Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2014 May 21;70(Pt 6):o694–o695. doi: 10.1107/S1600536814011064

1-[Bis(4-fluoro­phen­yl)meth­yl]-4-[(2Z)-3-phenyl­prop-2-en-1-yl]piperazine-1,4-diium dichloride hemihydrate

S Shivaprakash a, G Chandrasekara Reddy a, Jerry P Jasinski b,*
PMCID: PMC4051083  PMID: 24940270

Abstract

The asymmetric unit of the title monohydrated salt, 2C26H28F2N2 2+·4Cl−.H2O, consists of a 1-[bis­(4-fluoro­phen­yl)meth­yl]-4-[(2Z)-3-phenyl­prop-2-en-1-yl]piperazine-1,4-diium cation with a diprotonated piperizine ring in close proximity to two chloride anions and a single water mol­ecule that lies on a twofold rotation axis. In the cation, the piperazine ring adopts a slightly distorted chair conformation. The dihedral angles between the phenyl ring and the 4-fluoro­phenyl rings are 89.3 (9) and 35.0 (5)°. The two fluoro­phenyl rings are inclined at 65.0 (5)° to one another. In the crystal, N—H⋯Cl hydrogen bonds and weak C—H⋯Cl inter­molecular inter­actions link the mol­ecules into chains along [010]. In addition, weak C—H⋯O inter­actions between the piperizine and prop-2-en-1-yl groups with the water mol­ecule, along with weak C—H⋯Cl inter­actions between the prop-2en-1-yl and methyl groups with the chloride ions, weak C—H⋯F inter­actions between the two fluoro­phenyl groups and weak O—H⋯Cl inter­actions between the water mol­ecule and chloride ions form a three-dimensional supra­molecular network.

Related literature  

For the use of flunarizine {systematic name: (E)-1-[bis­(4-fluoro­phen­yl)meth­yl]-4-(3-phenyl-2-propen­yl)piperazine} as an anti­histamine and vasodilator, see: Agnoli et al. (1988); Prasanna & Row (2001). For the synthesis of (E)-isomers of 1-benzhydryl-4-cinnamyl piperazines, see: Cignarella & Testa (1968) and that of the Z-isomer of cinnerizine, [systematic name: (E)-1-(di­phenyl­meth­yl)-4-(3-phenyl­prop-2-en­yl)piper­azine], see; Shivaprakash & Chandrasekara Reddy (2014). For puckering parameters, see Cremer & Pople (1975). For standard bond lengths, see: Allen et al. (1987).graphic file with name e-70-0o694-scheme1.jpg

Experimental  

Crystal data  

  • 2C26H28F2N2 2+·4Cl·H2O

  • M r = 972.82

  • Monoclinic, Inline graphic

  • a = 18.2973 (6) Å

  • b = 7.02041 (14) Å

  • c = 20.1554 (6) Å

  • β = 104.601 (3)°

  • V = 2505.44 (13) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.29 mm−1

  • T = 173 K

  • 0.44 × 0.38 × 0.16 mm

Data collection  

  • Agilent Eos Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO and CrysAlis RED; Agilent, 2012) T min = 0.914, T max = 1.000

  • 32975 measured reflections

  • 8607 independent reflections

  • 6582 reflections with I > 2σ(I)

  • R int = 0.034

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.057

  • wR(F 2) = 0.153

  • S = 1.09

  • 8607 reflections

  • 306 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.65 e Å−3

  • Δρmin = −0.41 e Å−3

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO; data reduction: CrysAlis RED (Agilent, 2012); program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007; Palatinus & van der Lee, 2008; Palatinus et al., 2012); program(s) used to refine structure: SHELXL2012 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2.

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S1600536814011064/sj5400sup1.cif

e-70-0o694-sup1.cif (32KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814011064/sj5400Isup2.hkl

e-70-0o694-Isup2.hkl (471.4KB, hkl)

Supporting information file. DOI: 10.1107/S1600536814011064/sj5400Isup3.cml

CCDC reference: 1002927

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯Cl1i 0.84 (2) 2.14 (2) 2.9782 (13) 176 (2)
N2—H2⋯Cl2ii 0.86 (3) 2.17 (3) 3.0248 (13) 174 (2)
C1—H1A⋯O1W i 0.99 2.68 3.512 (2) 142
C5—H5A⋯O1W i 0.99 2.67 3.470 (2) 138
C5—H5B⋯Cl1ii 0.99 2.51 3.4934 (16) 176
C14—H14⋯Cl2i 1.00 2.49 3.4735 (15) 168
C19—H19⋯F2iii 0.95 2.46 3.244 (2) 140
O1W—H1W⋯Cl1 0.80 (3) 2.48 (3) 3.2603 (12) 163 (3)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

We express our sincere thanks to Dr Anil Kush, Director, VMSRF for his keen inter­est and support throughout this work. JPJ acknowledges the NSF–MRI program (grant No. CHE-1039027) for funds to purchase the X-ray diffractometer.

supplementary crystallographic information

1. Comment

Flunarizine, (E)-1-[bis(4-fluorophenyl)methyl]-4-(3-phenyl-2- propenyl)piperazine, is a clinically useful drug used as an antihistamine and vasodilator (Agnoli et al. (1988), Prasanna & Row (2001). Because the greater biological importance of (E)-isomers of 1-benzhydryl-4-cinnamyl piperazines has been recognised, several synthetic methods for these isomers have been described (Cignarella & Testa, 1968). However, the synthesis of (Z)-1-[bis(4-fluorophenyl)methyl]-4-(3-phenyl-2-propenyl)piperazine has only recently been reported (Shivaprakash & Chandrasekara Reddy, 2014).

The title compound, 2(C26H28F2N2), 4(Cl), H2O, (I), is a close analogue of the existing drug, flunarizine, which has an (E) configuration. The crystal structure of flunarizine has been reported (Prasanna & Row, 2001). We have prepared the (Z) isomer (I) for the first time as the crystalline hydrochloride salt to study structure activity relationships and we report its structure here.

The asymmetric unit of the title monohydrated salt, 2(C26H28F2N22+), 4(Cl-), H2O, (I), consists of a [(Z)-1-[bis(4-fluorophenyl)methyl]-4-(3-phenyl-2-propenyl)piperazine] cation with a diprotonated piperizine ring in close proximity to two chloride anions and a single water molecule that lies on a two-fold rotation axis (Fig. 1). The piperazine group adopts a slightly distorted chair conformation (puckering parameters Q, θ, and φ = 0.5911 (15)Å, 0.95 (15)° and 154 (8)°, respectively (Cremer & Pople, 1975). Bond lengths are within normal ranges (Allen et al., 1987). In the cation, the dihedral angles between the mean planes of the two 4-fluorophenyl rings with that of the phenyl ring are 89.3 (9)° and 35.0 (5)°, respectively. The two fluorophenyl groups are inclined at 65.0 (5)° to one another. In the crystal, N—H···Cl hydrogen bonds and weak C—H···Cl intermolecular interactions link the molecules into chains along [010] (Fig. 2). In addition, weak C—H···O interactions between the piperizine and prop-2-en-1-yl groups with the water molecule along with weak C—H···Cl interactions between the prop-2en-1-yl and methyl groups with the chloride ions and weak C—H···F interactions between the two fluorophenyl groups and weak O—H···Cl interactions between the water molecule and chloride ions (Table 1) form a 3-D supramolecular network.

2. Experimental

To a solution of 1-(4, 4'-difluoro phenylmethyl)-4-(2-acetaldehyde) piperazine (5.6 g, 17.0 mmol) in dichloromethane (50 ml) under a nitrogen atmosphere was added benzyltriphenyl phosphonium chloride, (6.9 g, 17.9 mmol). The mixture was cooled to 278 °K and t-BuOK (4.6 g, 41.3 mmol) was added with stirring. After completion, the reaction mass was quenched into water (100 ml). The organic layer was separated, dried over anhydrous sodium sulfate and concentrated under vacuum. The solution was then subjected to column chromatography over silica gel with an EtOAc/Hexane (1:9) elutant mixture to afford (Z)-1-[bis-(4-fluorophenyl)-methyl]-4-(cinnamyl) piperazine as a viscous liquid. This was then converted into the hydrochloride salt using ethanolic HCl and crystallized from acetone/ethanol (2:8) mp 473-475°K.

3. Refinement

The H1, H2 and H1W atoms were located from a difference map and refined isotropically. All of the remaining H atoms were placed in their calculated positions and then refined using a riding model with Atom—H lengths of 0.95Å (CH) or 0.99Å (CH2). Isotropic displacement parameters for these atoms were set to 1.2 (CH, CH2) times Ueq of the parent atom.

Figures

Fig. 1.

Fig. 1.

ORTEP drawing of the asymmetric unit of (I), showing the labeling scheme and with 30% probability displacement ellipsoids.

Fig. 2.

Fig. 2.

Crystal packing of (I) viewed along the c axis. Dashed lines indicate N—H···Cl hydrogen bonds and weak C—H···Cl intermolecular interactions which link the molecules into chains along [010].

Crystal data

2C26H28F2N22+·4Cl·H2O F(000) = 1020
Mr = 972.82 Dx = 1.290 Mg m3
Monoclinic, P2/c Mo Kα radiation, λ = 0.71073 Å
a = 18.2973 (6) Å Cell parameters from 7981 reflections
b = 7.02041 (14) Å θ = 3.5–32.4°
c = 20.1554 (6) Å µ = 0.29 mm1
β = 104.601 (3)° T = 173 K
V = 2505.44 (13) Å3 Irregular, colourless
Z = 2 0.44 × 0.38 × 0.16 mm

Data collection

Agilent Eos Gemini diffractometer 8607 independent reflections
Radiation source: Enhance (Mo) X-ray Source 6582 reflections with I > 2σ(I)
Detector resolution: 16.0416 pixels mm-1 Rint = 0.034
ω scans θmax = 32.8°, θmin = 3.1°
Absorption correction: multi-scan (CrysAlis PRO and CrysAlis RED; Agilent, 2012) h = −27→26
Tmin = 0.914, Tmax = 1.000 k = −10→10
32975 measured reflections l = −29→29

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Hydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.057 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.153 w = 1/[σ2(Fo2) + (0.0652P)2 + 1.0043P] where P = (Fo2 + 2Fc2)/3
S = 1.09 (Δ/σ)max = 0.001
8607 reflections Δρmax = 0.65 e Å3
306 parameters Δρmin = −0.41 e Å3
0 restraints

Special details

Experimental. 1H NMR: δ 7.20 - 7.35(m, 9 H, Ar-H), 6.87-6.98 (m, 4 H, Ar-H), 6.50 (d, J = 12 Hz, 1 H), 5.76 (ddd, J = 12.0, 6.6 Hz, 1 H), 4.20(s, 1 H), 3.27 (dd, J = 6.6, 1.8 Hz, 2 H), 2.40 (bd, 8 H). 13C NMR: δ 163.1, 160.6, 138.3, 137.1, 132.6, 132.5, 131.5, 129.3, 129.2, 128.9, 128.2, 126.9, 115.5, 115.3, 74.5, 56.1, 53.4, 51.7. HRMS calculated for C26H26F2N2 [M+H] + 405.2142; found 405.2145.
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
F1 0.47811 (8) 0.7591 (2) 0.63602 (8) 0.0647 (4)
F2 0.57160 (8) 0.7045 (2) 0.20291 (6) 0.0572 (3)
N1 0.92882 (7) 0.74830 (17) 0.58339 (6) 0.0225 (2)
H1 0.9389 (11) 0.865 (3) 0.5856 (10) 0.032 (5)*
N2 0.76733 (7) 0.75240 (17) 0.51554 (6) 0.0219 (2)
H2 0.7600 (14) 0.632 (4) 0.5145 (13) 0.054 (7)*
C1 0.87041 (8) 0.7138 (2) 0.62188 (8) 0.0263 (3)
H1A 0.8893 0.7589 0.6697 0.032*
H1B 0.8603 0.5754 0.6231 0.032*
C2 0.79796 (8) 0.8174 (2) 0.58809 (7) 0.0253 (3)
H2A 0.7599 0.7938 0.6144 0.030*
H2B 0.8078 0.9562 0.5886 0.030*
C3 0.82618 (8) 0.7885 (2) 0.47723 (8) 0.0274 (3)
H3A 0.8359 0.9271 0.4762 0.033*
H3B 0.8075 0.7440 0.4293 0.033*
C4 0.89918 (9) 0.6860 (2) 0.51080 (8) 0.0279 (3)
H4A 0.8901 0.5468 0.5095 0.033*
H4B 0.9373 0.7127 0.4848 0.033*
C5 1.00129 (8) 0.6496 (2) 0.61791 (8) 0.0280 (3)
H5A 1.0139 0.6773 0.6677 0.034*
H5B 0.9946 0.5102 0.6118 0.034*
C6 1.06496 (9) 0.7136 (2) 0.58886 (9) 0.0308 (3)
H6 1.0524 0.7780 0.5460 0.037*
C7 1.13753 (10) 0.6868 (3) 0.61864 (9) 0.0366 (4)
H7 1.1721 0.7381 0.5952 0.044*
C8 1.17121 (9) 0.5878 (3) 0.68320 (9) 0.0388 (4)
C9 1.23672 (11) 0.6637 (5) 0.72635 (12) 0.0609 (7)
H9 1.2568 0.7796 0.7142 0.073*
C10 1.27239 (13) 0.5731 (6) 0.78600 (13) 0.0792 (11)
H10 1.3171 0.6264 0.8145 0.095*
C11 1.24474 (16) 0.4094 (6) 0.80465 (12) 0.0829 (12)
H11 1.2700 0.3480 0.8461 0.100*
C12 1.17920 (16) 0.3301 (5) 0.76321 (14) 0.0731 (8)
H12 1.1592 0.2155 0.7765 0.088*
C13 1.14318 (12) 0.4205 (4) 0.70195 (11) 0.0517 (5)
H13 1.0990 0.3659 0.6731 0.062*
C14 0.69337 (8) 0.8548 (2) 0.48296 (8) 0.0251 (3)
H14 0.7049 0.9942 0.4854 0.030*
C15 0.63586 (8) 0.8223 (2) 0.52455 (8) 0.0257 (3)
C16 0.60876 (9) 0.6424 (2) 0.53524 (9) 0.0308 (3)
H16 0.6271 0.5335 0.5165 0.037*
C17 0.55524 (9) 0.6199 (3) 0.57288 (9) 0.0357 (4)
H17 0.5370 0.4972 0.5805 0.043*
C18 0.52962 (10) 0.7797 (3) 0.59865 (10) 0.0396 (4)
C19 0.55408 (11) 0.9604 (3) 0.58915 (11) 0.0439 (4)
H19 0.5348 1.0684 0.6075 0.053*
C20 0.60802 (10) 0.9802 (3) 0.55179 (9) 0.0355 (4)
H20 0.6261 1.1035 0.5448 0.043*
C21 0.66394 (8) 0.8064 (2) 0.40760 (8) 0.0263 (3)
C22 0.65150 (11) 0.9551 (3) 0.36112 (9) 0.0367 (4)
H22 0.6645 1.0812 0.3768 0.044*
C23 0.62021 (12) 0.9224 (3) 0.29177 (10) 0.0463 (5)
H23 0.6114 1.0246 0.2599 0.056*
C24 0.60250 (10) 0.7394 (3) 0.27056 (9) 0.0378 (4)
C25 0.61411 (11) 0.5880 (3) 0.31451 (9) 0.0401 (4)
H25 0.6013 0.4624 0.2982 0.048*
C26 0.64509 (11) 0.6225 (3) 0.38353 (9) 0.0374 (4)
H26 0.6536 0.5191 0.4149 0.045*
Cl2 0.24638 (3) 0.67703 (5) 0.48578 (2) 0.03563 (11)
Cl1 0.03137 (3) 0.83990 (6) 0.40147 (2) 0.04480 (13)
O1W 0.0000 1.0343 (4) 0.2500 0.0721 (9)
H1W 0.009 (2) 0.965 (5) 0.2828 (16) 0.095 (12)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
F1 0.0528 (8) 0.0800 (10) 0.0764 (10) 0.0008 (7) 0.0443 (7) −0.0034 (8)
F2 0.0648 (8) 0.0718 (9) 0.0270 (5) −0.0031 (7) −0.0032 (5) −0.0023 (6)
N1 0.0233 (6) 0.0167 (5) 0.0277 (6) −0.0048 (4) 0.0065 (4) −0.0019 (4)
N2 0.0232 (6) 0.0172 (5) 0.0252 (6) −0.0048 (4) 0.0057 (4) −0.0032 (4)
C1 0.0257 (7) 0.0268 (7) 0.0268 (7) −0.0042 (5) 0.0074 (5) 0.0011 (5)
C2 0.0268 (7) 0.0246 (7) 0.0242 (7) −0.0031 (5) 0.0059 (5) −0.0049 (5)
C3 0.0259 (7) 0.0326 (7) 0.0246 (7) −0.0066 (6) 0.0079 (5) −0.0016 (6)
C4 0.0269 (7) 0.0286 (7) 0.0291 (7) −0.0058 (6) 0.0087 (5) −0.0083 (6)
C5 0.0255 (7) 0.0218 (6) 0.0354 (8) −0.0002 (5) 0.0055 (6) 0.0035 (6)
C6 0.0285 (7) 0.0307 (7) 0.0337 (8) −0.0028 (6) 0.0084 (6) 0.0004 (6)
C7 0.0276 (8) 0.0473 (10) 0.0362 (9) −0.0054 (7) 0.0105 (6) −0.0044 (7)
C8 0.0229 (7) 0.0622 (12) 0.0310 (8) 0.0065 (7) 0.0065 (6) −0.0085 (8)
C9 0.0273 (9) 0.109 (2) 0.0442 (11) −0.0009 (11) 0.0045 (8) −0.0229 (12)
C10 0.0341 (11) 0.163 (3) 0.0369 (12) 0.0208 (16) 0.0014 (9) −0.0149 (16)
C11 0.0559 (15) 0.161 (3) 0.0311 (11) 0.0581 (19) 0.0092 (10) 0.0130 (15)
C12 0.0650 (16) 0.096 (2) 0.0596 (15) 0.0335 (15) 0.0176 (12) 0.0297 (15)
C13 0.0427 (11) 0.0628 (14) 0.0455 (11) 0.0125 (10) 0.0034 (8) 0.0102 (10)
C14 0.0268 (7) 0.0187 (6) 0.0291 (7) −0.0030 (5) 0.0058 (5) −0.0020 (5)
C15 0.0232 (6) 0.0260 (7) 0.0261 (7) −0.0029 (5) 0.0027 (5) −0.0045 (5)
C16 0.0276 (7) 0.0285 (7) 0.0372 (8) −0.0037 (6) 0.0098 (6) −0.0039 (6)
C17 0.0278 (8) 0.0412 (9) 0.0381 (9) −0.0067 (7) 0.0085 (6) −0.0017 (7)
C18 0.0268 (8) 0.0566 (11) 0.0378 (9) −0.0006 (8) 0.0126 (7) −0.0026 (8)
C19 0.0438 (10) 0.0455 (11) 0.0462 (11) 0.0061 (8) 0.0185 (8) −0.0103 (8)
C20 0.0388 (9) 0.0285 (8) 0.0397 (9) −0.0006 (7) 0.0110 (7) −0.0071 (7)
C21 0.0253 (7) 0.0257 (7) 0.0277 (7) −0.0024 (5) 0.0060 (5) −0.0008 (5)
C22 0.0427 (9) 0.0303 (8) 0.0351 (9) −0.0008 (7) 0.0059 (7) 0.0031 (7)
C23 0.0562 (12) 0.0420 (10) 0.0351 (9) 0.0020 (9) 0.0011 (8) 0.0093 (8)
C24 0.0342 (8) 0.0521 (11) 0.0245 (7) −0.0011 (8) 0.0023 (6) −0.0019 (7)
C25 0.0479 (10) 0.0377 (9) 0.0326 (9) −0.0091 (8) 0.0064 (7) −0.0079 (7)
C26 0.0532 (11) 0.0284 (8) 0.0285 (8) −0.0073 (7) 0.0063 (7) −0.0013 (6)
Cl2 0.0432 (2) 0.01969 (17) 0.0464 (2) −0.00479 (15) 0.01574 (17) −0.00344 (15)
Cl1 0.0689 (3) 0.02108 (18) 0.0417 (2) −0.01358 (19) 0.0089 (2) −0.00149 (15)
O1W 0.137 (3) 0.0383 (12) 0.0386 (13) 0.000 0.0176 (15) 0.000

Geometric parameters (Å, º)

F1—C18 1.354 (2) C10—H10 0.9500
F2—C24 1.360 (2) C10—C11 1.346 (5)
N1—H1 0.84 (2) C11—H11 0.9500
N1—C1 1.4903 (19) C11—C12 1.393 (5)
N1—C4 1.4920 (19) C12—H12 0.9500
N1—C5 1.5023 (19) C12—C13 1.397 (3)
N2—H2 0.86 (3) C13—H13 0.9500
N2—C2 1.4992 (18) C14—H14 1.0000
N2—C3 1.4962 (19) C14—C15 1.519 (2)
N2—C14 1.5268 (19) C14—C21 1.517 (2)
C1—H1A 0.9900 C15—C16 1.394 (2)
C1—H1B 0.9900 C15—C20 1.389 (2)
C1—C2 1.515 (2) C16—H16 0.9500
C2—H2A 0.9900 C16—C17 1.391 (2)
C2—H2B 0.9900 C17—H17 0.9500
C3—H3A 0.9900 C17—C18 1.368 (3)
C3—H3B 0.9900 C18—C19 1.374 (3)
C3—C4 1.518 (2) C19—H19 0.9500
C4—H4A 0.9900 C19—C20 1.391 (3)
C4—H4B 0.9900 C20—H20 0.9500
C5—H5A 0.9900 C21—C22 1.383 (2)
C5—H5B 0.9900 C21—C26 1.391 (2)
C5—C6 1.499 (2) C22—H22 0.9500
C6—H6 0.9500 C22—C23 1.390 (3)
C6—C7 1.326 (2) C23—H23 0.9500
C7—H7 0.9500 C23—C24 1.366 (3)
C7—C8 1.467 (3) C24—C25 1.366 (3)
C8—C9 1.397 (3) C25—H25 0.9500
C8—C13 1.372 (3) C25—C26 1.385 (2)
C9—H9 0.9500 C26—H26 0.9500
C9—C10 1.371 (4) O1W—H1W 0.80 (3)
C1—N1—H1 108.0 (14) C9—C10—H10 119.6
C1—N1—C4 109.37 (11) C11—C10—C9 120.7 (3)
C1—N1—C5 110.43 (12) C11—C10—H10 119.6
C4—N1—H1 111.1 (14) C10—C11—H11 120.0
C4—N1—C5 112.28 (12) C10—C11—C12 120.1 (2)
C5—N1—H1 105.5 (14) C12—C11—H11 120.0
C2—N2—H2 110.0 (17) C11—C12—H12 120.3
C2—N2—C14 110.42 (11) C11—C12—C13 119.4 (3)
C3—N2—H2 106.5 (17) C13—C12—H12 120.3
C3—N2—C2 108.12 (11) C8—C13—C12 120.4 (2)
C3—N2—C14 111.93 (11) C8—C13—H13 119.8
C14—N2—H2 109.8 (16) C12—C13—H13 119.8
N1—C1—H1A 109.6 N2—C14—H14 106.6
N1—C1—H1B 109.6 C15—C14—N2 110.76 (12)
N1—C1—C2 110.42 (12) C15—C14—H14 106.6
H1A—C1—H1B 108.1 C21—C14—N2 112.19 (12)
C2—C1—H1A 109.6 C21—C14—H14 106.6
C2—C1—H1B 109.6 C21—C14—C15 113.49 (12)
N2—C2—C1 111.21 (12) C16—C15—C14 122.98 (14)
N2—C2—H2A 109.4 C20—C15—C14 118.21 (14)
N2—C2—H2B 109.4 C20—C15—C16 118.80 (15)
C1—C2—H2A 109.4 C15—C16—H16 119.5
C1—C2—H2B 109.4 C17—C16—C15 120.94 (16)
H2A—C2—H2B 108.0 C17—C16—H16 119.5
N2—C3—H3A 109.5 C16—C17—H17 121.0
N2—C3—H3B 109.5 C18—C17—C16 118.02 (17)
N2—C3—C4 110.88 (13) C18—C17—H17 121.0
H3A—C3—H3B 108.1 F1—C18—C17 118.46 (19)
C4—C3—H3A 109.5 F1—C18—C19 118.21 (18)
C4—C3—H3B 109.5 C17—C18—C19 123.32 (17)
N1—C4—C3 111.06 (12) C18—C19—H19 121.1
N1—C4—H4A 109.4 C18—C19—C20 117.90 (17)
N1—C4—H4B 109.4 C20—C19—H19 121.1
C3—C4—H4A 109.4 C15—C20—C19 121.03 (17)
C3—C4—H4B 109.4 C15—C20—H20 119.5
H4A—C4—H4B 108.0 C19—C20—H20 119.5
N1—C5—H5A 109.4 C22—C21—C14 117.74 (14)
N1—C5—H5B 109.4 C22—C21—C26 118.70 (15)
H5A—C5—H5B 108.0 C26—C21—C14 123.46 (14)
C6—C5—N1 111.30 (13) C21—C22—H22 119.6
C6—C5—H5A 109.4 C21—C22—C23 120.81 (17)
C6—C5—H5B 109.4 C23—C22—H22 119.6
C5—C6—H6 117.7 C22—C23—H23 120.8
C7—C6—C5 124.69 (16) C24—C23—C22 118.38 (17)
C7—C6—H6 117.7 C24—C23—H23 120.8
C6—C7—H7 115.9 F2—C24—C23 119.28 (17)
C6—C7—C8 128.16 (17) F2—C24—C25 117.85 (17)
C8—C7—H7 115.9 C25—C24—C23 122.87 (17)
C9—C8—C7 118.3 (2) C24—C25—H25 120.9
C13—C8—C7 123.18 (17) C24—C25—C26 118.21 (17)
C13—C8—C9 118.4 (2) C26—C25—H25 120.9
C8—C9—H9 119.6 C21—C26—H26 119.5
C10—C9—C8 120.9 (3) C25—C26—C21 121.02 (17)
C10—C9—H9 119.6 C25—C26—H26 119.5
F1—C18—C19—C20 178.84 (18) C9—C10—C11—C12 0.0 (4)
F2—C24—C25—C26 −179.58 (17) C10—C11—C12—C13 0.8 (4)
N1—C1—C2—N2 59.47 (16) C11—C12—C13—C8 −1.1 (4)
N1—C5—C6—C7 163.61 (17) C13—C8—C9—C10 0.2 (3)
N2—C3—C4—N1 −58.67 (16) C14—N2—C2—C1 178.60 (12)
N2—C14—C15—C16 −61.46 (18) C14—N2—C3—C4 179.76 (11)
N2—C14—C15—C20 119.97 (15) C14—C15—C16—C17 −179.06 (15)
N2—C14—C21—C22 −123.12 (15) C14—C15—C20—C19 178.65 (16)
N2—C14—C21—C26 60.5 (2) C14—C21—C22—C23 −176.00 (17)
C1—N1—C4—C3 57.27 (16) C14—C21—C26—C25 176.01 (17)
C1—N1—C5—C6 −168.49 (13) C15—C14—C21—C22 110.39 (16)
C2—N2—C3—C4 57.92 (15) C15—C14—C21—C26 −65.9 (2)
C2—N2—C14—C15 −57.12 (15) C15—C16—C17—C18 0.5 (3)
C2—N2—C14—C21 174.93 (12) C16—C15—C20—C19 0.0 (3)
C3—N2—C2—C1 −58.64 (15) C16—C17—C18—F1 −179.29 (16)
C3—N2—C14—C15 −177.63 (12) C16—C17—C18—C19 0.0 (3)
C3—N2—C14—C21 54.42 (15) C17—C18—C19—C20 −0.5 (3)
C4—N1—C1—C2 −57.40 (16) C18—C19—C20—C15 0.4 (3)
C4—N1—C5—C6 69.16 (16) C20—C15—C16—C17 −0.5 (2)
C5—N1—C1—C2 178.55 (12) C21—C14—C15—C16 65.78 (19)
C5—N1—C4—C3 −179.78 (12) C21—C14—C15—C20 −112.80 (16)
C5—C6—C7—C8 1.9 (3) C21—C22—C23—C24 −0.4 (3)
C6—C7—C8—C9 −141.2 (2) C22—C21—C26—C25 −0.3 (3)
C6—C7—C8—C13 41.5 (3) C22—C23—C24—F2 179.79 (18)
C7—C8—C9—C10 −177.3 (2) C22—C23—C24—C25 0.1 (3)
C7—C8—C13—C12 178.0 (2) C23—C24—C25—C26 0.1 (3)
C8—C9—C10—C11 −0.5 (4) C24—C25—C26—C21 0.0 (3)
C9—C8—C13—C12 0.7 (3) C26—C21—C22—C23 0.5 (3)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1···Cl1i 0.84 (2) 2.14 (2) 2.9782 (13) 176 (2)
N2—H2···Cl2ii 0.86 (3) 2.17 (3) 3.0248 (13) 174 (2)
C1—H1A···O1Wi 0.99 2.68 3.512 (2) 142
C5—H5A···O1Wi 0.99 2.67 3.470 (2) 138
C5—H5B···Cl1ii 0.99 2.51 3.4934 (16) 176
C14—H14···Cl2i 1.00 2.49 3.4735 (15) 168
C19—H19···F2iii 0.95 2.46 3.244 (2) 140
O1W—H1W···Cl1 0.80 (3) 2.48 (3) 3.2603 (12) 163 (3)

Symmetry codes: (i) −x+1, −y+2, −z+1; (ii) −x+1, −y+1, −z+1; (iii) x, −y+2, z+1/2.

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: SJ5400).

References

  1. Agilent (2012). CrysAlis PRO and CrysAlis RED Agilent Technologies, Yarnton, England.
  2. Agnoli, A., Manna, V., Martucci, N., Fioravanti, M., Ferromilone, F., Cananzi, A., D’Andrea, G., De Rosa, A., Vizioli, R. & Sinforiani, E. (1988). Int. J. Clin. Pharmacol Res. 8, 89–97. [PubMed]
  3. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  4. Cignarella, G. & Testa, E. V. J. (1968). Med. Chem. 11, 612–615. [DOI] [PubMed]
  5. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.
  6. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  7. Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786–790.
  8. Palatinus, L., Prathapa, S. J. & van Smaalen, S. (2012). J. Appl. Cryst. 45, 575–580.
  9. Palatinus, L. & van der Lee, A. (2008). J. Appl. Cryst. 41, 975–984.
  10. Prasanna, M. D. & Row, T. N. G. (2001). J. Mol. Struct., 562, 55–61.
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  12. Shivaprakash, S. & Chandrasekara Reddy, G. (2014). Synth. Commun. 44, 600–609.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S1600536814011064/sj5400sup1.cif

e-70-0o694-sup1.cif (32KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814011064/sj5400Isup2.hkl

e-70-0o694-Isup2.hkl (471.4KB, hkl)

Supporting information file. DOI: 10.1107/S1600536814011064/sj5400Isup3.cml

CCDC reference: 1002927

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES