Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2014 May 17;70(Pt 6):o659. doi: 10.1107/S1600536814010459

2-(2-Fluoro­phen­yl)-5-iodo-7-methyl-3-methyl­sulfinyl-1-benzo­furan

Hong Dae Choi a, Uk Lee b,*
PMCID: PMC4051089  PMID: 24940242

Abstract

In the title compound, C16H12FIO2S, the dihedral angle between the plane of the benzo­furan ring system (r.m.s. deviation = 0.023 Å) and that of the 2-fluoro­phenyl ring is 39.78 (7)°. In the crystal, mol­ecules are linked via pairs of I⋯π contacts [3.812 (2) Å] and a π–π inter­action between the benzene rings of neighbouring mol­ecules [centroid–centroid distance = 3.821 (2) Å] into inversion dimers. These dimers are further linked by π–π inter­actions between the furan and benzene rings of neighbouring mol­ecules [centroid–centroid distance = 3.668 (2) Å]. The mol­ecules stack along the a-axis direction. In addition, C—H⋯O hydrogen bonds are observed between inversion-related dimers.

Related literature  

For background information and the crystal structures of related compounds, see: Choi et al. (2010, 2012, 2014).graphic file with name e-70-0o659-scheme1.jpg

Experimental  

Crystal data  

  • C16H12FIO2S

  • M r = 414.22

  • Monoclinic, Inline graphic

  • a = 7.9460 (2) Å

  • b = 24.1545 (7) Å

  • c = 7.9685 (2) Å

  • β = 100.997 (1)°

  • V = 1501.32 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.28 mm−1

  • T = 173 K

  • 0.42 × 0.40 × 0.13 mm

Data collection  

  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009) T min = 0.541, T max = 0.746

  • 14688 measured reflections

  • 3721 independent reflections

  • 3465 reflections with I > 2σ(I)

  • R int = 0.025

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.026

  • wR(F 2) = 0.059

  • S = 1.12

  • 3721 reflections

  • 192 parameters

  • H-atom parameters constrained

  • Δρmax = 0.47 e Å−3

  • Δρmin = −0.56 e Å−3

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S1600536814010459/hb7228sup1.cif

e-70-0o659-sup1.cif (23.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814010459/hb7228Isup2.hkl

e-70-0o659-Isup2.hkl (182.4KB, hkl)

Supporting information file. DOI: 10.1107/S1600536814010459/hb7228Isup3.cml

CCDC reference: 1001669

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C13—H13⋯O2i 0.95 2.49 3.355 (3) 151
C15—H15⋯O2ii 0.95 2.48 3.185 (3) 131

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

This work was supported by Dong-eui University grant No. 2014AA013.

supplementary crystallographic information

1. Comment

As a part of our ongoing study of 5-iodo-7-methyl-3-methylsulfinyl-1-benzofuran derivatives containing 4-fluorophenyl (Choi et al., 2010), 3-fluorophenyl (Choi et al., 2012) and 4-methylphenyl (Choi et al., 2014) substituents in 2-position, we report here on the crystal structure of the title compound.

In the title molecule (Fig. 1), the benzofuran unit is essentially planar, with a mean deviation of 0.019 (2) Å from the least-squares plane defined by the nine constituent atoms. The 2-fluorophenyl ring is essentially planar, with a mean deviation of 0.012 (2) Å from the least-squares plane defined by the six constituent atoms. The dihedral angle formed by the benzofuran ring system and the 2-fluorophenyl ring is 39.78 (7)°. In the crystal structure (Fig. 2), molecules are linked via pairs of C4–I1···π contacts between the iodine atom and the furan ring of a neighbouring molecule with a C4–I1···Cg1iv = 3.812 (2) Å (Cg1 is the C1/C2/C7/O1/C8 furan ring), and by a π···π interaction between the benzene rings of neighbouring molecules, with a Cg2···Cg2iv distance of 3.821 (2) Å and an interplanar distance of 3.581 (2) Å resulting in a slippage of 1.333 (2) Å (Cg2 is the C2-C7 benzene ring), into inversion dimers. These dimers are further linked by π···π interactions between the furan and benzene rings of neighbouring molecules, with a Cg1···Cg2iii distance of 3.668 (2) Å and an interplanar distance of 3.375 (2) Å resulting in a slippage of 1.437 (2) Å. The molecules stack along the a-axis direction. In addition, C–H···O hydrogen bonds (Table 1) are observed between inversion-related dimers.

2. Experimental

3-Chloroperoxybenzoic acid (77%, 224 mg, 1.0 mmol) was added in small portions to a stirred solution of 2-(2-fluorophenyl)-5-iodo-7-methyl-3-methylsulfanyl-1-benzofuran (358 mg, 0.9 mmol) in dichloromethane (40 mL) at 273 K. After being stirred at room temperature for 6h, the mixture was washed with saturated sodium bicarbonate solution and the organic layer was separated, dried over magnesium sulfate, filtered and concentrated at reduced pressure. The residue was purified by column chromatography (hexane-ethyl acetate, 1:1 v/v) to afford the title compound as a colorless solid [yield 72%, m.p. 469-470 K; Rf = 0.48 (hexane-ethyl acetate, 1:1 v/v)]. Colourless blocks were prepared by slow evaporation of a solution of the title compound in ethyl acetate at room temperature.

3. Refinement

All H atoms were positioned geometrically and refined using a riding model, with C–H = 0.95 Å for aryl, 0.99 Å for methyl H atoms. Uiso (H) = 1.2Ueq (C) for aryl and 1.5Ueq (C) for methyl H atoms. The methyl groups were allowed to rotate, but not to tip, to best fit the electron density.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title molecule with displacement ellipsoids drawn at the 50% probability level.

Fig. 2.

Fig. 2.

A view of the C–H···O, I···π and π···π interactions (dotted lines) in the crystal structure of the title compound. H atoms non-participating in hydrogen-bonding were omitted for clarity. [Symmetry codes: (i) x - 1, - y + 1/2, z - 1/2; (ii) x - 1, y, z; (iii)- x + 1, - y + 1, - z + 1; (iv) - x + 1, - y + 1, - z + 2; (v) x + 1, - y + 1/2, z + 1/2; (vi) x + 1, y, z.]

Crystal data

C16H12FIO2S F(000) = 808
Mr = 414.22 Dx = 1.833 Mg m3
Monoclinic, P21/c Melting point = 470–469 K
Hall symbol: -P 2ybc Mo Kα radiation, λ = 0.71073 Å
a = 7.9460 (2) Å Cell parameters from 8240 reflections
b = 24.1545 (7) Å θ = 2.6–28.3°
c = 7.9685 (2) Å µ = 2.28 mm1
β = 100.997 (1)° T = 173 K
V = 1501.32 (7) Å3 Block, colourless
Z = 4 0.42 × 0.40 × 0.13 mm

Data collection

Bruker SMART APEXII CCD diffractometer 3721 independent reflections
Radiation source: rotating anode 3465 reflections with I > 2σ(I)
Graphite multilayer monochromator Rint = 0.025
Detector resolution: 10.0 pixels mm-1 θmax = 28.4°, θmin = 1.7°
φ and ω scans h = −10→10
Absorption correction: multi-scan (SADABS; Bruker, 2009) k = −32→27
Tmin = 0.541, Tmax = 0.746 l = −10→10
14688 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.026 Hydrogen site location: difference Fourier map
wR(F2) = 0.059 H-atom parameters constrained
S = 1.12 w = 1/[σ2(Fo2) + (0.0242P)2 + 1.1461P] where P = (Fo2 + 2Fc2)/3
3721 reflections (Δ/σ)max = 0.002
192 parameters Δρmax = 0.47 e Å3
0 restraints Δρmin = −0.56 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
I1 0.836495 (19) 0.586239 (6) 1.028521 (19) 0.02707 (6)
S1 0.69187 (7) 0.33626 (2) 0.73135 (7) 0.02286 (12)
F1 0.54937 (17) 0.31240 (6) 0.36409 (19) 0.0312 (3)
O1 0.31221 (18) 0.43857 (6) 0.56014 (19) 0.0199 (3)
O2 0.8687 (2) 0.35305 (8) 0.7161 (2) 0.0339 (4)
C1 0.5544 (3) 0.39339 (9) 0.6766 (3) 0.0202 (4)
C2 0.5700 (3) 0.44971 (9) 0.7398 (3) 0.0194 (4)
C3 0.6952 (3) 0.48077 (9) 0.8473 (3) 0.0221 (4)
H3 0.8019 0.4651 0.8998 0.026*
C4 0.6553 (3) 0.53565 (9) 0.8730 (3) 0.0214 (4)
C5 0.4976 (3) 0.55926 (9) 0.7989 (3) 0.0223 (4)
H5 0.4764 0.5970 0.8215 0.027*
C6 0.3717 (3) 0.52899 (9) 0.6932 (3) 0.0203 (4)
C7 0.4166 (3) 0.47492 (9) 0.6656 (3) 0.0192 (4)
C8 0.4009 (3) 0.38961 (9) 0.5680 (3) 0.0195 (4)
C9 0.1982 (3) 0.55220 (10) 0.6186 (3) 0.0284 (5)
H9A 0.1731 0.5456 0.4950 0.043*
H9B 0.1973 0.5921 0.6408 0.043*
H9C 0.1110 0.5340 0.6713 0.043*
C10 0.3059 (3) 0.34517 (9) 0.4659 (3) 0.0205 (4)
C11 0.3805 (3) 0.30761 (9) 0.3698 (3) 0.0240 (4)
C12 0.2887 (3) 0.26551 (10) 0.2777 (3) 0.0311 (5)
H12 0.3433 0.2403 0.2138 0.037*
C13 0.1158 (3) 0.26053 (11) 0.2799 (3) 0.0336 (6)
H13 0.0515 0.2310 0.2201 0.040*
C14 0.0361 (3) 0.29845 (11) 0.3690 (3) 0.0298 (5)
H14 −0.0836 0.2957 0.3669 0.036*
C15 0.1300 (3) 0.34039 (10) 0.4610 (3) 0.0234 (4)
H15 0.0741 0.3663 0.5215 0.028*
C16 0.6912 (4) 0.33410 (12) 0.9561 (3) 0.0344 (6)
H16A 0.7673 0.3044 1.0092 0.052*
H16B 0.5745 0.3270 0.9740 0.052*
H16C 0.7315 0.3696 1.0081 0.052*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
I1 0.02576 (9) 0.02477 (9) 0.02996 (9) −0.00501 (5) 0.00348 (6) −0.00525 (6)
S1 0.0252 (3) 0.0190 (3) 0.0238 (3) 0.0066 (2) 0.0033 (2) −0.0005 (2)
F1 0.0262 (7) 0.0334 (8) 0.0364 (8) 0.0013 (6) 0.0118 (6) −0.0074 (6)
O1 0.0192 (7) 0.0182 (8) 0.0213 (7) 0.0021 (6) 0.0018 (6) −0.0012 (6)
O2 0.0231 (8) 0.0399 (10) 0.0395 (10) 0.0096 (7) 0.0082 (7) 0.0036 (8)
C1 0.0203 (10) 0.0188 (10) 0.0218 (10) 0.0031 (8) 0.0044 (8) −0.0002 (8)
C2 0.0205 (10) 0.0174 (10) 0.0209 (10) 0.0010 (8) 0.0050 (8) 0.0005 (8)
C3 0.0200 (10) 0.0214 (11) 0.0242 (11) 0.0012 (8) 0.0028 (8) −0.0002 (8)
C4 0.0227 (10) 0.0211 (11) 0.0209 (10) −0.0032 (8) 0.0050 (8) −0.0011 (8)
C5 0.0268 (11) 0.0162 (10) 0.0252 (11) 0.0006 (8) 0.0085 (9) −0.0002 (8)
C6 0.0212 (10) 0.0192 (10) 0.0214 (10) 0.0036 (8) 0.0060 (8) 0.0025 (8)
C7 0.0189 (10) 0.0200 (11) 0.0192 (10) 0.0000 (8) 0.0049 (8) −0.0010 (8)
C8 0.0209 (10) 0.0185 (10) 0.0193 (10) 0.0034 (8) 0.0050 (8) 0.0002 (8)
C9 0.0245 (11) 0.0232 (12) 0.0362 (13) 0.0075 (9) 0.0026 (10) 0.0011 (9)
C10 0.0236 (10) 0.0185 (11) 0.0183 (10) 0.0005 (8) 0.0011 (8) 0.0013 (8)
C11 0.0259 (11) 0.0233 (12) 0.0231 (11) 0.0014 (9) 0.0052 (9) −0.0010 (8)
C12 0.0400 (14) 0.0257 (13) 0.0286 (12) −0.0016 (10) 0.0089 (10) −0.0084 (9)
C13 0.0404 (14) 0.0299 (13) 0.0289 (12) −0.0116 (11) 0.0026 (10) −0.0069 (10)
C14 0.0257 (11) 0.0348 (14) 0.0279 (12) −0.0066 (10) 0.0024 (9) 0.0000 (10)
C15 0.0232 (10) 0.0235 (11) 0.0231 (11) 0.0006 (8) 0.0039 (8) 0.0006 (8)
C16 0.0433 (14) 0.0357 (14) 0.0246 (12) 0.0091 (11) 0.0077 (10) 0.0058 (10)

Geometric parameters (Å, º)

I1—C4 2.102 (2) C8—C10 1.466 (3)
S1—O2 1.4898 (18) C9—H9A 0.9800
S1—C1 1.763 (2) C9—H9B 0.9800
S1—C16 1.793 (2) C9—H9C 0.9800
F1—C11 1.356 (3) C10—C11 1.391 (3)
O1—C8 1.372 (3) C10—C15 1.396 (3)
O1—C7 1.378 (2) C11—C12 1.379 (3)
C1—C8 1.357 (3) C12—C13 1.383 (4)
C1—C2 1.448 (3) C12—H12 0.9500
C2—C7 1.389 (3) C13—C14 1.384 (4)
C2—C3 1.400 (3) C13—H13 0.9500
C3—C4 1.387 (3) C14—C15 1.383 (3)
C3—H3 0.9500 C14—H14 0.9500
C4—C5 1.401 (3) C15—H15 0.9500
C5—C6 1.387 (3) C16—H16A 0.9800
C5—H5 0.9500 C16—H16B 0.9800
C6—C7 1.383 (3) C16—H16C 0.9800
C6—C9 1.502 (3)
O2—S1—C1 108.46 (10) C6—C9—H9B 109.5
O2—S1—C16 105.79 (12) H9A—C9—H9B 109.5
C1—S1—C16 98.65 (11) C6—C9—H9C 109.5
C8—O1—C7 106.08 (16) H9A—C9—H9C 109.5
C8—C1—C2 106.99 (18) H9B—C9—H9C 109.5
C8—C1—S1 122.98 (17) C11—C10—C15 117.4 (2)
C2—C1—S1 129.91 (16) C11—C10—C8 123.7 (2)
C7—C2—C3 119.2 (2) C15—C10—C8 118.9 (2)
C7—C2—C1 104.70 (18) F1—C11—C12 118.1 (2)
C3—C2—C1 136.0 (2) F1—C11—C10 119.4 (2)
C4—C3—C2 116.5 (2) C12—C11—C10 122.4 (2)
C4—C3—H3 121.7 C11—C12—C13 118.9 (2)
C2—C3—H3 121.7 C11—C12—H12 120.5
C3—C4—C5 122.5 (2) C13—C12—H12 120.5
C3—C4—I1 119.52 (16) C12—C13—C14 120.1 (2)
C5—C4—I1 117.95 (16) C12—C13—H13 119.9
C6—C5—C4 121.7 (2) C14—C13—H13 119.9
C6—C5—H5 119.2 C15—C14—C13 120.2 (2)
C4—C5—H5 119.2 C15—C14—H14 119.9
C7—C6—C5 114.60 (19) C13—C14—H14 119.9
C7—C6—C9 122.3 (2) C14—C15—C10 120.8 (2)
C5—C6—C9 123.0 (2) C14—C15—H15 119.6
O1—C7—C6 123.72 (19) C10—C15—H15 119.6
O1—C7—C2 110.94 (18) S1—C16—H16A 109.5
C6—C7—C2 125.3 (2) S1—C16—H16B 109.5
C1—C8—O1 111.24 (18) H16A—C16—H16B 109.5
C1—C8—C10 135.1 (2) S1—C16—H16C 109.5
O1—C8—C10 113.59 (17) H16A—C16—H16C 109.5
C6—C9—H9A 109.5 H16B—C16—H16C 109.5
O2—S1—C1—C8 132.80 (19) C3—C2—C7—C6 −2.5 (3)
C16—S1—C1—C8 −117.3 (2) C1—C2—C7—C6 178.2 (2)
O2—S1—C1—C2 −51.8 (2) C2—C1—C8—O1 −2.2 (2)
C16—S1—C1—C2 58.1 (2) S1—C1—C8—O1 174.07 (15)
C8—C1—C2—C7 2.1 (2) C2—C1—C8—C10 −178.3 (2)
S1—C1—C2—C7 −173.83 (18) S1—C1—C8—C10 −2.0 (4)
C8—C1—C2—C3 −177.0 (2) C7—O1—C8—C1 1.4 (2)
S1—C1—C2—C3 7.0 (4) C7—O1—C8—C10 178.36 (17)
C7—C2—C3—C4 0.4 (3) C1—C8—C10—C11 −44.0 (4)
C1—C2—C3—C4 179.5 (2) O1—C8—C10—C11 140.0 (2)
C2—C3—C4—C5 1.0 (3) C1—C8—C10—C15 137.3 (3)
C2—C3—C4—I1 −178.86 (15) O1—C8—C10—C15 −38.6 (3)
C3—C4—C5—C6 −0.6 (3) C15—C10—C11—F1 176.76 (19)
I1—C4—C5—C6 179.31 (16) C8—C10—C11—F1 −1.9 (3)
C4—C5—C6—C7 −1.3 (3) C15—C10—C11—C12 −2.6 (3)
C4—C5—C6—C9 176.9 (2) C8—C10—C11—C12 178.7 (2)
C8—O1—C7—C6 −179.5 (2) F1—C11—C12—C13 −179.0 (2)
C8—O1—C7—C2 0.0 (2) C10—C11—C12—C13 0.4 (4)
C5—C6—C7—O1 −177.70 (19) C11—C12—C13—C14 2.0 (4)
C9—C6—C7—O1 4.1 (3) C12—C13—C14—C15 −2.2 (4)
C5—C6—C7—C2 2.9 (3) C13—C14—C15—C10 −0.1 (4)
C9—C6—C7—C2 −175.3 (2) C11—C10—C15—C14 2.5 (3)
C3—C2—C7—O1 178.00 (18) C8—C10—C15—C14 −178.8 (2)
C1—C2—C7—O1 −1.3 (2)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C13—H13···O2i 0.95 2.49 3.355 (3) 151
C15—H15···O2ii 0.95 2.48 3.185 (3) 131

Symmetry codes: (i) x−1, −y+1/2, z−1/2; (ii) x−1, y, z.

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: HB7228).

References

  1. Brandenburg, K. (1998). DIAMOND Crystal Impact GbR, Bonn, Germany.
  2. Bruker (2009). APEX2, SADABS and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Choi, H. D., Seo, P. J. & Lee, U. (2012). Acta Cryst. E68, o1612. [DOI] [PMC free article] [PubMed]
  4. Choi, H. D., Seo, P. J. & Lee, U. (2014). Acta Cryst. E70, o178. [DOI] [PMC free article] [PubMed]
  5. Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2010). Acta Cryst. E66, o1680. [DOI] [PMC free article] [PubMed]
  6. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S1600536814010459/hb7228sup1.cif

e-70-0o659-sup1.cif (23.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814010459/hb7228Isup2.hkl

e-70-0o659-Isup2.hkl (182.4KB, hkl)

Supporting information file. DOI: 10.1107/S1600536814010459/hb7228Isup3.cml

CCDC reference: 1001669

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES