Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1995 Nov 21;92(24):10894–10898. doi: 10.1073/pnas.92.24.10894

Genomic structure of human microtubule-associated protein 2 (MAP-2) and characterization of additional MAP-2 isoforms.

N Kalcheva 1, J Albala 1, K O'Guin 1, H Rubino 1, C Garner 1, B Shafit-Zagardo 1
PMCID: PMC40537  PMID: 7479905

Abstract

We have determined that the gene for human microtubule-associated protein 2 (MAP-2) spans 19 exons, including 6 exons identified in this study, 1-4, 8, and 13; all six of these exons are transcribed. The alternative splicing of coding exons generates a greater diversity of MAP-2 transcripts and isoforms. The first three exons encode alternate 5' untranslated regions that can be spliced to additional untranslated sequences contained in exons 4 and 5. Exons 8 and 13 are transcribed in human fetal spinal cord, adult brain, MSN cells, and rat brain, and each exon maintains an open reading frame with both high and low molecular weight MAP-2 isoforms. Antibodies generated to synthetic peptides of exons 8 and 13 demonstrate that these exons are translated and MAP-2 isoforms containing these exons are generated.

Full text

PDF

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Albala J. S., Kress Y., Liu W. K., Weidenheim K., Yen S. H., Shafit-Zagardo B. Human microtubule-associated protein-2c localizes to dendrites and axons in fetal spinal motor neurons. J Neurochem. 1995 Jun;64(6):2480–2490. doi: 10.1046/j.1471-4159.1995.64062480.x. [DOI] [PubMed] [Google Scholar]
  2. Binder L. I., Frankfurter A., Rebhun L. I. Differential localization of MAP-2 and tau in mammalian neurons in situ. Ann N Y Acad Sci. 1986;466:145–166. doi: 10.1111/j.1749-6632.1986.tb38392.x. [DOI] [PubMed] [Google Scholar]
  3. Blin N., Stafford D. W. A general method for isolation of high molecular weight DNA from eukaryotes. Nucleic Acids Res. 1976 Sep;3(9):2303–2308. doi: 10.1093/nar/3.9.2303. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Caceres A., Mautino J., Kosik K. S. Suppression of MAP2 in cultured cerebellar macroneurons inhibits minor neurite formation. Neuron. 1992 Oct;9(4):607–618. doi: 10.1016/0896-6273(92)90025-9. [DOI] [PubMed] [Google Scholar]
  5. Cathala G., Savouret J. F., Mendez B., West B. L., Karin M., Martial J. A., Baxter J. D. A method for isolation of intact, translationally active ribonucleic acid. DNA. 1983;2(4):329–335. doi: 10.1089/dna.1983.2.329. [DOI] [PubMed] [Google Scholar]
  6. Chen J., Kanai Y., Cowan N. J., Hirokawa N. Projection domains of MAP2 and tau determine spacings between microtubules in dendrites and axons. Nature. 1992 Dec 17;360(6405):674–677. doi: 10.1038/360674a0. [DOI] [PubMed] [Google Scholar]
  7. Dammerman M., Yen S. H., Shafit-Zagardo B. Sequence of a human MAP-2 region sharing epitopes with Alzheimer neurofibrillary tangles. J Neurosci Res. 1989 Dec;24(4):487–495. doi: 10.1002/jnr.490240405. [DOI] [PubMed] [Google Scholar]
  8. Kosik K. S., Orecchio L. D., Binder L., Trojanowski J. Q., Lee V. M., Lee G. Epitopes that span the tau molecule are shared with paired helical filaments. Neuron. 1988 Nov;1(9):817–825. doi: 10.1016/0896-6273(88)90129-8. [DOI] [PubMed] [Google Scholar]
  9. Langkopf A., Guilleminot J., Nunez J. Two novel HMW MAP2 variants with four microtubule-binding repeats and different projection domains. FEBS Lett. 1994 Nov 14;354(3):259–262. doi: 10.1016/0014-5793(94)01128-1. [DOI] [PubMed] [Google Scholar]
  10. Neve R. L., Harris P., Kosik K. S., Kurnit D. M., Donlon T. A. Identification of cDNA clones for the human microtubule-associated protein tau and chromosomal localization of the genes for tau and microtubule-associated protein 2. Brain Res. 1986 Dec;387(3):271–280. doi: 10.1016/0169-328x(86)90033-1. [DOI] [PubMed] [Google Scholar]
  11. Reynolds C. P., Biedler J. L., Spengler B. A., Reynolds D. A., Ross R. A., Frenkel E. P., Smith R. G. Characterization of human neuroblastoma cell lines established before and after therapy. J Natl Cancer Inst. 1986 Mar;76(3):375–387. [PubMed] [Google Scholar]
  12. Rubino H. M., Dammerman M., Shafit-Zagardo B., Erlichman J. Localization and characterization of the binding site for the regulatory subunit of type II cAMP-dependent protein kinase on MAP2. Neuron. 1989 Nov;3(5):631–638. doi: 10.1016/0896-6273(89)90273-0. [DOI] [PubMed] [Google Scholar]
  13. Shafit-Zagardo B., Kume-Iwaki A., Goldman J. E. Astrocytes regulate GFAP mRNA levels by cyclic AMP and protein kinase C-dependent mechanisms. Glia. 1988;1(5):346–354. doi: 10.1002/glia.440010507. [DOI] [PubMed] [Google Scholar]
  14. Sharma N., Kress Y., Shafit-Zagardo B. Antisense MAP-2 oligonucleotides induce changes in microtubule assembly and neuritic elongation in pre-existing neurites of rat cortical neurons. Cell Motil Cytoskeleton. 1994;27(3):234–247. doi: 10.1002/cm.970270305. [DOI] [PubMed] [Google Scholar]
  15. Soeiro R., Darnell J. E. Competition hybridization by "pre-saturation" of HeLa cell DNA. J Mol Biol. 1969 Sep 28;44(3):551–562. doi: 10.1016/0022-2836(69)90379-9. [DOI] [PubMed] [Google Scholar]
  16. Tucker R. P. The roles of microtubule-associated proteins in brain morphogenesis: a review. Brain Res Brain Res Rev. 1990 May-Aug;15(2):101–120. doi: 10.1016/0165-0173(90)90013-e. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES