Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2014 May 31;70(Pt 6):o716. doi: 10.1107/S1600536814011684

2-(2-Methyl­phen­yl)-N-(1,3-thia­zol-2-yl)acetamide

B Narayana a, Prakash S Nayak a, Balladka K Sarojini b, Jerry P Jasinski c,*
PMCID: PMC4051114  PMID: 24940286

Abstract

In the title compound, C12H12N2OS, the dihedral angle between the benzene and thia­zole rings is 83.5 (7)°. The acetamide group is almost coplanar with the thia­zole ring, being twisted from it by 4.2 (9)°. In the crystal, pairs of N—H⋯N hydrogen bonds link mol­ecules into inversion dimers, generating R 2 2[8] loops; the dimers are stacked along [001].

Related literature  

For the structural similarity of N-substituted 2-aryl­acetamides to the lateral chain of benzyl­penicillin, see: Mijin et al. (2008). For our studies of acetamides, see: Nayak et al. (2014).graphic file with name e-70-0o716-scheme1.jpg

Experimental  

Crystal data  

  • C12H12N2OS

  • M r = 232.30

  • Monoclinic, Inline graphic

  • a = 17.6983 (6) Å

  • b = 4.94078 (13) Å

  • c = 14.4603 (5) Å

  • β = 111.236 (4)°

  • V = 1178.60 (7) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 2.28 mm−1

  • T = 173 K

  • 0.38 × 0.26 × 0.14 mm

Data collection  

  • Agilent Agilent (Eos, Gemini) diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Agilent, 2012) T min = 0.582, T max = 1.000

  • 7059 measured reflections

  • 2250 independent reflections

  • 2065 reflections with I > 2σ(I)

  • R int = 0.037

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.040

  • wR(F 2) = 0.113

  • S = 1.07

  • 2250 reflections

  • 147 parameters

  • H-atom parameters constrained

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.28 e Å−3

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO; data reduction: CrysAlis RED (Agilent, 2012); program(s) used to solve structure: SUPERFLIP (Palatinus et al., 2012); program(s) used to refine structure: SHELXL2012 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2.

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S1600536814011684/hb7232sup1.cif

e-70-0o716-sup1.cif (20.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814011684/hb7232Isup2.hkl

e-70-0o716-Isup2.hkl (123.7KB, hkl)

Supporting information file. DOI: 10.1107/S1600536814011684/hb7232Isup3.cml

CCDC reference: 1004337

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯N2i 0.88 2.04 2.9138 (19) 176

Symmetry code: (i) Inline graphic.

Acknowledgments

BN thanks the UGC for financial assistance through BSR one-time grant for the purchase of chemicals. PSN thanks Mangalore University for research facilities and the DST–PURSE financial assistance. JPJ acknowledges the NSF–MRI program (grant No. CHE-1039027) for funds to purchase the X-ray diffractometer.

supplementary crystallographic information

1. Comment

N-Substituted 2-arylacetamides are interesting compounds because of their structural similarity to the lateral chain of natural benzylpenicillin (Mijin et al., 2008). As part of our ongoing studies of such systems (Nayak et al., 2014) we report herein the crystal structure of the title compound, (I), C12H12N2OS.

In (I), the dihedral angle between the mean planes of the phenyl and thiazol rings is 83.5 (7)° (Fig. 1). The acetamide group (N1/O1/C4/C5) is close to coplanar with the mean plane of the thiazol ring twisted by 4.2 (9)°. In the crystal, pairs of N—H···N hydrogen bonds link the molecules into inversion dimers forming R22[8] ring motifs and stacked along [001] (Fig. 2).

2. Experimental

2-Methylphenylacetic acid (0.150 g, 1 mmol), 2-aminothiazole (0.100 g, 1 mmol) and 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide hydrochloride (1.0 g, 0.01 mol) were dissolved in dichloromethane (20 ml). The mixture was stirred in presence of triethylamine at 273 K for about 3 h. The contents were poured into 100 ml of ice-cold aqueous hydrochloric acid with stirring, which was extracted thrice with dichloromethane. The organic layer was washed with saturated NaHCO3 solution and brine solution, dried and concentrated under reduced pressure to give the title compound (I). Colourless prisms were grown from methanol solution by slow evaporation (M.P.: 401–403 K).

3. Refinement

All of the H atoms were placed in their calculated positions and then refined using the riding model with Atom—H lengths of 0.95Å (CH), 0.99Å (CH2), 0.98Å (CH3) or 0.88Å (NH). Isotropic displacement parameters for these atoms were set to 1.2 (CH, CH2, NH) or 1.5 (CH3) times Ueq of the parent atom. Idealised Me refined as rotating group.

Figures

Fig. 1.

Fig. 1.

ORTEP drawing of (I), C12H12N2OS, showing 30% probability displacement ellipsoids.

Fig. 2.

Fig. 2.

Molecular packing for (I) viewed along the b axis. Dashed lines indicate weak N1—H1···N2 hydrogen bonds forming inversion dimers in an R22[8] motif format and stacked along [001]. H atoms not involved in hydrogen bonding have been removed for clarity.

Fig. 3.

Fig. 3.

Reaction scheme.

Crystal data

C12H12N2OS F(000) = 488
Mr = 232.30 Dx = 1.309 Mg m3
Monoclinic, P21/c Cu Kα radiation, λ = 1.54184 Å
a = 17.6983 (6) Å Cell parameters from 3416 reflections
b = 4.94078 (13) Å θ = 3.4–71.5°
c = 14.4603 (5) Å µ = 2.28 mm1
β = 111.236 (4)° T = 173 K
V = 1178.60 (7) Å3 Prism, colourless
Z = 4 0.38 × 0.26 × 0.14 mm

Data collection

Agilent Agilent (Eos, Gemini) diffractometer 2250 independent reflections
Radiation source: Enhance (Cu) X-ray Source 2065 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.037
Detector resolution: 16.0416 pixels mm-1 θmax = 71.3°, θmin = 5.4°
ω scans h = −12→21
Absorption correction: multi-scan (CrysAlis RED; Agilent, 2012) k = −5→6
Tmin = 0.582, Tmax = 1.000 l = −17→16
7059 measured reflections

Refinement

Refinement on F2 Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.040 w = 1/[σ2(Fo2) + (0.0678P)2 + 0.367P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.113 (Δ/σ)max = 0.001
S = 1.07 Δρmax = 0.30 e Å3
2250 reflections Δρmin = −0.28 e Å3
147 parameters Extinction correction: SHELXL2012 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraints Extinction coefficient: 0.0013 (5)
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.51096 (2) 1.09810 (8) 0.33600 (3) 0.02349 (18)
O1 0.66917 (7) 0.9640 (3) 0.43484 (10) 0.0341 (3)
N1 0.58012 (8) 0.6996 (3) 0.47251 (10) 0.0225 (3)
H1 0.5748 0.5659 0.5099 0.027*
N2 0.43898 (8) 0.7241 (3) 0.39749 (10) 0.0241 (3)
C1 0.51059 (10) 0.8180 (3) 0.40772 (11) 0.0204 (3)
C2 0.38010 (11) 0.8760 (3) 0.32755 (13) 0.0269 (4)
H2 0.3240 0.8362 0.3089 0.032*
C3 0.40679 (11) 1.0842 (3) 0.28727 (13) 0.0263 (4)
H3 0.3730 1.2055 0.2390 0.032*
C4 0.65649 (10) 0.7763 (3) 0.48226 (12) 0.0248 (4)
C5 0.72262 (11) 0.6059 (4) 0.55603 (14) 0.0311 (4)
H5A 0.7121 0.5926 0.6186 0.037*
H5B 0.7205 0.4206 0.5291 0.037*
C6 0.80617 (11) 0.7206 (4) 0.57813 (14) 0.0352 (4)
C7 0.85116 (13) 0.6620 (5) 0.51962 (17) 0.0469 (5)
C8 0.92758 (14) 0.7817 (6) 0.5445 (2) 0.0675 (9)
H8 0.9594 0.7420 0.5055 0.081*
C9 0.95774 (17) 0.9541 (7) 0.6231 (3) 0.0828 (11)
H9 1.0096 1.0343 0.6377 0.099*
C10 0.91323 (19) 1.0119 (7) 0.6813 (3) 0.0811 (10)
H10 0.9339 1.1318 0.7361 0.097*
C11 0.83836 (15) 0.8938 (5) 0.6590 (2) 0.0559 (6)
H11 0.8079 0.9311 0.6998 0.067*
C12 0.81906 (19) 0.4717 (7) 0.4331 (2) 0.0710 (8)
H12A 0.8022 0.3021 0.4550 0.106*
H12B 0.8616 0.4343 0.4064 0.106*
H12C 0.7724 0.5546 0.3814 0.106*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0313 (3) 0.0181 (3) 0.0218 (2) −0.00228 (14) 0.01054 (18) 0.00177 (13)
O1 0.0295 (7) 0.0335 (7) 0.0382 (7) −0.0062 (5) 0.0106 (5) 0.0106 (6)
N1 0.0257 (7) 0.0202 (7) 0.0220 (6) −0.0031 (5) 0.0089 (5) 0.0035 (5)
N2 0.0257 (7) 0.0219 (7) 0.0250 (7) −0.0004 (5) 0.0096 (5) 0.0022 (5)
C1 0.0294 (8) 0.0159 (7) 0.0183 (7) −0.0018 (6) 0.0115 (6) −0.0023 (6)
C2 0.0260 (8) 0.0261 (9) 0.0284 (8) 0.0015 (6) 0.0096 (7) 0.0019 (6)
C3 0.0308 (9) 0.0247 (9) 0.0235 (8) 0.0044 (6) 0.0101 (7) 0.0013 (6)
C4 0.0265 (8) 0.0240 (9) 0.0233 (8) −0.0034 (6) 0.0085 (7) −0.0018 (6)
C5 0.0271 (9) 0.0322 (10) 0.0335 (9) −0.0013 (7) 0.0102 (7) 0.0068 (7)
C6 0.0263 (9) 0.0361 (11) 0.0391 (10) 0.0002 (7) 0.0070 (7) 0.0099 (8)
C7 0.0370 (11) 0.0567 (13) 0.0489 (12) 0.0071 (10) 0.0178 (10) 0.0186 (10)
C8 0.0339 (12) 0.089 (2) 0.0833 (19) 0.0044 (13) 0.0251 (13) 0.0412 (17)
C9 0.0353 (13) 0.090 (2) 0.101 (3) −0.0176 (14) −0.0016 (15) 0.037 (2)
C10 0.0568 (17) 0.071 (2) 0.083 (2) −0.0188 (15) −0.0131 (15) −0.0067 (17)
C11 0.0426 (12) 0.0610 (16) 0.0519 (14) 0.0004 (10) 0.0026 (10) −0.0077 (11)
C12 0.0721 (18) 0.088 (2) 0.0601 (16) 0.0142 (16) 0.0329 (14) −0.0043 (15)

Geometric parameters (Å, º)

S1—C1 1.7307 (16) C6—C7 1.386 (3)
S1—C3 1.7202 (18) C6—C11 1.394 (3)
O1—C4 1.222 (2) C7—C8 1.399 (3)
N1—H1 0.8800 C7—C12 1.502 (4)
N1—C1 1.378 (2) C8—H8 0.9500
N1—C4 1.361 (2) C8—C9 1.365 (5)
N2—C1 1.307 (2) C9—H9 0.9500
N2—C2 1.382 (2) C9—C10 1.375 (5)
C2—H2 0.9500 C10—H10 0.9500
C2—C3 1.349 (2) C10—C11 1.375 (4)
C3—H3 0.9500 C11—H11 0.9500
C4—C5 1.521 (2) C12—H12A 0.9800
C5—H5A 0.9900 C12—H12B 0.9800
C5—H5B 0.9900 C12—H12C 0.9800
C5—C6 1.506 (2)
C3—S1—C1 88.70 (8) C7—C6—C11 119.3 (2)
C1—N1—H1 117.9 C11—C6—C5 118.73 (19)
C4—N1—H1 117.9 C6—C7—C8 118.1 (3)
C4—N1—C1 124.11 (14) C6—C7—C12 120.8 (2)
C1—N2—C2 109.46 (14) C8—C7—C12 121.2 (2)
N1—C1—S1 123.41 (12) C7—C8—H8 119.1
N2—C1—S1 115.48 (12) C9—C8—C7 121.8 (3)
N2—C1—N1 121.11 (14) C9—C8—H8 119.1
N2—C2—H2 121.9 C8—C9—H9 120.0
C3—C2—N2 116.18 (16) C8—C9—C10 120.1 (3)
C3—C2—H2 121.9 C10—C9—H9 120.0
S1—C3—H3 124.9 C9—C10—H10 120.5
C2—C3—S1 110.15 (13) C9—C10—C11 119.1 (3)
C2—C3—H3 124.9 C11—C10—H10 120.5
O1—C4—N1 122.06 (15) C6—C11—H11 119.2
O1—C4—C5 124.26 (15) C10—C11—C6 121.5 (3)
N1—C4—C5 113.67 (14) C10—C11—H11 119.2
C4—C5—H5A 109.0 C7—C12—H12A 109.5
C4—C5—H5B 109.0 C7—C12—H12B 109.5
H5A—C5—H5B 107.8 C7—C12—H12C 109.5
C6—C5—C4 112.79 (14) H12A—C12—H12B 109.5
C6—C5—H5A 109.0 H12A—C12—H12C 109.5
C6—C5—H5B 109.0 H12B—C12—H12C 109.5
C7—C6—C5 121.9 (2)
O1—C4—C5—C6 9.8 (3) C4—C5—C6—C7 −86.3 (2)
N1—C4—C5—C6 −170.71 (15) C4—C5—C6—C11 92.8 (2)
N2—C2—C3—S1 0.6 (2) C5—C6—C7—C8 178.75 (19)
C1—S1—C3—C2 0.12 (13) C5—C6—C7—C12 −2.2 (3)
C1—N1—C4—O1 1.8 (3) C5—C6—C11—C10 −177.9 (2)
C1—N1—C4—C5 −177.74 (14) C6—C7—C8—C9 −0.7 (4)
C1—N2—C2—C3 −1.3 (2) C7—C6—C11—C10 1.1 (4)
C2—N2—C1—S1 1.36 (17) C7—C8—C9—C10 0.8 (5)
C2—N2—C1—N1 −179.21 (14) C8—C9—C10—C11 0.0 (5)
C3—S1—C1—N1 179.70 (14) C9—C10—C11—C6 −1.0 (5)
C3—S1—C1—N2 −0.89 (13) C11—C6—C7—C8 −0.3 (3)
C4—N1—C1—S1 −4.9 (2) C11—C6—C7—C12 178.7 (2)
C4—N1—C1—N2 175.74 (14) C12—C7—C8—C9 −179.7 (3)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1···N2i 0.88 2.04 2.9138 (19) 176

Symmetry code: (i) −x+1, −y+1, −z+1.

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: HB7232).

References

  1. Agilent (2012). CrysAlis PRO and CrysAlis RED Agilent Technologies, Yarnton, Oxfordshire,England.
  2. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  3. Mijin, D. Z., Prascevic, M. & Petrovic, S. D. (2008). J. Serb. Chem. Soc. 73, 945–950.
  4. Nayak, P. S., Narayana, B., Sarojini, B. K., Hegde, K. & Shashidhara, K. S. (2014). Med. Chem. Res. 10.1007/s00044-014-1003-3.
  5. Palatinus, L., Prathapa, S. J. & van Smaalen, S. (2012). J. Appl. Cryst. 45, 575–580.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S1600536814011684/hb7232sup1.cif

e-70-0o716-sup1.cif (20.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814011684/hb7232Isup2.hkl

e-70-0o716-Isup2.hkl (123.7KB, hkl)

Supporting information file. DOI: 10.1107/S1600536814011684/hb7232Isup3.cml

CCDC reference: 1004337

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES