Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2014 May 31;70(Pt 6):o736–o737. doi: 10.1107/S1600536814012197

3-(4-Fluoro­benzo­yl)-4-(4-fluoro­phen­yl)-4-hy­droxy-2,6-di­phenyl­cyclo­hexane-1,1-dicarbo­nitrile

B Narayana a, M Sapnakumari a, Balladka K Sarojini b, Jerry P Jasinski c,*
PMCID: PMC4051101  PMID: 24940301

Abstract

In the title compound, C33H24F2N2O2, the cyclo­hexane ring adopts a slightly distorted chair conformation. The dihedral angle between the planes of the phenyl rings is 71.80 (9)°, while the planes of the fluoro­phenyl and fluoro­benzoyl rings are inclined to one another by 31.04 (10)°. The dihedral angles between the planes of the phenyl ring adjacent to the 4-hydroxy group and those of the the fluoro­phenyl and fluoro­benzoyl rings are 51.64 (10) and 34.31 (10)°, respectively, while the corresponding angles for the phenyl ring adjacent to the 3-(4-fluorobenzoyl) group are 57.51 (9) and 85.02 (10)°, respectively. An intra­molecular O—H⋯O hydrogen bond generates an S(6) ring motif. In the crystal, mol­ecules are linked via pairs of O—H⋯N hydrogen bonds, forming inversion dimers. The dimers are linked via C—H⋯N and C—H⋯O hydrogen bonds, forming chains along the c-axis direction. C—H⋯F hydrogen bonds link the chains into sheets lying parallel to the bc plane.

Related literature  

For related structures, see: Sadikhova et al. (2011); Echeverria et al. (1995). For ring puckering parameters, see Cremer & Pople (1975). For standard bond lengths, see: Allen et al. (1987).graphic file with name e-70-0o736-scheme1.jpg

Experimental  

Crystal data  

  • C33H24F2N2O2

  • M r = 518.54

  • Triclinic, Inline graphic

  • a = 10.9336 (10) Å

  • b = 11.5258 (4) Å

  • c = 11.8490 (7) Å

  • α = 89.440 (4)°

  • β = 62.687 (7)°

  • γ = 89.296 (5)°

  • V = 1326.60 (17) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 0.74 mm−1

  • T = 173 K

  • 0.44 × 0.32 × 0.14 mm

Data collection  

  • Agilent Eos Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO and CrysAlis RED; Agilent, 2012) T min = 0.884, T max = 1.000

  • 8616 measured reflections

  • 5042 independent reflections

  • 4307 reflections with I > 2σ(I)

  • R int = 0.032

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.049

  • wR(F 2) = 0.139

  • S = 1.06

  • 5042 reflections

  • 353 parameters

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.35 e Å−3

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO; data reduction: CrysAlis RED (Agilent, 2012); program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007; Palatinus & van der Lee, 2008; Palatinus et al., 2012).; program(s) used to refine structure: SHELXL2012 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2.

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S1600536814012197/su2739sup1.cif

e-70-0o736-sup1.cif (33.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814012197/su2739Isup2.hkl

e-70-0o736-Isup2.hkl (276.4KB, hkl)

Supporting information file. DOI: 10.1107/S1600536814012197/su2739Isup3.cml

CCDC reference: 1005354

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O2 0.84 2.14 2.8086 (16) 136
O1—H1⋯N1i 0.84 2.55 3.2071 (18) 136
C15—H15⋯N2ii 0.95 2.55 3.388 (2) 148
C23—H23⋯O2i 0.95 2.49 3.394 (2) 160
C29—H29⋯O1i 0.95 2.49 3.398 (2) 160
C24—H24⋯F2iii 0.95 2.58 3.443 (2) 152

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

BN thanks the UGC for financial assistance through the SAP and a BSR one-time grant for the purchase of chemicals. MS thanks the DST, New Delhi, for providing financial help for the research work through the INSPIRE Research Fellowship scheme. JPJ acknowledges the NSF–MRI program (grant No. CHE-1039027) for funds to purchase the X-ray diffractometer.

supplementary crystallographic information

1. Comment

In order to prepare the pyran derivative, (2E)-1-(4-fluorophenyl)-3-phenylprop-2-en-1-one was reacted with malanonitrile in the presence of a catalytic amount of ethanoic KOH. Instead of the pyran derivative, the title compound was obtained and we report herein on its crystal structure. The crystal structures of related compounds have been reported (Sadikhova et al., 2011; Echeverria et al., 1995).

In the molecule of the title compound, Fig. 1, the cyclohexane ring adopts a slightly distorted chair conformation [puckering parameters Q, θ, and φ = 0.5873 (17) Å, 7.19 (17)° and 50.9 (13)°, respectively; Cremer & Pople, 1975]. The dihedral angle between the phenyl rings (C22-C27 and C28-C33) is 71.80 (9)° while the fluorophenyl (C14–C19) and fluorobenzoyl (C8–C13) rings are inclined to one another by 31.04 (10)°. The dihedral angle between the phenyl ring adjacent to the 4-hydroxy group [C22–C27] and the fluorophenyl and fluorobenzoyl rings is 51.64 (10) and 34.31 (10) °, respectively, while the corresponding angles for the phenyl ring adjacent to the 3-(4-fluorobenzoyl) group [C8–C13] are 57.51 (9) and 85.02 (10) °, respectively. Bond lengths are in normal ranges (Allen et al., 1987). There is an intramolecular O—H···O hydrogen bond generating an S(6) ring motif (Table 1).

In the crystal, molecules are linked via O-H···N hydrogen bonds forming inversion dimers. The dimers are linked via C-H···N and C-H···O hydrogen bonds forming chains along [001]. C-H···F hydrogen bonds link the chains to form sheets lying parallel to the bc plane (Table 1 and Fig. 2).

2. Experimental

A mixture of (2E)-1-(4-fluorophenyl)-3-phenylprop-2-en-1-one (4.52g, 0.02 mol) and malanonitrile (0.55ml, 0.01 mol) in 30 ml ethanol in the presence of a catalytic amount of ethanoic KOH was stirred at room temperature for 6 h. The precipitate obtained was collected by filtration and purified by recrystallization from ethanol. Prismatic colourless crystals were grown from ethanol by the slow evaporation method (M.p. 497–499 K).

3. Refinement

All of the H atoms were placed in calculated positions and refined using the riding model approximation: O-H = 0.84 Å, C-H = 0.95 - 1.00 Å with Uiso(H) = 1.5Ueq(O) and = 1.2Ueq(C) for other H atoms.

Figures

Fig. 1.

Fig. 1.

A view of the molecular structure of the title molecule, with atom labelling. Displacement ellipsoids are drawn at the 30% probability level.

Fig. 2.

Fig. 2.

A view along along the b axis of the crystal packing of the title compound. The hydrogen bonds are shown as dashed lines (see Table 1 for details; H atoms not involved in hydrogen bonding have been omitted for clarity).

Fig. 3.

Fig. 3.

Reaction scheme.

Crystal data

C33H24F2N2O2 Z = 2
Mr = 518.54 F(000) = 540
Triclinic, P1 Dx = 1.298 Mg m3
a = 10.9336 (10) Å Cu Kα radiation, λ = 1.54184 Å
b = 11.5258 (4) Å Cell parameters from 3787 reflections
c = 11.8490 (7) Å θ = 4.2–71.1°
α = 89.440 (4)° µ = 0.74 mm1
β = 62.687 (7)° T = 173 K
γ = 89.296 (5)° Prism, colourless
V = 1326.60 (17) Å3 0.44 × 0.32 × 0.14 mm

Data collection

Agilent Eos Gemini diffractometer 5042 independent reflections
Radiation source: Enhance (Cu) X-ray Source 4307 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.032
Detector resolution: 16.0416 pixels mm-1 θmax = 71.4°, θmin = 3.8°
ω scans h = −13→13
Absorption correction: multi-scan (CrysAlis PRO and CrysAlis RED; Agilent, 2012) k = −11→14
Tmin = 0.884, Tmax = 1.000 l = −14→14
8616 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.049 H-atom parameters constrained
wR(F2) = 0.139 w = 1/[σ2(Fo2) + (0.0729P)2 + 0.0921P] where P = (Fo2 + 2Fc2)/3
S = 1.06 (Δ/σ)max < 0.001
5042 reflections Δρmax = 0.26 e Å3
353 parameters Δρmin = −0.35 e Å3
0 restraints

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
F1 0.65588 (15) 0.61176 (9) 0.08267 (12) 0.0527 (3)
F2 0.0999 (2) 0.57543 (13) 0.28697 (16) 0.0852 (6)
O1 0.61907 (11) 0.13809 (9) 0.36838 (10) 0.0253 (2)
H1 0.5515 0.1690 0.4296 0.038*
O2 0.33370 (12) 0.17874 (10) 0.49569 (10) 0.0308 (3)
N1 0.48277 (16) −0.29229 (12) 0.38019 (14) 0.0352 (3)
N2 0.53932 (15) −0.12783 (12) 0.02494 (13) 0.0311 (3)
C1 0.60207 (15) 0.14872 (12) 0.25657 (14) 0.0215 (3)
C2 0.70686 (15) 0.06396 (12) 0.16162 (14) 0.0232 (3)
H2A 0.6971 0.0643 0.0826 0.028*
H2B 0.8011 0.0900 0.1400 0.028*
C3 0.68724 (15) −0.05931 (12) 0.21500 (14) 0.0218 (3)
H3 0.6902 −0.0556 0.2980 0.026*
C4 0.53892 (15) −0.10161 (12) 0.24409 (13) 0.0201 (3)
C5 0.42239 (14) −0.01457 (12) 0.33284 (13) 0.0199 (3)
H5 0.4222 −0.0166 0.4173 0.024*
C6 0.45335 (15) 0.11141 (12) 0.28391 (13) 0.0201 (3)
H6 0.4425 0.1202 0.2049 0.024*
C7 0.35273 (15) 0.19258 (13) 0.38643 (14) 0.0226 (3)
C8 0.28789 (16) 0.29313 (13) 0.35439 (15) 0.0257 (3)
C9 0.26159 (17) 0.29536 (14) 0.25023 (16) 0.0298 (3)
H9 0.2893 0.2316 0.1934 0.036*
C10 0.1954 (2) 0.38977 (16) 0.22861 (18) 0.0383 (4)
H10 0.1733 0.3903 0.1598 0.046*
C11 0.1624 (3) 0.48256 (18) 0.3094 (2) 0.0505 (5)
C12 0.1893 (3) 0.48520 (19) 0.4114 (2) 0.0634 (7)
H12 0.1662 0.5514 0.4646 0.076*
C13 0.2511 (2) 0.38869 (16) 0.43501 (19) 0.0432 (5)
H13 0.2686 0.3877 0.5065 0.052*
C14 0.62655 (15) 0.27342 (13) 0.20554 (14) 0.0236 (3)
C15 0.62491 (18) 0.29980 (14) 0.09165 (16) 0.0305 (4)
H15 0.6166 0.2391 0.0420 0.037*
C16 0.63534 (19) 0.41405 (15) 0.04940 (17) 0.0362 (4)
H16 0.6331 0.4323 −0.0280 0.043*
C17 0.64891 (19) 0.49973 (14) 0.12255 (18) 0.0357 (4)
C18 0.65521 (19) 0.47700 (14) 0.23296 (17) 0.0349 (4)
H18 0.6676 0.5380 0.2800 0.042*
C19 0.64313 (17) 0.36259 (14) 0.27536 (16) 0.0289 (3)
H19 0.6462 0.3453 0.3526 0.035*
C20 0.50902 (16) −0.21300 (13) 0.31558 (14) 0.0238 (3)
C21 0.53569 (15) −0.11907 (12) 0.12229 (14) 0.0224 (3)
C22 0.79960 (15) −0.14352 (12) 0.13101 (15) 0.0233 (3)
C23 0.84552 (17) −0.22849 (14) 0.18758 (16) 0.0309 (4)
H23 0.8069 −0.2322 0.2775 0.037*
C24 0.9467 (2) −0.30747 (17) 0.1143 (2) 0.0414 (4)
H24 0.9772 −0.3647 0.1542 0.050*
C25 1.00376 (18) −0.30363 (17) −0.01680 (19) 0.0401 (4)
H25 1.0720 −0.3588 −0.0669 0.048*
C26 0.96054 (18) −0.21879 (16) −0.07436 (17) 0.0362 (4)
H26 1.0002 −0.2151 −0.1644 0.043*
C27 0.85967 (17) −0.13917 (14) −0.00128 (16) 0.0299 (4)
H27 0.8312 −0.0810 −0.0418 0.036*
C28 0.28095 (15) −0.05464 (12) 0.35494 (14) 0.0224 (3)
C29 0.19609 (17) −0.11291 (14) 0.46728 (15) 0.0289 (3)
H29 0.2250 −0.1230 0.5311 0.035*
C30 0.06992 (18) −0.15621 (16) 0.48680 (17) 0.0364 (4)
H30 0.0132 −0.1959 0.5636 0.044*
C31 0.02670 (18) −0.14177 (16) 0.39486 (18) 0.0382 (4)
H31 −0.0592 −0.1722 0.4079 0.046*
C32 0.10845 (19) −0.08298 (16) 0.28384 (18) 0.0359 (4)
H32 0.0782 −0.0726 0.2209 0.043*
C33 0.23493 (16) −0.03880 (14) 0.26357 (15) 0.0277 (3)
H33 0.2901 0.0023 0.1873 0.033*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
F1 0.0756 (9) 0.0239 (5) 0.0491 (7) −0.0014 (5) −0.0205 (6) 0.0086 (5)
F2 0.1270 (15) 0.0601 (9) 0.0865 (11) 0.0545 (10) −0.0655 (11) −0.0114 (8)
O1 0.0276 (6) 0.0271 (5) 0.0248 (6) 0.0020 (4) −0.0152 (5) −0.0027 (4)
O2 0.0343 (6) 0.0367 (6) 0.0200 (6) 0.0061 (5) −0.0114 (5) −0.0030 (5)
N1 0.0416 (9) 0.0254 (7) 0.0315 (8) 0.0019 (6) −0.0107 (7) 0.0033 (6)
N2 0.0353 (8) 0.0363 (7) 0.0242 (7) −0.0007 (6) −0.0158 (6) −0.0030 (6)
C1 0.0218 (7) 0.0222 (7) 0.0214 (7) −0.0019 (6) −0.0105 (6) 0.0003 (6)
C2 0.0187 (7) 0.0239 (7) 0.0242 (7) −0.0012 (5) −0.0074 (6) −0.0007 (6)
C3 0.0203 (7) 0.0242 (7) 0.0216 (7) −0.0010 (5) −0.0100 (6) −0.0012 (6)
C4 0.0215 (7) 0.0201 (7) 0.0187 (7) −0.0008 (5) −0.0092 (6) 0.0003 (5)
C5 0.0193 (7) 0.0216 (7) 0.0175 (7) 0.0002 (5) −0.0074 (6) 0.0010 (5)
C6 0.0200 (7) 0.0225 (7) 0.0174 (7) −0.0006 (5) −0.0083 (6) 0.0007 (5)
C7 0.0189 (7) 0.0253 (7) 0.0221 (7) −0.0019 (5) −0.0081 (6) −0.0003 (6)
C8 0.0209 (7) 0.0266 (7) 0.0261 (8) 0.0009 (6) −0.0076 (6) 0.0001 (6)
C9 0.0290 (8) 0.0316 (8) 0.0272 (8) 0.0024 (6) −0.0117 (7) −0.0003 (6)
C10 0.0396 (10) 0.0409 (10) 0.0353 (9) 0.0035 (8) −0.0183 (8) 0.0073 (8)
C11 0.0601 (14) 0.0403 (10) 0.0533 (12) 0.0219 (10) −0.0285 (11) 0.0013 (9)
C12 0.096 (2) 0.0423 (12) 0.0606 (14) 0.0374 (13) −0.0443 (15) −0.0228 (10)
C13 0.0575 (13) 0.0383 (10) 0.0399 (10) 0.0170 (9) −0.0279 (10) −0.0109 (8)
C14 0.0183 (7) 0.0238 (7) 0.0255 (8) −0.0018 (5) −0.0071 (6) 0.0007 (6)
C15 0.0342 (9) 0.0288 (8) 0.0308 (9) −0.0084 (7) −0.0166 (7) 0.0041 (7)
C16 0.0398 (10) 0.0347 (9) 0.0342 (9) −0.0067 (7) −0.0171 (8) 0.0102 (7)
C17 0.0368 (9) 0.0224 (8) 0.0386 (10) −0.0018 (7) −0.0094 (8) 0.0066 (7)
C18 0.0396 (10) 0.0235 (8) 0.0349 (9) −0.0010 (7) −0.0112 (8) −0.0060 (7)
C19 0.0297 (8) 0.0269 (8) 0.0269 (8) 0.0008 (6) −0.0102 (7) −0.0032 (6)
C20 0.0241 (8) 0.0225 (7) 0.0238 (7) 0.0023 (6) −0.0101 (6) −0.0028 (6)
C21 0.0192 (7) 0.0207 (7) 0.0258 (8) −0.0005 (5) −0.0090 (6) −0.0009 (6)
C22 0.0177 (7) 0.0249 (7) 0.0271 (8) −0.0014 (6) −0.0101 (6) −0.0027 (6)
C23 0.0272 (8) 0.0362 (9) 0.0305 (8) 0.0049 (7) −0.0143 (7) −0.0017 (7)
C24 0.0358 (10) 0.0400 (10) 0.0497 (11) 0.0127 (8) −0.0209 (9) −0.0040 (8)
C25 0.0219 (8) 0.0429 (10) 0.0466 (11) 0.0084 (7) −0.0079 (8) −0.0146 (8)
C26 0.0249 (8) 0.0440 (10) 0.0314 (9) −0.0023 (7) −0.0055 (7) −0.0085 (7)
C27 0.0252 (8) 0.0343 (8) 0.0269 (8) −0.0001 (6) −0.0090 (7) −0.0004 (6)
C28 0.0188 (7) 0.0221 (7) 0.0235 (7) 0.0004 (5) −0.0072 (6) −0.0008 (6)
C29 0.0252 (8) 0.0333 (8) 0.0251 (8) −0.0021 (6) −0.0090 (7) 0.0038 (6)
C30 0.0235 (8) 0.0406 (9) 0.0356 (9) −0.0096 (7) −0.0054 (7) 0.0099 (7)
C31 0.0216 (8) 0.0444 (10) 0.0459 (11) −0.0093 (7) −0.0131 (8) 0.0020 (8)
C32 0.0299 (9) 0.0445 (10) 0.0393 (10) −0.0051 (7) −0.0211 (8) 0.0027 (8)
C33 0.0232 (8) 0.0327 (8) 0.0270 (8) −0.0044 (6) −0.0113 (7) 0.0036 (6)

Geometric parameters (Å, º)

F1—C17 1.3616 (19) C13—H13 0.9500
F2—C11 1.352 (2) C14—C15 1.388 (2)
O1—H1 0.8400 C14—C19 1.390 (2)
O1—C1 1.4236 (17) C15—H15 0.9500
O2—C7 1.2224 (18) C15—C16 1.391 (2)
N1—C20 1.138 (2) C16—H16 0.9500
N2—C21 1.141 (2) C16—C17 1.374 (3)
C1—C2 1.531 (2) C17—C18 1.364 (3)
C1—C6 1.5700 (19) C18—H18 0.9500
C1—C14 1.5320 (19) C18—C19 1.393 (2)
C2—H2A 0.9900 C19—H19 0.9500
C2—H2B 0.9900 C22—C23 1.394 (2)
C2—C3 1.5265 (19) C22—C27 1.395 (2)
C3—H3 1.0000 C23—H23 0.9500
C3—C4 1.5778 (19) C23—C24 1.384 (2)
C3—C22 1.520 (2) C24—H24 0.9500
C4—C5 1.5797 (19) C24—C25 1.383 (3)
C4—C20 1.4858 (19) C25—H25 0.9500
C4—C21 1.4755 (19) C25—C26 1.384 (3)
C5—H5 1.0000 C26—H26 0.9500
C5—C6 1.5410 (18) C26—C27 1.386 (2)
C5—C28 1.5222 (19) C27—H27 0.9500
C6—H6 1.0000 C28—C29 1.396 (2)
C6—C7 1.5270 (19) C28—C33 1.397 (2)
C7—C8 1.486 (2) C29—H29 0.9500
C8—C9 1.390 (2) C29—C30 1.388 (2)
C8—C13 1.394 (2) C30—H30 0.9500
C9—H9 0.9500 C30—C31 1.380 (3)
C9—C10 1.386 (2) C31—H31 0.9500
C10—H10 0.9500 C31—C32 1.381 (3)
C10—C11 1.373 (3) C32—H32 0.9500
C11—C12 1.369 (3) C32—C33 1.393 (2)
C12—H12 0.9500 C33—H33 0.9500
C12—C13 1.386 (3)
C1—O1—H1 109.5 C12—C13—H13 119.8
O1—C1—C2 105.23 (11) C15—C14—C1 120.12 (13)
O1—C1—C6 110.58 (12) C15—C14—C19 119.04 (14)
O1—C1—C14 111.36 (11) C19—C14—C1 120.74 (14)
C2—C1—C6 109.00 (11) C14—C15—H15 119.6
C2—C1—C14 111.67 (12) C14—C15—C16 120.78 (15)
C14—C1—C6 108.96 (11) C16—C15—H15 119.6
C1—C2—H2A 109.3 C15—C16—H16 120.9
C1—C2—H2B 109.3 C17—C16—C15 118.26 (16)
H2A—C2—H2B 107.9 C17—C16—H16 120.9
C3—C2—C1 111.75 (12) F1—C17—C16 118.23 (17)
C3—C2—H2A 109.3 F1—C17—C18 119.05 (16)
C3—C2—H2B 109.3 C18—C17—C16 122.72 (16)
C2—C3—H3 107.2 C17—C18—H18 120.7
C2—C3—C4 108.79 (11) C17—C18—C19 118.67 (16)
C4—C3—H3 107.2 C19—C18—H18 120.7
C22—C3—C2 113.62 (12) C14—C19—C18 120.49 (16)
C22—C3—H3 107.2 C14—C19—H19 119.8
C22—C3—C4 112.40 (11) C18—C19—H19 119.8
C3—C4—C5 112.19 (11) N1—C20—C4 173.64 (16)
C20—C4—C3 109.57 (11) N2—C21—C4 175.91 (16)
C20—C4—C5 105.38 (11) C23—C22—C3 119.12 (14)
C21—C4—C3 108.45 (12) C23—C22—C27 118.28 (15)
C21—C4—C5 111.69 (11) C27—C22—C3 122.60 (14)
C21—C4—C20 109.51 (12) C22—C23—H23 119.6
C4—C5—H5 106.8 C24—C23—C22 120.80 (16)
C6—C5—C4 111.92 (11) C24—C23—H23 119.6
C6—C5—H5 106.8 C23—C24—H24 119.8
C28—C5—C4 111.19 (11) C25—C24—C23 120.40 (17)
C28—C5—H5 106.8 C25—C24—H24 119.8
C28—C5—C6 113.01 (11) C24—C25—H25 120.3
C1—C6—H6 109.7 C24—C25—C26 119.45 (17)
C5—C6—C1 111.93 (11) C26—C25—H25 120.3
C5—C6—H6 109.7 C25—C26—H26 119.8
C7—C6—C1 106.85 (11) C25—C26—C27 120.32 (17)
C7—C6—C5 108.83 (11) C27—C26—H26 119.8
C7—C6—H6 109.7 C22—C27—H27 119.6
O2—C7—C6 118.56 (13) C26—C27—C22 120.74 (16)
O2—C7—C8 119.71 (14) C26—C27—H27 119.6
C8—C7—C6 121.51 (13) C29—C28—C5 119.55 (14)
C9—C8—C7 123.35 (14) C29—C28—C33 118.54 (14)
C9—C8—C13 119.38 (15) C33—C28—C5 121.87 (13)
C13—C8—C7 117.27 (15) C28—C29—H29 119.6
C8—C9—H9 119.7 C30—C29—C28 120.76 (16)
C10—C9—C8 120.56 (16) C30—C29—H29 119.6
C10—C9—H9 119.7 C29—C30—H30 119.9
C9—C10—H10 120.9 C31—C30—C29 120.13 (16)
C11—C10—C9 118.12 (17) C31—C30—H30 119.9
C11—C10—H10 120.9 C30—C31—H31 120.0
F2—C11—C10 118.07 (19) C30—C31—C32 119.92 (15)
F2—C11—C12 118.70 (19) C32—C31—H31 120.0
C12—C11—C10 123.23 (17) C31—C32—H32 119.8
C11—C12—H12 120.9 C31—C32—C33 120.39 (16)
C11—C12—C13 118.27 (19) C33—C32—H32 119.8
C13—C12—H12 120.9 C28—C33—H33 119.9
C8—C13—H13 119.8 C32—C33—C28 120.25 (15)
C12—C13—C8 120.37 (18) C32—C33—H33 119.9
F1—C17—C18—C19 177.76 (16) C6—C7—C8—C9 29.1 (2)
F2—C11—C12—C13 178.8 (3) C6—C7—C8—C13 −151.58 (16)
O1—C1—C2—C3 56.14 (14) C7—C8—C9—C10 177.16 (16)
O1—C1—C6—C5 −58.60 (15) C7—C8—C13—C12 −179.6 (2)
O1—C1—C6—C7 60.44 (14) C8—C9—C10—C11 2.9 (3)
O1—C1—C14—C15 175.19 (13) C9—C8—C13—C12 −0.2 (3)
O1—C1—C14—C19 −8.3 (2) C9—C10—C11—F2 178.9 (2)
O2—C7—C8—C9 −156.39 (16) C9—C10—C11—C12 −1.4 (4)
O2—C7—C8—C13 22.9 (2) C10—C11—C12—C13 −0.9 (4)
C1—C2—C3—C4 61.16 (15) C11—C12—C13—C8 1.7 (4)
C1—C2—C3—C22 −172.82 (12) C13—C8—C9—C10 −2.2 (3)
C1—C6—C7—O2 −74.24 (16) C14—C1—C2—C3 177.09 (11)
C1—C6—C7—C8 100.34 (15) C14—C1—C6—C5 178.70 (11)
C1—C14—C15—C16 174.53 (15) C14—C1—C6—C7 −62.26 (14)
C1—C14—C19—C18 −175.25 (15) C14—C15—C16—C17 0.8 (3)
C2—C1—C6—C5 56.61 (15) C15—C14—C19—C18 1.2 (2)
C2—C1—C6—C7 175.65 (11) C15—C16—C17—F1 −178.49 (16)
C2—C1—C14—C15 57.88 (18) C15—C16—C17—C18 1.3 (3)
C2—C1—C14—C19 −125.66 (15) C16—C17—C18—C19 −2.0 (3)
C2—C3—C4—C5 −54.00 (15) C17—C18—C19—C14 0.7 (3)
C2—C3—C4—C20 −170.68 (12) C19—C14—C15—C16 −2.0 (2)
C2—C3—C4—C21 69.84 (14) C20—C4—C5—C6 169.33 (11)
C2—C3—C22—C23 142.45 (14) C20—C4—C5—C28 −63.23 (14)
C2—C3—C22—C27 −37.27 (19) C21—C4—C5—C6 −71.85 (14)
C3—C4—C5—C6 50.17 (15) C21—C4—C5—C28 55.59 (15)
C3—C4—C5—C28 177.60 (11) C22—C3—C4—C5 179.27 (11)
C3—C22—C23—C24 179.36 (15) C22—C3—C4—C20 62.59 (15)
C3—C22—C27—C26 −179.05 (14) C22—C3—C4—C21 −56.89 (15)
C4—C3—C22—C23 −93.46 (16) C22—C23—C24—C25 −0.3 (3)
C4—C3—C22—C27 86.82 (17) C23—C22—C27—C26 1.2 (2)
C4—C5—C6—C1 −51.18 (15) C23—C24—C25—C26 1.1 (3)
C4—C5—C6—C7 −169.05 (11) C24—C25—C26—C27 −0.8 (3)
C4—C5—C28—C29 99.48 (16) C25—C26—C27—C22 −0.4 (3)
C4—C5—C28—C33 −78.01 (17) C27—C22—C23—C24 −0.9 (2)
C5—C6—C7—O2 46.79 (17) C28—C5—C6—C1 −177.63 (12)
C5—C6—C7—C8 −138.62 (13) C28—C5—C6—C7 64.50 (15)
C5—C28—C29—C30 −176.31 (15) C28—C29—C30—C31 −0.2 (3)
C5—C28—C33—C32 176.00 (15) C29—C28—C33—C32 −1.5 (2)
C6—C1—C2—C3 −62.48 (15) C29—C30—C31—C32 −0.7 (3)
C6—C1—C14—C15 −62.57 (18) C30—C31—C32—C33 0.5 (3)
C6—C1—C14—C19 113.89 (15) C31—C32—C33—C28 0.7 (3)
C6—C5—C28—C29 −133.68 (14) C33—C28—C29—C30 1.3 (2)
C6—C5—C28—C33 48.83 (19)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O1—H1···O2 0.84 2.14 2.8086 (16) 136
O1—H1···N1i 0.84 2.55 3.2071 (18) 136
C15—H15···N2ii 0.95 2.55 3.388 (2) 148
C23—H23···O2i 0.95 2.49 3.394 (2) 160
C29—H29···O1i 0.95 2.49 3.398 (2) 160
C24—H24···F2iii 0.95 2.58 3.443 (2) 152

Symmetry codes: (i) −x+1, −y, −z+1; (ii) −x+1, −y, −z; (iii) x+1, y−1, z.

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: SU2739).

References

  1. Agilent (2012). CrysAlis PRO and CrysAlis RED Agilent Technologies, Yarnton, England.
  2. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  3. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.
  4. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  5. Echeverria, G., Punte, G., Rivero, B. E. & Barón, M. (1995). Acta Cryst. C51, 1023–1026.
  6. Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786–790.
  7. Palatinus, L., Prathapa, S. J. & van Smaalen, S. (2012). J. Appl. Cryst. 45, 575–580.
  8. Palatinus, L. & van der Lee, A. (2008). J. Appl. Cryst. 41, 975–984.
  9. Sadikhova, N. D., Khalilov, A. N., Gurbanov, A. V. & Brito, I. (2011). Acta Cryst. E67, o1801. [DOI] [PMC free article] [PubMed]
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S1600536814012197/su2739sup1.cif

e-70-0o736-sup1.cif (33.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814012197/su2739Isup2.hkl

e-70-0o736-Isup2.hkl (276.4KB, hkl)

Supporting information file. DOI: 10.1107/S1600536814012197/su2739Isup3.cml

CCDC reference: 1005354

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES