Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2014 May 3;70(Pt 6):o636–o637. doi: 10.1107/S1600536814009738

N-(1,5-Dimethyl-3-oxo-2-phenyl-2,3-di­hydro-1H-pyrazol-4-yl)-2-(4-nitro­phen­yl)acetamide

Manpreet Kaur a, Jerry P Jasinski b,*, H S Yathirajan a, B Narayana c, K Byrappa d
PMCID: PMC4051092  PMID: 24940224

Abstract

In the title compound, C19H18N4O4, the nitro­phenyl and phenyl rings are twisted by 67.0 (6) and 37.4 (4)°, respectively, with respect to the pyrazole ring plane [maximum deviation = 0.0042 (16) Å]. The dihedral angle between the mean planes of the phenyl rings is 59.3 (3)°. The amide group, with a C—N—C—C torsion angle of 177.54 (13)°, is twisted away from the plane of the pyrazole ring in an anti­periplanar conformation. In the crystal, N—H⋯O hydrogen bonds involving the carbonyl group on the pyrazole ring and the amide group, together with weak C—H⋯O inter­actions forming R 2 2(10) graph-set motifs, link the mol­ecules into chains along [100]. Additional weak C—H⋯O inter­actions involving the nitro­phenyl rings further link the mol­ecules along [001], also forming R 2 2(10) graph-set motifs, thereby generating (010) layers.

Related literature  

For the structural similarity of N-substituted 2-aryl­acetamides to the lateral chain of natural benzyl­penicillin, see: Mijin & Marinkovic (2006); Mijin et al. (2008). For the coordination abilities of amides, see: Wu et al. (2008, 2010). For the pharmaceutical, insecticidal and non-linear properties of pyrazoles, see: Chandrakantha et al. (2013); Cheng et al. (2008); Hatton et al. (1993); Liu et al. (2010). For related structures, see: Fun et al. (2012); Butcher et al. (2013a ,b ); Kaur et al. (2013); Mahan et al. (2013). For standard bond lengths, see: Allen et al. (1987).graphic file with name e-70-0o636-scheme1.jpg

Experimental  

Crystal data  

  • C19H18N4O4

  • M r = 366.37

  • Triclinic, Inline graphic

  • a = 6.7023 (6) Å

  • b = 8.6335 (8) Å

  • c = 15.8720 (13) Å

  • α = 76.305 (7)°

  • β = 84.399 (7)°

  • γ = 77.252 (7)°

  • V = 869.33 (13) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 0.84 mm−1

  • T = 173 K

  • 0.28 × 0.22 × 0.12 mm

Data collection  

  • Agilent Eos Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO and CrysAlis RED; Agilent, 2012) T min = 0.851, T max = 1.000

  • 5113 measured reflections

  • 3262 independent reflections

  • 2913 reflections with I > 2σ(I)

  • R int = 0.030

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.046

  • wR(F 2) = 0.129

  • S = 1.07

  • 3262 reflections

  • 247 parameters

  • H-atom parameters constrained

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.21 e Å−3

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO; data reduction: CrysAlis RED (Agilent, 2012); program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007); program(s) used to refine structure: SHELXL2012 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2.

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S1600536814009738/hg5393sup1.cif

e-70-0o636-sup1.cif (26.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814009738/hg5393Isup2.hkl

e-70-0o636-Isup2.hkl (179KB, hkl)

Supporting information file. DOI: 10.1107/S1600536814009738/hg5393Isup3.cml

CCDC reference: 1000268

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O2i 0.86 2.03 2.8658 (18) 164
C7—H7⋯O4ii 0.93 2.54 3.307 (2) 139
C18—H18B⋯O2iii 0.96 2.56 3.336 (2) 138

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

MK is grateful to the CPEPA–UGC for the award of a JRF and thanks the University of Mysore for research facilities. JPJ acknowledges the NSF–MRI program (grant No. CHE-1039027) for funds to purchase the X-ray diffractometer.

supplementary crystallographic information

1. Comment

N-Substituted 2-arylacetamides are biologically active compounds because of their structural similarity to the lateral chain of natural benzylpenicillin (Mijin et al., 2006, 2008). Amides are also used as ligands due to their excellent coordination abilities (Wu et al., 2008, 2010). In a variety of biological heterocyclic compounds, N-pyrazole derivatives are of great interest because of their chemical and pharmaceutical properties (Cheng et al., 2008). Some of the N-pyrazole derivatives have been found to exhibit good insecticidal activities (Hatton et al., 1993), antifungal activities (Liu et al., 2010) and non-linear optical properties (Chandrakantha et al., 2013). Crystal structures of some related acetamide and pyrazole derivatives including: N-(1,5-dimethyl-3-oxo-2-phenyl-2,3-dihrdro-1H-pyrazol-4-yl)-2- [4-(methylsulfanyl)phenyl]acetamide, (Fun et al., 2012), 2-(2,4-dichlorophenyl)-N-(1,5-dimethyl-3-oxo-2- phenyl)-N-(1,5-dimethyl-3-oxo-2-phenyl-2,3-dihydro-1H-pyrazol- 4-yl)acetamide (Butcher et al., 2013a,b), 2-(3,4-Dichloro phenyl)-N-(1,5-dimethyl-3-oxo-2-phenyl-2,3-dihydro-1H-pyrazol-4-yl) acteamide (Mahan et al., 2013) and recently N-(1,5-Dimethyl- 3-oxo-2-phenyl-2,3-dihydro-1H-pyrazol-4-yl)-2-phenylacetamide (Kaur et al., 2013) have been reported. In view of the importance of amide derivatives of pyrazoles, this paper reports the crystal structure of the title compound (I), C19H18N4O4.

The title compound, (I), C19H18N4O4, crystallizes with one independent molecule in the asymmetric unit (Fig. 1). In the molecule, the pyrazole ring is nearly planar with C9 atom showing a maximum deviation of 0.0042 (16)Å. The mean planes of the 4-nitrophenyl and phenyl rings is twisted with respect to that of the pyrazole ring by 67.0 (6)° and 37.4 (4)°, respectively. The dihedral angle between the mean planes of the two phenyl rings is 59.3 (3)°. The amide group, with a torsion angle of 177.54° is twisted away from the plane of the pyrazole ring in an anti-periplanar conformation. Bond lengths are in normal ranges (Allen et al., 1987). Classical N—H···O intermolecular hydrogen bonds involving the pyrazole ring and the amide group along with weak C—H···O intermolecular interactions forming R22(10) graph set motifs link the molecules into chains along [100]. Additional weak C—H···O intermolecular interactions involving the nitrophenyl rings link the molecules further along [001] also forming R22(10) graph set motifs and further extending crystal packing into a 2-D supramolecular network (Fig. 2).

2. Experimental

4-Nitrophenylacetic acid (0.181 g, 1 mmol) and 4-aminoantipyrine (0.203 g, 1 mmol), 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide hydrochloride (1.0 g, 0.01 mol) and were dissolved in dichloromethane (20 mL). The mixture was stirred in presence of triethylamine at 273 K for about 3 h (Fig. 3). The reaction completion was confirmed by thin layer chormatography. The contents were poured into 100 ml of ice-cold aqueous hydrochloric acid with stirring, which was extracted thrice with dichloromethane. The organic layer was washed with a saturated NaHCO3 solution and brine solution, dried and concentrated under reduced pressure to give the title compound, (I). Single crystals were grown from dichloromethane and and further recrystallised from methanol solution by the slow evaporation method which were subsequently used for x-ray studies.

3. Refinement

All of the H atoms were placed in their calculated positions and then refined using the riding model with Atom—H lengths of 0.93Å (CH); 0.97Å (CH2); 0.96Å (CH3) or 0.86Å (NH). Isotropic displacement parameters for these atoms were set to 1.2 (CH, CH2, NH)and 1.5 (CH3) times Ueq of the parent atom. Idealised Me refined as rotating group.

Figures

Fig. 1.

Fig. 1.

ORTEP drawing of (I) (C19H18N4O4) showing the labeling scheme of the molecule with 30% probability displacement ellipsoids.

Fig. 2.

Fig. 2.

Molecular packing for (I) viewed along the b axis. Dashed lines indicate N—H···O intermolecular hydrogen bonds and weak C—H···O intermolecular interactions forming R22(10) graph set motifs linking the molecules into chains along [100]. Additional weak C—H···O intermolecular interactions involving the nitrophenyl rings link the molecules further along [001] also forming R22(10) graph set motifs viewed with dashed lines. H atoms not involved in hydrogen bonding have been removed for clarity.

Fig. 3.

Fig. 3.

Synthesis scheme of (I).

Crystal data

C19H18N4O4 Z = 2
Mr = 366.37 F(000) = 384
Triclinic, P1 Dx = 1.400 Mg m3
a = 6.7023 (6) Å Cu Kα radiation, λ = 1.54184 Å
b = 8.6335 (8) Å Cell parameters from 2476 reflections
c = 15.8720 (13) Å θ = 5.4–71.4°
α = 76.305 (7)° µ = 0.84 mm1
β = 84.399 (7)° T = 173 K
γ = 77.252 (7)° Block, colourless
V = 869.33 (13) Å3 0.28 × 0.22 × 0.12 mm

Data collection

Agilent Eos Gemini diffractometer 3262 independent reflections
Radiation source: Enhance (Cu) X-ray Source 2913 reflections with I > 2σ(I)
Detector resolution: 16.0416 pixels mm-1 Rint = 0.030
ω scans θmax = 71.6°, θmin = 5.4°
Absorption correction: multi-scan (CrysAlis PRO and CrysAlis RED; Agilent, 2012) h = −4→8
Tmin = 0.851, Tmax = 1.000 k = −10→10
5113 measured reflections l = −19→19

Refinement

Refinement on F2 Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.046 w = 1/[σ2(Fo2) + (0.0731P)2 + 0.1699P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.129 (Δ/σ)max < 0.001
S = 1.07 Δρmax = 0.27 e Å3
3262 reflections Δρmin = −0.21 e Å3
247 parameters Extinction correction: SHELXL2012 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraints Extinction coefficient: 0.0160 (14)
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.1021 (2) 0.22514 (15) 0.69436 (8) 0.0438 (3)
O2 0.42534 (16) 0.19900 (14) 0.42650 (7) 0.0318 (3)
O3 0.5894 (2) 0.31428 (19) 1.03446 (9) 0.0505 (4)
O4 0.8856 (2) 0.18161 (18) 1.00103 (10) 0.0521 (4)
N1 0.2446 (2) 0.05926 (16) 0.60349 (8) 0.0288 (3)
H1 0.3271 −0.0300 0.5983 0.035*
N2 −0.10661 (19) 0.30173 (16) 0.44159 (8) 0.0285 (3)
N3 0.08379 (19) 0.31651 (16) 0.39847 (8) 0.0273 (3)
N4 0.6997 (2) 0.22341 (17) 0.99332 (9) 0.0342 (3)
C1 0.2184 (2) 0.10192 (19) 0.68181 (10) 0.0295 (3)
C2 0.3372 (3) −0.02284 (19) 0.75387 (10) 0.0333 (4)
H2A 0.2456 −0.0893 0.7878 0.040*
H2B 0.4453 −0.0940 0.7277 0.040*
C3 0.4314 (2) 0.04908 (18) 0.81419 (9) 0.0290 (3)
C4 0.3122 (3) 0.1581 (2) 0.86039 (11) 0.0345 (4)
H4 0.1727 0.1924 0.8516 0.041*
C5 0.3993 (3) 0.2157 (2) 0.91904 (11) 0.0347 (4)
H5 0.3196 0.2879 0.9502 0.042*
C6 0.6072 (2) 0.16397 (18) 0.93061 (9) 0.0292 (3)
C7 0.7300 (3) 0.0574 (2) 0.88551 (11) 0.0348 (4)
H7 0.8698 0.0247 0.8940 0.042*
C8 0.6403 (3) 0.0001 (2) 0.82728 (10) 0.0336 (4)
H8 0.7208 −0.0721 0.7964 0.040*
C9 0.1396 (2) 0.15810 (18) 0.53105 (9) 0.0273 (3)
C10 −0.0656 (2) 0.20985 (19) 0.52365 (10) 0.0288 (3)
C11 0.2410 (2) 0.22118 (18) 0.45045 (9) 0.0259 (3)
C12 0.0955 (2) 0.35883 (18) 0.30627 (10) 0.0270 (3)
C13 −0.0571 (3) 0.33649 (19) 0.25914 (10) 0.0321 (4)
H13 −0.1676 0.2941 0.2878 0.039*
C14 −0.0426 (3) 0.3779 (2) 0.16951 (11) 0.0377 (4)
H14 −0.1457 0.3660 0.1378 0.045*
C15 0.1246 (3) 0.4370 (2) 0.12657 (11) 0.0402 (4)
H15 0.1350 0.4629 0.0662 0.048*
C16 0.2765 (3) 0.4574 (2) 0.17385 (11) 0.0377 (4)
H16 0.3896 0.4955 0.1449 0.045*
C17 0.2615 (2) 0.42151 (19) 0.26367 (10) 0.0319 (4)
H17 0.3612 0.4391 0.2951 0.038*
C18 −0.2656 (2) 0.4522 (2) 0.42912 (11) 0.0346 (4)
H18A −0.2460 0.5174 0.4677 0.052*
H18B −0.3983 0.4248 0.4414 0.052*
H18C −0.2561 0.5122 0.3702 0.052*
C19 −0.2353 (3) 0.1816 (2) 0.58962 (11) 0.0402 (4)
H19A −0.2664 0.2676 0.6206 0.060*
H19B −0.1943 0.0792 0.6296 0.060*
H19C −0.3545 0.1799 0.5612 0.060*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0579 (8) 0.0399 (7) 0.0327 (6) 0.0048 (6) −0.0132 (5) −0.0154 (5)
O2 0.0265 (6) 0.0381 (6) 0.0309 (6) −0.0061 (4) −0.0018 (4) −0.0081 (5)
O3 0.0527 (8) 0.0643 (9) 0.0441 (8) −0.0095 (7) −0.0063 (6) −0.0315 (7)
O4 0.0444 (8) 0.0567 (8) 0.0606 (9) −0.0034 (6) −0.0248 (6) −0.0207 (7)
N1 0.0320 (7) 0.0311 (7) 0.0243 (6) −0.0055 (5) −0.0044 (5) −0.0077 (5)
N2 0.0241 (6) 0.0364 (7) 0.0266 (7) −0.0075 (5) −0.0009 (5) −0.0088 (5)
N3 0.0253 (6) 0.0338 (7) 0.0244 (6) −0.0067 (5) −0.0013 (5) −0.0088 (5)
N4 0.0423 (8) 0.0332 (7) 0.0280 (7) −0.0087 (6) −0.0102 (6) −0.0044 (6)
C1 0.0351 (8) 0.0311 (8) 0.0252 (7) −0.0097 (6) −0.0051 (6) −0.0075 (6)
C2 0.0468 (9) 0.0282 (8) 0.0269 (8) −0.0086 (7) −0.0076 (7) −0.0068 (6)
C3 0.0401 (9) 0.0276 (7) 0.0197 (7) −0.0090 (6) −0.0050 (6) −0.0023 (6)
C4 0.0303 (8) 0.0438 (9) 0.0318 (8) −0.0058 (7) −0.0037 (6) −0.0135 (7)
C5 0.0375 (9) 0.0380 (9) 0.0307 (8) −0.0035 (7) −0.0029 (6) −0.0147 (7)
C6 0.0371 (8) 0.0291 (8) 0.0226 (7) −0.0099 (6) −0.0064 (6) −0.0032 (6)
C7 0.0322 (8) 0.0377 (9) 0.0328 (8) −0.0025 (6) −0.0080 (6) −0.0065 (7)
C8 0.0402 (9) 0.0307 (8) 0.0284 (8) −0.0003 (6) −0.0045 (6) −0.0088 (6)
C9 0.0318 (8) 0.0304 (8) 0.0237 (7) −0.0098 (6) −0.0041 (6) −0.0095 (6)
C10 0.0322 (8) 0.0337 (8) 0.0252 (7) −0.0118 (6) −0.0017 (6) −0.0107 (6)
C11 0.0284 (7) 0.0275 (7) 0.0254 (7) −0.0068 (6) −0.0041 (6) −0.0106 (6)
C12 0.0324 (8) 0.0251 (7) 0.0242 (7) −0.0042 (6) −0.0034 (6) −0.0078 (5)
C13 0.0356 (8) 0.0319 (8) 0.0310 (8) −0.0077 (6) −0.0064 (6) −0.0085 (6)
C14 0.0478 (10) 0.0357 (9) 0.0313 (9) −0.0048 (7) −0.0133 (7) −0.0098 (7)
C15 0.0567 (11) 0.0367 (9) 0.0234 (8) −0.0037 (8) −0.0041 (7) −0.0041 (6)
C16 0.0453 (10) 0.0329 (8) 0.0311 (9) −0.0073 (7) 0.0037 (7) −0.0023 (7)
C17 0.0345 (8) 0.0309 (8) 0.0306 (8) −0.0071 (6) −0.0029 (6) −0.0064 (6)
C18 0.0310 (8) 0.0354 (8) 0.0390 (9) −0.0041 (6) −0.0019 (6) −0.0137 (7)
C19 0.0346 (9) 0.0571 (11) 0.0315 (9) −0.0166 (8) 0.0025 (7) −0.0098 (8)

Geometric parameters (Å, º)

O1—C1 1.217 (2) C7—H7 0.9300
O2—C11 1.2436 (19) C7—C8 1.384 (2)
O3—N4 1.2168 (19) C8—H8 0.9300
O4—N4 1.2278 (19) C9—C10 1.357 (2)
N1—H1 0.8600 C9—C11 1.435 (2)
N1—C1 1.3630 (19) C10—C19 1.489 (2)
N1—C9 1.405 (2) C12—C13 1.396 (2)
N2—N3 1.4047 (17) C12—C17 1.390 (2)
N2—C10 1.373 (2) C13—H13 0.9300
N2—C18 1.473 (2) C13—C14 1.382 (2)
N3—C11 1.3905 (19) C14—H14 0.9300
N3—C12 1.4206 (19) C14—C15 1.386 (3)
N4—C6 1.463 (2) C15—H15 0.9300
C1—C2 1.523 (2) C15—C16 1.386 (3)
C2—H2A 0.9700 C16—H16 0.9300
C2—H2B 0.9700 C16—C17 1.384 (2)
C2—C3 1.508 (2) C17—H17 0.9300
C3—C4 1.394 (2) C18—H18A 0.9600
C3—C8 1.391 (2) C18—H18B 0.9600
C4—H4 0.9300 C18—H18C 0.9600
C4—C5 1.381 (2) C19—H19A 0.9600
C5—H5 0.9300 C19—H19B 0.9600
C5—C6 1.382 (2) C19—H19C 0.9600
C6—C7 1.378 (2)
C1—N1—H1 119.3 N1—C9—C11 123.26 (13)
C1—N1—C9 121.36 (13) C10—C9—N1 127.98 (14)
C9—N1—H1 119.3 C10—C9—C11 108.77 (13)
N3—N2—C18 115.56 (12) N2—C10—C19 120.59 (14)
C10—N2—N3 106.45 (12) C9—C10—N2 109.94 (13)
C10—N2—C18 120.24 (13) C9—C10—C19 129.46 (15)
N2—N3—C12 118.84 (12) O2—C11—N3 124.28 (14)
C11—N3—N2 109.85 (12) O2—C11—C9 131.03 (14)
C11—N3—C12 125.33 (12) N3—C11—C9 104.68 (13)
O3—N4—O4 122.92 (14) C13—C12—N3 120.30 (14)
O3—N4—C6 118.50 (14) C17—C12—N3 119.20 (14)
O4—N4—C6 118.56 (14) C17—C12—C13 120.49 (15)
O1—C1—N1 123.02 (14) C12—C13—H13 120.3
O1—C1—C2 122.67 (14) C14—C13—C12 119.43 (16)
N1—C1—C2 114.22 (13) C14—C13—H13 120.3
C1—C2—H2A 108.6 C13—C14—H14 119.8
C1—C2—H2B 108.6 C13—C14—C15 120.40 (16)
H2A—C2—H2B 107.6 C15—C14—H14 119.8
C3—C2—C1 114.64 (13) C14—C15—H15 120.1
C3—C2—H2A 108.6 C14—C15—C16 119.79 (15)
C3—C2—H2B 108.6 C16—C15—H15 120.1
C4—C3—C2 121.41 (15) C15—C16—H16 119.7
C8—C3—C2 119.46 (14) C17—C16—C15 120.67 (16)
C8—C3—C4 119.05 (14) C17—C16—H16 119.7
C3—C4—H4 119.7 C12—C17—H17 120.4
C5—C4—C3 120.64 (15) C16—C17—C12 119.16 (15)
C5—C4—H4 119.7 C16—C17—H17 120.4
C4—C5—H5 120.6 N2—C18—H18A 109.5
C4—C5—C6 118.71 (15) N2—C18—H18B 109.5
C6—C5—H5 120.6 N2—C18—H18C 109.5
C5—C6—N4 118.90 (14) H18A—C18—H18B 109.5
C7—C6—N4 118.88 (14) H18A—C18—H18C 109.5
C7—C6—C5 122.21 (14) H18B—C18—H18C 109.5
C6—C7—H7 120.8 C10—C19—H19A 109.5
C6—C7—C8 118.36 (15) C10—C19—H19B 109.5
C8—C7—H7 120.8 C10—C19—H19C 109.5
C3—C8—H8 119.5 H19A—C19—H19B 109.5
C7—C8—C3 121.01 (15) H19A—C19—H19C 109.5
C7—C8—H8 119.5 H19B—C19—H19C 109.5
O1—C1—C2—C3 −43.2 (2) C4—C5—C6—N4 −179.40 (14)
O3—N4—C6—C5 1.4 (2) C4—C5—C6—C7 0.1 (3)
O3—N4—C6—C7 −178.19 (15) C5—C6—C7—C8 −0.5 (2)
O4—N4—C6—C5 −177.43 (15) C6—C7—C8—C3 0.2 (2)
O4—N4—C6—C7 3.0 (2) C8—C3—C4—C5 −0.7 (2)
N1—C1—C2—C3 140.27 (14) C9—N1—C1—O1 1.0 (2)
N1—C9—C10—N2 −178.78 (14) C9—N1—C1—C2 177.54 (13)
N1—C9—C10—C19 2.0 (3) C10—N2—N3—C11 5.88 (16)
N1—C9—C11—O2 3.9 (2) C10—N2—N3—C12 160.12 (13)
N1—C9—C11—N3 −177.63 (13) C10—C9—C11—O2 −176.07 (15)
N2—N3—C11—O2 173.55 (13) C10—C9—C11—N3 2.41 (16)
N2—N3—C11—C9 −5.07 (15) C11—N3—C12—C13 130.08 (16)
N2—N3—C12—C13 −19.9 (2) C11—N3—C12—C17 −49.4 (2)
N2—N3—C12—C17 160.63 (13) C11—C9—C10—N2 1.18 (17)
N3—N2—C10—C9 −4.27 (16) C11—C9—C10—C19 −178.02 (16)
N3—N2—C10—C19 175.01 (13) C12—N3—C11—O2 21.4 (2)
N3—C12—C13—C14 −179.79 (14) C12—N3—C11—C9 −157.26 (14)
N3—C12—C17—C16 177.76 (14) C12—C13—C14—C15 1.7 (2)
N4—C6—C7—C8 179.08 (14) C13—C12—C17—C16 −1.8 (2)
C1—N1—C9—C10 −56.9 (2) C13—C14—C15—C16 −1.1 (3)
C1—N1—C9—C11 123.16 (16) C14—C15—C16—C17 −0.9 (3)
C1—C2—C3—C4 57.6 (2) C15—C16—C17—C12 2.4 (2)
C1—C2—C3—C8 −125.41 (16) C17—C12—C13—C14 −0.3 (2)
C2—C3—C4—C5 176.33 (15) C18—N2—N3—C11 142.19 (13)
C2—C3—C8—C7 −176.71 (15) C18—N2—N3—C12 −63.56 (17)
C3—C4—C5—C6 0.4 (3) C18—N2—C10—C9 −138.12 (14)
C4—C3—C8—C7 0.3 (2) C18—N2—C10—C19 41.2 (2)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1···O2i 0.86 2.03 2.8658 (18) 164
C7—H7···O4ii 0.93 2.54 3.307 (2) 139
C18—H18B···O2iii 0.96 2.56 3.336 (2) 138

Symmetry codes: (i) −x+1, −y, −z+1; (ii) −x+2, −y, −z+2; (iii) x−1, y, z.

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: HG5393).

References

  1. Agilent (2012). CrysAlis PRO and CrysAlis RED Agilent Technologies, Yarnton, England.
  2. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  3. Butcher, R. J., Mahan, A., Nayak, P. S., Narayana, B. & Yathirajan, H. S. (2013a). Acta Cryst. E69, o46–o47. [DOI] [PMC free article] [PubMed]
  4. Butcher, R. J., Mahan, A., Nayak, P. S., Narayana, B. & Yathirajan, H. S. (2013b). Acta Cryst. E69, o39. [DOI] [PMC free article] [PubMed]
  5. Chandrakantha, B., Isloor, A. M., Sridharan, K., Philip, R., Shetty, P. & Padaki, M. (2013). Arab. J Chem. 6, 97–102.
  6. Cheng, J. L., Wei, F. L., Zhu, L., Zhao, J. H. & Zhu, G. N. (2008). Chin. J. Org. Chem. 28, 622–627.
  7. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  8. Fun, H.-K., Quah, C. K., Nayak, P. S., Narayana, B. & Sarojini, B. K. (2012). Acta Cryst. E68, o2677. [DOI] [PMC free article] [PubMed]
  9. Hatton, L. R., Buntain, I. G., Hawkins, D. W., Parnell, E. W. & Pearson, C. J. (1993). US Patent 5232940.
  10. Kaur, M., Jasinski, J. P., Anderson, B. J., Yathirajan, H. S. & Narayana, B. (2013). Acta Cryst. E69, o1726–o1727. [DOI] [PMC free article] [PubMed]
  11. Liu, Y. Y., Shi, H., Li, Y. F. & Zhu, H. J. (2010). J. Heterocycl. Chem. 47, 897–902.
  12. Mahan, A., Butcher, R. J., Nayak, P. S., Narayana, B. & Yathirajan, H. S. (2013). Acta Cryst. E69, o402–o403. [DOI] [PMC free article] [PubMed]
  13. Mijin, D. & Marinkovic, A. (2006). Synth. Commun. 36, 193–198.
  14. Mijin, D. Z., Prascevic, M. & Petrovic, S. D. (2008). J. Serb. Chem. Soc. 73, 945–950.
  15. Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786–790.
  16. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  17. Wu, W.-N., Cheng, F.-X., Yan, L. & Tang, N. (2008). J. Coord. Chem. 61, 2207–2215.
  18. Wu, W.-N., Wang, Y., Zhang, A.-Y., Zhao, R.-Q. & Wang, Q.-F. (2010). Acta Cryst. E66, m288. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S1600536814009738/hg5393sup1.cif

e-70-0o636-sup1.cif (26.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814009738/hg5393Isup2.hkl

e-70-0o636-Isup2.hkl (179KB, hkl)

Supporting information file. DOI: 10.1107/S1600536814009738/hg5393Isup3.cml

CCDC reference: 1000268

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES