)
C13—C14 1.386 (3) C35—H35A 0.9300
C14—C15 1.374 (3) C36—H36A 0.9300
C14—H14A 0.9300 Li1—O1i 2.025 (3)
C15—C16 1.363 (3) Li1—Li1i 2.799 (6)
C15—H15A 0.9300 C37—N4 1.119 (5)
C16—C17 1.374 (3) C37—C38 1.402 (5)
C16—H16A 0.9300 C38—H38A 0.9600
C17—C18 1.385 (3) C38—H38B 0.9600
C17—H17A 0.9300 C38—H38C 0.9600
C18—H18A 0.9300
O1—P1—N1 118.66 (8) C21—C20—C19 120.7 (2)
O1—P1—C7 109.85 (8) C21—C20—H20A 119.6
N1—P1—C7 104.13 (9) C19—C20—H20A 119.6
O1—P1—C1 110.95 (8) C22—C21—C20 120.5 (2)
N1—P1—C1 106.11 (9) C22—C21—H21A 119.8
C7—P1—C1 106.30 (9) C20—C21—H21A 119.8
P1—O1—Li1 140.12 (12) C21—C22—C23 119.6 (2)
P1—O1—Li1i 131.06 (11) C21—C22—H22A 120.2
Li1—O1—Li1i 88.68 (13) C23—C22—H22A 120.2
P1—N1—H1C 118.0 C22—C23—C24 120.5 (2)
P1—N1—H1D 122.7 C22—C23—H23A 119.8
H1C—N1—H1D 114.9 C24—C23—H23A 119.8
C6—C1—C2 118.55 (19) C19—C24—C23 120.7 (2)
C6—C1—P1 123.63 (16) C19—C24—H24A 119.7
C2—C1—P1 117.76 (15) C23—C24—H24A 119.7
C3—C2—C1 120.6 (2) O5—P3—N3 118.56 (9)
C3—C2—H2A 119.7 O5—P3—C25 110.89 (9)
C1—C2—H2A 119.7 N3—P3—C25 105.63 (10)
C4—C3—C2 120.0 (2) O5—P3—C31 110.65 (10)
C4—C3—H3A 120.0 N3—P3—C31 104.03 (10)
C2—C3—H3A 120.0 C25—P3—C31 106.20 (9)
C5—C4—C3 120.2 (2) P3—O5—Li1 152.08 (14)
C5—C4—H4A 119.9 P3—N3—H3C 115.8
C3—C4—H4A 119.9 P3—N3—H3D 114.9
C4—C5—C6 120.3 (2) H3C—N3—H3D 109.1
C4—C5—H5A 119.8 C26—C25—C30 118.8 (2)
C6—C5—H5A 119.8 C26—C25—P3 117.40 (15)
C5—C6—C1 120.3 (2) C30—C25—P3 123.70 (17)
C5—C6—H6A 119.9 C27—C26—C25 120.7 (2)
C1—C6—H6A 119.9 C27—C26—H26A 119.7
C12—C7—C8 119.0 (2) C25—C26—H26A 119.7
C12—C7—P1 119.53 (16) C28—C27—C26 120.0 (2)
C8—C7—P1 121.44 (16) C28—C27—H27A 120.0
C9—C8—C7 120.5 (2) C26—C27—H27A 120.0
C9—C8—H8A 119.7 C29—C28—C27 120.1 (2)
C7—C8—H8A 119.7 C29—C28—H28A 120.0
C10—C9—C8 120.1 (2) C27—C28—H28A 120.0
C10—C9—H9A 120.0 C28—C29—C30 120.6 (2)
C8—C9—H9A 120.0 C28—C29—H29A 119.7
C11—C10—C9 120.0 (2) C30—C29—H29A 119.7
C11—C10—H10A 120.0 C29—C30—C25 119.7 (2)
C9—C10—H10A 120.0 C29—C30—H30A 120.1
C10—C11—C12 120.1 (2) C25—C30—H30A 120.1
C10—C11—H11A 120.0 C36—C31—C32 119.4 (2)
C12—C11—H11A 120.0 C36—C31—P3 118.41 (19)
C7—C12—C11 120.3 (2) C32—C31—P3 122.23 (18)
C7—C12—H12A 119.9 C33—C32—C31 120.1 (3)
C11—C12—H12A 119.9 C33—C32—H32A 120.0
O3—P2—N2 121.04 (9) C31—C32—H32A 120.0
O3—P2—C19 109.35 (9) C34—C33—C32 120.1 (3)
N2—P2—C19 104.64 (9) C34—C33—H33A 120.0
O3—P2—C13 111.06 (9) C32—C33—H33A 120.0
N2—P2—C13 102.34 (9) C33—C34—C35 120.8 (3)
C19—P2—C13 107.49 (9) C33—C34—H34A 119.6
P2—O3—Li1 153.97 (13) C35—C34—H34A 119.6
P2—N2—H2C 121.0 C34—C35—C36 119.9 (3)
P2—N2—H2D 116.1 C34—C35—H35A 120.1
H2C—N2—H2D 113.2 C36—C35—H35A 120.1
C18—C13—C14 118.9 (2) C31—C36—C35 119.8 (3)
C18—C13—P2 120.15 (16) C31—C36—H36A 120.1
C14—C13—P2 120.95 (16) C35—C36—H36A 120.1
C15—C14—C13 120.8 (2) O5—Li1—O3 108.65 (16)
C15—C14—H14A 119.6 O5—Li1—O1 110.82 (16)
C13—C14—H14A 119.6 O3—Li1—O1 113.23 (16)
C16—C15—C14 119.9 (2) O5—Li1—O1i 116.04 (16)
C16—C15—H15A 120.1 O3—Li1—O1i 115.90 (16)
C14—C15—H15A 120.1 O1—Li1—O1i 91.32 (13)
C15—C16—C17 120.4 (2) O5—Li1—Li1i 124.7 (2)
C15—C16—H16A 119.8 O3—Li1—Li1i 126.5 (2)
C17—C16—H16A 119.8 O1—Li1—Li1i 46.32 (10)
C16—C17—C18 120.0 (2) O1i—Li1—Li1i 45.00 (9)
C16—C17—H17A 120.0 N4—C37—C38 178.5 (5)
C18—C17—H17A 120.0 C37—C38—H38A 109.5
C13—C18—C17 120.1 (2) C37—C38—H38B 109.5
C13—C18—H18A 120.0 H38A—C38—H38B 109.5
C17—C18—H18A 120.0 C37—C38—H38C 109.5
C24—C19—C20 118.0 (2) H38A—C38—H38C 109.5
C24—C19—P2 123.43 (16) H38B—C38—H38C 109.5
C20—C19—P2 118.52 (16)
N1—P1—O1—Li1 138.66 (19) C13—P2—C19—C20 83.06 (18)
C7—P1—O1—Li1 −101.80 (19) C24—C19—C20—C21 0.9 (3)
C1—P1—O1—Li1 15.4 (2) P2—C19—C20—C21 −179.74 (19)
N1—P1—O1—Li1i −35.57 (18) C19—C20—C21—C22 −0.8 (4)
C7—P1—O1—Li1i 83.98 (16) C20—C21—C22—C23 −0.3 (4)
C1—P1—O1—Li1i −158.79 (15) C21—C22—C23—C24 1.3 (4)
O1—P1—C1—C6 130.81 (17) C20—C19—C24—C23 0.0 (4)
N1—P1—C1—C6 0.6 (2) P2—C19—C24—C23 −179.3 (2)
C7—P1—C1—C6 −109.80 (18) C22—C23—C24—C19 −1.1 (4)
O1—P1—C1—C2 −52.26 (17) N3—P3—O5—Li1 −23.4 (3)
N1—P1—C1—C2 177.57 (15) C25—P3—O5—Li1 −145.8 (3)
C7—P1—C1—C2 67.13 (17) C31—P3—O5—Li1 96.7 (3)
C6—C1—C2—C3 2.2 (3) O5—P3—C25—C26 −44.58 (19)
P1—C1—C2—C3 −174.93 (17) N3—P3—C25—C26 −174.24 (16)
C1—C2—C3—C4 −2.1 (3) C31—P3—C25—C26 75.68 (18)
C2—C3—C4—C5 0.2 (4) O5—P3—C25—C30 138.18 (18)
C3—C4—C5—C6 1.6 (4) N3—P3—C25—C30 8.5 (2)
C4—C5—C6—C1 −1.5 (3) C31—P3—C25—C30 −101.57 (19)
C2—C1—C6—C5 −0.4 (3) C30—C25—C26—C27 0.6 (3)
P1—C1—C6—C5 176.55 (17) P3—C25—C26—C27 −176.76 (18)
O1—P1—C7—C12 20.38 (19) C25—C26—C27—C28 −0.7 (4)
N1—P1—C7—C12 148.45 (16) C26—C27—C28—C29 0.3 (4)
C1—P1—C7—C12 −99.72 (17) C27—C28—C29—C30 0.2 (4)
O1—P1—C7—C8 −161.65 (17) C28—C29—C30—C25 −0.3 (4)
N1—P1—C7—C8 −33.6 (2) C26—C25—C30—C29 −0.2 (3)
C1—P1—C7—C8 78.25 (19) P3—C25—C30—C29 177.05 (17)
C12—C7—C8—C9 −0.5 (3) O5—P3—C31—C36 8.5 (2)
P1—C7—C8—C9 −178.4 (2) N3—P3—C31—C36 136.90 (18)
C7—C8—C9—C10 −0.6 (4) C25—P3—C31—C36 −111.89 (19)
C8—C9—C10—C11 1.3 (4) O5—P3—C31—C32 −171.27 (18)
C9—C10—C11—C12 −0.9 (4) N3—P3—C31—C32 −42.9 (2)
C8—C7—C12—C11 0.9 (3) C25—P3—C31—C32 68.3 (2)
P1—C7—C12—C11 178.90 (17) C36—C31—C32—C33 −0.4 (4)
C10—C11—C12—C7 −0.2 (4) P3—C31—C32—C33 179.36 (19)
N2—P2—O3—Li1 −36.5 (3) C31—C32—C33—C34 0.2 (4)
C19—P2—O3—Li1 −158.1 (3) C32—C33—C34—C35 0.4 (5)
C13—P2—O3—Li1 83.5 (3) C33—C34—C35—C36 −0.7 (5)
O3—P2—C13—C18 −2.0 (2) C32—C31—C36—C35 0.1 (4)
N2—P2—C13—C18 128.51 (18) P3—C31—C36—C35 −179.7 (2)
C19—P2—C13—C18 −121.61 (18) C34—C35—C36—C31 0.5 (4)
O3—P2—C13—C14 177.75 (17) P3—O5—Li1—O3 99.5 (3)
N2—P2—C13—C14 −51.71 (19) P3—O5—Li1—O1 −135.5 (2)
C19—P2—C13—C14 58.17 (19) P3—O5—Li1—O1i −33.2 (4)
C18—C13—C14—C15 1.1 (3) P3—O5—Li1—Li1i −85.0 (4)
P2—C13—C14—C15 −178.71 (18) P2—O3—Li1—O5 −63.1 (4)
C13—C14—C15—C16 0.0 (4) P2—O3—Li1—O1 173.3 (2)
C14—C15—C16—C17 −1.1 (4) P2—O3—Li1—O1i 69.6 (4)
C15—C16—C17—C18 1.2 (4) P2—O3—Li1—Li1i 121.4 (3)
C14—C13—C18—C17 −1.0 (3) P1—O1—Li1—O5 −57.1 (3)
P2—C13—C18—C17 178.81 (19) Li1i—O1—Li1—O5 118.6 (2)
C16—C17—C18—C13 −0.1 (4) P1—O1—Li1—O3 65.3 (2)
O3—P2—C19—C24 141.69 (19) Li1i—O1—Li1—O3 −119.0 (2)
N2—P2—C19—C24 10.6 (2) P1—O1—Li1—O1i −175.65 (16)
C13—P2—C19—C24 −97.6 (2) Li1i—O1—Li1—O1i 0.0
O3—P2—C19—C20 −37.60 (19) P1—O1—Li1—Li1i −175.65 (16)
N2—P2—C19—C20 −168.64 (17)

Symmetry code: (i) −x+2, −y, −z.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1C···Cl1ii 0.84 2.61 3.4351 (17) 169
N1—H1D···Cl1iii 0.83 2.70 3.4534 (17) 152
N2—H2C···Cl1iv 0.83 2.50 3.2789 (18) 158
N2—H2D···Cl1v 0.84 2.55 3.3776 (18) 169
N3—H3C···Cl1v 0.88 2.58 3.3967 (19) 154

Symmetry codes: (ii) x+1, y, z−1; (iii) −x+2, −y, −z+1; (iv) x, y, z−1; (v) −x+1, −y, −z+1.

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: CV5450).

References

  1. Bruker (2000). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Oliva, G., Castellano, E. E. & Franco de Carvalho, L. R. (1981). Acta Cryst. B37, 474–475.
  3. Pisareva, S. A., Petrovskii, P. V., Lyssenko, K. A., Antipin, M. Y. & Nifant’ev, E. E. (2004). Russ. Chem. Bull. 53, 2008–2012.
  4. Roesky, H. W. & Lucke, M. (1989). Angew. Chem. Int. Ed. 28, 493–493.
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  6. Sheldrick, G. M. (1997). SADABS University of Göttingen, Germany.
  7. Wong, W. K., Sun, C. & Wong, W. T. (1997). J. Chem. Soc. Dalton Trans. pp. 3387–3396.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, New_Global_Publ_Block. DOI: 10.1107/S1600536814011076/cv5450sup1.cif

e-70-0m224-sup1.cif (31KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814011076/cv5450Isup2.hkl

e-70-0m224-Isup2.hkl (332.3KB, hkl)

CCDC reference: 1002945

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES