Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2014 May 31;70(Pt 6):o735. doi: 10.1107/S1600536814012203

N-Ethyl-2-[1-(2-hy­droxy-4-methyl­phen­yl)ethyl­idene]hydrazinecarbo­thio­amide

Brian J Anderson a, Jeffrey R Hall a, Jerry P Jasinski a,*
PMCID: PMC4051077  PMID: 24940300

Abstract

The title compound, C12H17N3OS, crystallizes with two independent mol­ecules (A and B) in the asymmetric unit. The dihedral angle between the mean planes of the benzene ring and the hydrazinecarbo­thio­amide group are 6.9 (4) and 37.2 (5)° in mol­ecules A and B, respectively. An intra­molecular O—H⋯N hydrogen bond is observed in each mol­ecule. This serves to maintain an approximately planar conformation for mol­ecule A, but leaves a significant twist between these two groups in mol­ecule B. In the crystal, a weak N—H⋯S inter­action is observed, forming inversion dimers among the B mol­ecules and resulting in an R 2 2(8) motif. These dimers are further inter­connected by weak N—H⋯O and C—H⋯O inter­molecular inter­actions, forming chains along [011].

Related literature  

For the biological activity of thio­semicarbazones, see: Chellan et al. (2010). For binding motifs of thio­semicarbazones, see: Lobana et al. (2009). For thio­semicarbazones as ligands in catalysis, see: Xie et al. (2010). For related structures, see: Anderson et al. (2012, 2013a ,b ).graphic file with name e-70-0o735-scheme1.jpg

Experimental  

Crystal data  

  • C12H17N3OS

  • M r = 251.34

  • Triclinic, Inline graphic

  • a = 7.4253 (4) Å

  • b = 8.7713 (4) Å

  • c = 20.7093 (11) Å

  • α = 96.238 (4)°

  • β = 94.400 (5)°

  • γ = 100.177 (4)°

  • V = 1313.35 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.24 mm−1

  • T = 173 K

  • 0.28 × 0.24 × 0.12 mm

Data collection  

  • Agilent Eos Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO and CrysAlis RED; Agilent, 2012) T min = 0.693, T max = 1.000

  • 17011 measured reflections

  • 8692 independent reflections

  • 5875 reflections with I > 2σ(I)

  • R int = 0.038

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.070

  • wR(F 2) = 0.204

  • S = 1.09

  • 8692 reflections

  • 315 parameters

  • H-atom parameters constrained

  • Δρmax = 0.66 e Å−3

  • Δρmin = −0.38 e Å−3

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO; data reduction: CrysAlis RED (Agilent, 2012); program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007; Palatinus & van der Lee, 2008; Palatinus et al., 2012).; program(s) used to refine structure: SHELXL2012 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2.

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S1600536814012203/fj2676sup1.cif

e-70-0o735-sup1.cif (32.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814012203/fj2676Isup2.hkl

e-70-0o735-Isup2.hkl (476KB, hkl)

Supporting information file. DOI: 10.1107/S1600536814012203/fj2676Isup3.cml

CCDC reference: 1005355

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1A—H1A⋯N3A 0.84 1.85 2.589 (2) 146
C10A—H10B⋯O1B i 0.98 2.45 3.406 (3) 164
O1B—H1B⋯N3B 0.84 1.81 2.545 (2) 146
N1B—H1BA⋯O1A ii 0.88 2.36 3.076 (2) 139
N2B—H2B⋯S1B iii 0.88 2.52 3.320 (2) 152

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

JPJ acknowledges the NSF–MRI program (grant No. CHE-1039027) for funds to purchase the X-ray diffractometer.

supplementary crystallographic information

1. Comment

Thiosemicarbazones are a versatile class of ligands that have been studied for their biological activity (Chellan et al., 2010), interesting binding motifs (Lobana et al., 2009), and their use as ligands in catalysis (Xie et al., 2010). We have previously reported the structure of three similar novel thiosemicarbazones (Anderson et al., 2012; Anderson et al., 2013a; Anderson et al., 2013b). Here, we report the synthesis and crystal structure of a new novel thiosemicarbazone ligand, (I), C12H17N3OS.

The title compound, (I), crystallizes with two independent molecules (A & B) in the asymmetric unit (Fig. 1). The dihedral angles between the mean planes of the benzene ring and the hydrazinecarbothioamide group is 6.9 (4)° (N3A/N2A/C1A/S1A/N1A) and 37.2 (5)° (N3B/N2B/C1B/S1B/N1B). An intramolecular O—H···N hydrogen bond is observed serving to maintain an approximately planar conformation in A. However in B there is a significant twist between these two groups. In the crystal, a weak N2B—H2B···S1B intermolecular interaction is observed forming inversion dimers among the B molecules in an R22[8] motif format (Fig. 2). These dimers are further interconnected by weak N1B—H1BA···O1A and C10A—HH10B···O1B intermolecular interactions (Table 1) forming polymeric chains along [011].

2. Experimental

A 25 mL round bottom flask was charged with 0.1986 g (1.428 mmol) of 4'-methylacetophenone, 0.1702 g (1.428 mmol) of 4-ethyl-3-thiosemicarbazide and dissolved in 5 mL of a 1:1 ethanol: water solution and refluxed for 96 hours (Fig. 3). The reaction was allowed to cool to room temperature before dichloromethane (5 mL) and deionized water (5mL) were added, and the organic layer was separated. The aqueous layer was then extracted with an additional 5 mL of dichloromethane. The organic layers were then combined, washed with brine (2 X 5 mL), dried with magnesium sulfate, and the solvent removed in vacuo resulting in an off-white powder. The product was recrystallized from dichloromethane. m.p. 428–431 K.

3. Refinement

All of the H atoms were placed in their calculated positions and then refined using the riding model with Atom—H lengths of 0.95Å (CH), 0.99Å (CH2), 0.98Å (CH3), 0.88Å (NH) or 0.84Å (OH). Isotropic displacement parameters for these atoms were set to 1.2 (CH, CH2, NH) or 1.5 (CH3, OH) times Ueq of the parent atom. Idealised Me refined as rotating group. Idealised tetrahedral OH refined as rotating group.

Figures

Fig. 1.

Fig. 1.

ORTEP drawing of (I), C12H17N3OS, showing the labeling scheme of molecules A and B with 30% probability displacement ellipsoids.

Fig. 2.

Fig. 2.

Molecular packing for (I) viewed along the a axis. Dashed lines indicate weak N2B—H2B···S1B intermolecular interactions forming inversion dimers among the B molecules in an R22[8] motif format. These dimers are further interconnected by weak N1B—H1BA···O1A and C10A—HH10B···O1B intermolecular interactions forming polymeric chains along [011].

Fig. 3.

Fig. 3.

Reaction scheme.

Crystal data

C12H17N3OS Z = 4
Mr = 251.34 F(000) = 536
Triclinic, P1 Dx = 1.271 Mg m3
a = 7.4253 (4) Å Mo Kα radiation, λ = 0.71073 Å
b = 8.7713 (4) Å Cell parameters from 4160 reflections
c = 20.7093 (11) Å θ = 3.6–32.3°
α = 96.238 (4)° µ = 0.24 mm1
β = 94.400 (5)° T = 173 K
γ = 100.177 (4)° Irregular, colourless
V = 1313.35 (12) Å3 0.28 × 0.24 × 0.12 mm

Data collection

Agilent Eos Gemini diffractometer 8692 independent reflections
Radiation source: Enhance (Mo) X-ray Source 5875 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.038
Detector resolution: 16.0416 pixels mm-1 θmax = 32.9°, θmin = 3.1°
ω scans h = −11→11
Absorption correction: multi-scan (CrysAlis PRO and CrysAlis RED; Agilent, 2012) k = −12→13
Tmin = 0.693, Tmax = 1.000 l = −26→30
17011 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.070 H-atom parameters constrained
wR(F2) = 0.204 w = 1/[σ2(Fo2) + (0.0861P)2 + 0.5803P] where P = (Fo2 + 2Fc2)/3
S = 1.09 (Δ/σ)max = 0.002
8692 reflections Δρmax = 0.66 e Å3
315 parameters Δρmin = −0.38 e Å3
0 restraints

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1A 0.83372 (9) 0.27257 (8) 1.00813 (3) 0.04037 (17)
O1A 0.6515 (3) 0.23324 (18) 0.72182 (8) 0.0367 (4)
H1A 0.6753 0.2509 0.7625 0.055*
N1A 0.6804 (4) 0.1452 (2) 0.89037 (10) 0.0445 (5)
H1AA 0.6540 0.1539 0.8489 0.053*
N2A 0.8328 (3) 0.3978 (2) 0.89858 (9) 0.0292 (4)
H2A 0.8879 0.4857 0.9220 0.035*
N3A 0.8001 (3) 0.3907 (2) 0.83175 (8) 0.0264 (3)
C1A 0.7795 (3) 0.2685 (3) 0.92817 (10) 0.0308 (4)
C2A 0.8520 (3) 0.5138 (2) 0.80405 (10) 0.0262 (4)
C3A 0.8189 (3) 0.4995 (2) 0.73234 (10) 0.0244 (4)
C4A 0.7229 (3) 0.3614 (2) 0.69440 (10) 0.0253 (4)
C5A 0.6966 (3) 0.3517 (2) 0.62696 (10) 0.0288 (4)
H5A 0.6272 0.2590 0.6027 0.035*
C6A 0.7694 (3) 0.4746 (3) 0.59403 (10) 0.0295 (4)
C7A 0.8656 (3) 0.6109 (3) 0.63058 (11) 0.0332 (5)
H7A 0.9159 0.6967 0.6091 0.040*
C8A 0.8889 (3) 0.6230 (2) 0.69794 (11) 0.0307 (4)
H8A 0.9542 0.7179 0.7218 0.037*
C9A 0.7471 (4) 0.4560 (3) 0.52077 (11) 0.0431 (6)
H9AA 0.8343 0.3935 0.5038 0.065*
H9AB 0.7712 0.5591 0.5056 0.065*
H9AC 0.6213 0.4033 0.5050 0.065*
C10A 0.9427 (5) 0.6663 (3) 0.84219 (12) 0.0476 (7)
H10A 0.8864 0.6808 0.8832 0.071*
H10B 0.9271 0.7515 0.8166 0.071*
H10C 1.0741 0.6666 0.8518 0.071*
C11A 0.6132 (6) −0.0035 (3) 0.91371 (15) 0.0679 (11)
H11A 0.5281 0.0117 0.9474 0.081*
H11B 0.7177 −0.0439 0.9338 0.081*
C12A 0.5152 (5) −0.1188 (3) 0.85797 (16) 0.0609 (9)
H12A 0.6030 −0.1424 0.8271 0.091*
H12B 0.4188 −0.0745 0.8358 0.091*
H12C 0.4596 −0.2149 0.8745 0.091*
S1B 0.27526 (9) 0.11629 (8) 0.50079 (3) 0.03846 (17)
O1B 0.0388 (3) −0.00478 (19) 0.22569 (9) 0.0442 (5)
H1B 0.0632 −0.0032 0.2661 0.066*
N1B 0.3440 (3) 0.0524 (2) 0.37797 (9) 0.0328 (4)
H1BA 0.3114 0.0004 0.3388 0.039*
N2B 0.0643 (3) −0.0663 (2) 0.40373 (9) 0.0322 (4)
H2B −0.0052 −0.1076 0.4323 0.039*
N3B 0.0112 (3) −0.0985 (2) 0.33722 (9) 0.0297 (4)
C1B 0.2276 (3) 0.0313 (2) 0.42314 (11) 0.0302 (4)
C2B −0.1110 (3) −0.2211 (2) 0.31448 (11) 0.0275 (4)
C3B −0.1631 (3) −0.2420 (2) 0.24375 (10) 0.0269 (4)
C4B −0.0889 (3) −0.1338 (2) 0.20249 (11) 0.0304 (4)
C5B −0.1424 (3) −0.1555 (3) 0.13613 (12) 0.0335 (5)
H5B −0.0930 −0.0789 0.1099 0.040*
C6B −0.2666 (3) −0.2867 (3) 0.10702 (12) 0.0341 (5)
C7B −0.3400 (3) −0.3951 (3) 0.14698 (13) 0.0383 (5)
H7B −0.4254 −0.4858 0.1282 0.046*
C8B −0.2904 (3) −0.3726 (3) 0.21335 (12) 0.0350 (5)
H8B −0.3441 −0.4479 0.2394 0.042*
C9B −0.3194 (4) −0.3111 (3) 0.03475 (12) 0.0442 (6)
H9BA −0.4496 −0.3057 0.0261 0.066*
H9BB −0.2987 −0.4138 0.0166 0.066*
H9BC −0.2443 −0.2298 0.0143 0.066*
C10B −0.1944 (3) −0.3386 (3) 0.35613 (12) 0.0354 (5)
H10D −0.3220 −0.3281 0.3611 0.053*
H10E −0.1241 −0.3208 0.3992 0.053*
H10F −0.1918 −0.4440 0.3354 0.053*
C11B 0.5237 (4) 0.1568 (3) 0.38931 (12) 0.0419 (6)
H11C 0.6026 0.1200 0.4227 0.050*
H11D 0.5078 0.2634 0.4058 0.050*
C12B 0.6130 (6) 0.1606 (6) 0.32810 (19) 0.0867 (14)
H12D 0.5308 0.1899 0.2942 0.130*
H12E 0.6394 0.0572 0.3141 0.130*
H12F 0.7281 0.2373 0.3354 0.130*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1A 0.0474 (4) 0.0438 (3) 0.0272 (3) −0.0004 (3) 0.0005 (2) 0.0092 (2)
O1A 0.0507 (10) 0.0243 (7) 0.0290 (8) −0.0091 (7) 0.0076 (7) −0.0001 (6)
N1A 0.0690 (15) 0.0318 (10) 0.0271 (10) −0.0068 (10) 0.0037 (9) 0.0063 (8)
N2A 0.0386 (10) 0.0245 (8) 0.0234 (8) 0.0036 (7) 0.0032 (7) 0.0019 (6)
N3A 0.0328 (9) 0.0235 (8) 0.0227 (8) 0.0047 (7) 0.0042 (6) 0.0019 (6)
C1A 0.0380 (11) 0.0282 (10) 0.0264 (10) 0.0050 (9) 0.0067 (8) 0.0042 (8)
C2A 0.0319 (10) 0.0189 (8) 0.0275 (10) 0.0053 (8) −0.0001 (8) 0.0018 (7)
C3A 0.0279 (9) 0.0185 (8) 0.0256 (9) 0.0031 (7) 0.0001 (7) 0.0013 (7)
C4A 0.0266 (9) 0.0202 (8) 0.0280 (10) 0.0015 (7) 0.0041 (7) 0.0018 (7)
C5A 0.0297 (10) 0.0253 (9) 0.0286 (10) 0.0019 (8) 0.0005 (8) −0.0024 (7)
C6A 0.0342 (10) 0.0287 (10) 0.0254 (10) 0.0069 (9) −0.0004 (8) 0.0025 (7)
C7A 0.0439 (12) 0.0249 (9) 0.0294 (11) 0.0014 (9) −0.0008 (9) 0.0075 (8)
C8A 0.0395 (11) 0.0195 (8) 0.0307 (11) 0.0017 (8) −0.0022 (8) 0.0030 (7)
C9A 0.0560 (16) 0.0437 (13) 0.0259 (11) 0.0024 (12) −0.0011 (10) 0.0030 (9)
C10A 0.080 (2) 0.0258 (11) 0.0280 (12) −0.0066 (12) −0.0112 (12) 0.0026 (8)
C11A 0.120 (3) 0.0359 (14) 0.0379 (15) −0.0174 (17) 0.0104 (17) 0.0114 (11)
C12A 0.079 (2) 0.0331 (13) 0.062 (2) −0.0119 (15) 0.0111 (16) 0.0024 (12)
S1B 0.0403 (3) 0.0435 (3) 0.0269 (3) −0.0003 (3) 0.0034 (2) −0.0028 (2)
O1B 0.0627 (12) 0.0257 (8) 0.0350 (9) −0.0126 (8) −0.0058 (8) 0.0044 (6)
N1B 0.0359 (9) 0.0302 (9) 0.0274 (9) −0.0044 (8) 0.0045 (7) −0.0021 (7)
N2B 0.0342 (9) 0.0326 (9) 0.0271 (9) −0.0002 (8) 0.0056 (7) 0.0000 (7)
N3B 0.0313 (9) 0.0275 (8) 0.0281 (9) 0.0017 (7) 0.0014 (7) 0.0000 (7)
C1B 0.0345 (10) 0.0262 (9) 0.0280 (10) 0.0023 (9) 0.0004 (8) 0.0019 (8)
C2B 0.0271 (9) 0.0222 (9) 0.0329 (11) 0.0047 (8) 0.0058 (8) 0.0007 (7)
C3B 0.0263 (9) 0.0211 (9) 0.0325 (11) 0.0043 (8) 0.0027 (8) 0.0000 (7)
C4B 0.0345 (11) 0.0198 (9) 0.0351 (11) 0.0035 (8) 0.0003 (8) 0.0011 (8)
C5B 0.0361 (11) 0.0277 (10) 0.0364 (12) 0.0070 (9) 0.0002 (9) 0.0039 (8)
C6B 0.0327 (11) 0.0321 (11) 0.0370 (12) 0.0104 (9) −0.0016 (9) −0.0015 (9)
C7B 0.0328 (11) 0.0312 (11) 0.0442 (14) −0.0034 (9) −0.0032 (9) −0.0046 (9)
C8B 0.0331 (11) 0.0274 (10) 0.0412 (13) −0.0019 (9) 0.0038 (9) 0.0014 (9)
C9B 0.0433 (13) 0.0496 (15) 0.0361 (13) 0.0088 (12) −0.0071 (10) −0.0032 (11)
C10B 0.0385 (12) 0.0301 (11) 0.0359 (12) −0.0005 (9) 0.0085 (9) 0.0042 (9)
C11B 0.0397 (12) 0.0426 (13) 0.0351 (13) −0.0111 (11) 0.0015 (10) 0.0010 (10)
C12B 0.067 (2) 0.104 (3) 0.067 (2) −0.037 (2) 0.0288 (18) −0.016 (2)

Geometric parameters (Å, º)

S1A—C1A 1.669 (2) S1B—C1B 1.681 (2)
O1A—H1A 0.8400 O1B—H1B 0.8400
O1A—C4A 1.357 (2) O1B—C4B 1.358 (3)
N1A—H1AA 0.8800 N1B—H1BA 0.8800
N1A—C1A 1.330 (3) N1B—C1B 1.327 (3)
N1A—C11A 1.459 (3) N1B—C11B 1.465 (3)
N2A—H2A 0.8800 N2B—H2B 0.8800
N2A—N3A 1.379 (2) N2B—N3B 1.387 (3)
N2A—C1A 1.359 (3) N2B—C1B 1.360 (3)
N3A—C2A 1.290 (3) N3B—C2B 1.297 (3)
C2A—C3A 1.474 (3) C2B—C3B 1.469 (3)
C2A—C10A 1.496 (3) C2B—C10B 1.497 (3)
C3A—C4A 1.412 (3) C3B—C4B 1.414 (3)
C3A—C8A 1.406 (3) C3B—C8B 1.404 (3)
C4A—C5A 1.386 (3) C4B—C5B 1.384 (3)
C5A—H5A 0.9500 C5B—H5B 0.9500
C5A—C6A 1.389 (3) C5B—C6B 1.388 (3)
C6A—C7A 1.390 (3) C6B—C7B 1.394 (3)
C6A—C9A 1.501 (3) C6B—C9B 1.500 (3)
C7A—H7A 0.9500 C7B—H7B 0.9500
C7A—C8A 1.383 (3) C7B—C8B 1.379 (3)
C8A—H8A 0.9500 C8B—H8B 0.9500
C9A—H9AA 0.9800 C9B—H9BA 0.9800
C9A—H9AB 0.9800 C9B—H9BB 0.9800
C9A—H9AC 0.9800 C9B—H9BC 0.9800
C10A—H10A 0.9800 C10B—H10D 0.9800
C10A—H10B 0.9800 C10B—H10E 0.9800
C10A—H10C 0.9800 C10B—H10F 0.9800
C11A—H11A 0.9900 C11B—H11C 0.9900
C11A—H11B 0.9900 C11B—H11D 0.9900
C11A—C12A 1.497 (4) C11B—C12B 1.476 (4)
C12A—H12A 0.9800 C12B—H12D 0.9800
C12A—H12B 0.9800 C12B—H12E 0.9800
C12A—H12C 0.9800 C12B—H12F 0.9800
C4A—O1A—H1A 109.5 C4B—O1B—H1B 109.5
C1A—N1A—H1AA 118.1 C1B—N1B—H1BA 118.0
C1A—N1A—C11A 123.7 (2) C1B—N1B—C11B 124.01 (19)
C11A—N1A—H1AA 118.1 C11B—N1B—H1BA 118.0
N3A—N2A—H2A 120.1 N3B—N2B—H2B 121.2
C1A—N2A—H2A 120.1 C1B—N2B—H2B 121.2
C1A—N2A—N3A 119.78 (17) C1B—N2B—N3B 117.55 (18)
C2A—N3A—N2A 119.35 (17) C2B—N3B—N2B 120.16 (18)
N1A—C1A—S1A 123.78 (17) N1B—C1B—S1B 123.27 (17)
N1A—C1A—N2A 116.28 (19) N1B—C1B—N2B 116.29 (19)
N2A—C1A—S1A 119.91 (16) N2B—C1B—S1B 120.44 (17)
N3A—C2A—C3A 117.47 (17) N3B—C2B—C3B 116.11 (18)
N3A—C2A—C10A 122.20 (19) N3B—C2B—C10B 123.4 (2)
C3A—C2A—C10A 120.34 (18) C3B—C2B—C10B 120.51 (18)
C4A—C3A—C2A 122.63 (17) C4B—C3B—C2B 122.56 (18)
C8A—C3A—C2A 120.90 (17) C8B—C3B—C2B 121.23 (19)
C8A—C3A—C4A 116.43 (18) C8B—C3B—C4B 116.2 (2)
O1A—C4A—C3A 122.03 (18) O1B—C4B—C3B 121.90 (19)
O1A—C4A—C5A 116.98 (17) O1B—C4B—C5B 116.80 (19)
C5A—C4A—C3A 121.00 (18) C5B—C4B—C3B 121.29 (19)
C4A—C5A—H5A 119.3 C4B—C5B—H5B 119.3
C4A—C5A—C6A 121.46 (19) C4B—C5B—C6B 121.4 (2)
C6A—C5A—H5A 119.3 C6B—C5B—H5B 119.3
C5A—C6A—C7A 118.27 (19) C5B—C6B—C7B 118.0 (2)
C5A—C6A—C9A 119.8 (2) C5B—C6B—C9B 120.9 (2)
C7A—C6A—C9A 121.9 (2) C7B—C6B—C9B 121.1 (2)
C6A—C7A—H7A 119.7 C6B—C7B—H7B 119.5
C8A—C7A—C6A 120.64 (19) C8B—C7B—C6B 120.9 (2)
C8A—C7A—H7A 119.7 C8B—C7B—H7B 119.5
C3A—C8A—H8A 118.9 C3B—C8B—H8B 118.9
C7A—C8A—C3A 122.15 (19) C7B—C8B—C3B 122.2 (2)
C7A—C8A—H8A 118.9 C7B—C8B—H8B 118.9
C6A—C9A—H9AA 109.5 C6B—C9B—H9BA 109.5
C6A—C9A—H9AB 109.5 C6B—C9B—H9BB 109.5
C6A—C9A—H9AC 109.5 C6B—C9B—H9BC 109.5
H9AA—C9A—H9AB 109.5 H9BA—C9B—H9BB 109.5
H9AA—C9A—H9AC 109.5 H9BA—C9B—H9BC 109.5
H9AB—C9A—H9AC 109.5 H9BB—C9B—H9BC 109.5
C2A—C10A—H10A 109.5 C2B—C10B—H10D 109.5
C2A—C10A—H10B 109.5 C2B—C10B—H10E 109.5
C2A—C10A—H10C 109.5 C2B—C10B—H10F 109.5
H10A—C10A—H10B 109.5 H10D—C10B—H10E 109.5
H10A—C10A—H10C 109.5 H10D—C10B—H10F 109.5
H10B—C10A—H10C 109.5 H10E—C10B—H10F 109.5
N1A—C11A—H11A 109.7 N1B—C11B—H11C 109.6
N1A—C11A—H11B 109.7 N1B—C11B—H11D 109.6
N1A—C11A—C12A 109.8 (2) N1B—C11B—C12B 110.2 (2)
H11A—C11A—H11B 108.2 H11C—C11B—H11D 108.1
C12A—C11A—H11A 109.7 C12B—C11B—H11C 109.6
C12A—C11A—H11B 109.7 C12B—C11B—H11D 109.6
C11A—C12A—H12A 109.5 C11B—C12B—H12D 109.5
C11A—C12A—H12B 109.5 C11B—C12B—H12E 109.5
C11A—C12A—H12C 109.5 C11B—C12B—H12F 109.5
H12A—C12A—H12B 109.5 H12D—C12B—H12E 109.5
H12A—C12A—H12C 109.5 H12D—C12B—H12F 109.5
H12B—C12A—H12C 109.5 H12E—C12B—H12F 109.5
O1A—C4A—C5A—C6A −177.9 (2) O1B—C4B—C5B—C6B 177.4 (2)
N2A—N3A—C2A—C3A 178.30 (17) N2B—N3B—C2B—C3B 177.79 (18)
N2A—N3A—C2A—C10A −1.6 (3) N2B—N3B—C2B—C10B −3.3 (3)
N3A—N2A—C1A—S1A 175.07 (16) N3B—N2B—C1B—S1B 162.66 (16)
N3A—N2A—C1A—N1A −6.7 (3) N3B—N2B—C1B—N1B −18.2 (3)
N3A—C2A—C3A—C4A 4.4 (3) N3B—C2B—C3B—C4B −1.4 (3)
N3A—C2A—C3A—C8A −173.1 (2) N3B—C2B—C3B—C8B 178.3 (2)
C1A—N1A—C11A—C12A −177.2 (3) C1B—N1B—C11B—C12B −176.4 (3)
C1A—N2A—N3A—C2A −179.6 (2) C1B—N2B—N3B—C2B 160.1 (2)
C2A—C3A—C4A—O1A 1.3 (3) C2B—C3B—C4B—O1B 1.3 (3)
C2A—C3A—C4A—C5A −179.14 (19) C2B—C3B—C4B—C5B −179.1 (2)
C2A—C3A—C8A—C7A 177.6 (2) C2B—C3B—C8B—C7B −179.4 (2)
C3A—C4A—C5A—C6A 2.6 (3) C3B—C4B—C5B—C6B −2.1 (3)
C4A—C3A—C8A—C7A 0.0 (3) C4B—C3B—C8B—C7B 0.3 (3)
C4A—C5A—C6A—C7A −2.0 (3) C4B—C5B—C6B—C7B 1.5 (3)
C4A—C5A—C6A—C9A 176.5 (2) C4B—C5B—C6B—C9B −178.2 (2)
C5A—C6A—C7A—C8A 0.4 (4) C5B—C6B—C7B—C8B −0.1 (4)
C6A—C7A—C8A—C3A 0.6 (4) C6B—C7B—C8B—C3B −0.8 (4)
C8A—C3A—C4A—O1A 178.9 (2) C8B—C3B—C4B—O1B −178.4 (2)
C8A—C3A—C4A—C5A −1.5 (3) C8B—C3B—C4B—C5B 1.1 (3)
C9A—C6A—C7A—C8A −178.0 (2) C9B—C6B—C7B—C8B 179.7 (2)
C10A—C2A—C3A—C4A −175.7 (2) C10B—C2B—C3B—C4B 179.7 (2)
C10A—C2A—C3A—C8A 6.8 (3) C10B—C2B—C3B—C8B −0.6 (3)
C11A—N1A—C1A—S1A −2.5 (4) C11B—N1B—C1B—S1B −2.9 (3)
C11A—N1A—C1A—N2A 179.4 (3) C11B—N1B—C1B—N2B 178.0 (2)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O1A—H1A···N3A 0.84 1.85 2.589 (2) 146
C10A—H10B···O1Bi 0.98 2.45 3.406 (3) 164
O1B—H1B···N3B 0.84 1.81 2.545 (2) 146
N1B—H1BA···O1Aii 0.88 2.36 3.076 (2) 139
N2B—H2B···S1Biii 0.88 2.52 3.320 (2) 152

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+1, −y, −z+1; (iii) −x, −y, −z+1.

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: FJ2676).

References

  1. Agilent (2012). CrysAlis PRO and CrysAlis RED Agilent Technologies, Yarnton, England.
  2. Anderson, B. J., Freedman, M. B., Millikan, S. P. & Jasinski, J. P. (2013a). Acta Cryst. E69, o1315. [DOI] [PMC free article] [PubMed]
  3. Anderson, B. J., Keeler, A. M., O’Rourke, K. A., Krauss, S. T. & Jasinski, J. P. (2013b). Acta Cryst. E69, o11. [DOI] [PMC free article] [PubMed]
  4. Anderson, B. J., Kennedy, C. J. & Jasinski, J. P. (2012). Acta Cryst. E68, o2982. [DOI] [PMC free article] [PubMed]
  5. Chellan, P., Shunmoogam-Gounden, N., Hendricks, D. T., Gut, J., Rosenthal, P. J., Lategan, C., Smith, P. J., Chibale, K. & Smith, G. S. (2010). Eur. J. Inorg. Chem. pp. 3520–3528.
  6. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  7. Lobana, T. S., Sharma, R., Bawa, G. & Khanna, S. (2009). Coord. Chem. Rev. 253, 977–1055.
  8. Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786–790.
  9. Palatinus, L., Prathapa, S. J. & van Smaalen, S. (2012). J. Appl. Cryst. 45, 575–580.
  10. Palatinus, L. & van der Lee, A. (2008). J. Appl. Cryst. 41, 975–984.
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  12. Xie, G., Chellan, P., Mao, J., Chibale, K. & Smith, G. S. (2010). Adv. Synth. Catal. 352, 1641–1647.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S1600536814012203/fj2676sup1.cif

e-70-0o735-sup1.cif (32.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814012203/fj2676Isup2.hkl

e-70-0o735-Isup2.hkl (476KB, hkl)

Supporting information file. DOI: 10.1107/S1600536814012203/fj2676Isup3.cml

CCDC reference: 1005355

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES