Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1995 Nov 21;92(24):10929–10933. doi: 10.1073/pnas.92.24.10929

Muscarinic acetylcholine receptor down-regulation limits the extent of inhibition of cell cycle progression in Chinese hamster ovary cells.

K Detjen 1, J Yang 1, C D Logsdon 1
PMCID: PMC40544  PMID: 7479912

Abstract

Cellular desensitization is believed to be important for growth control but direct evidence is lacking. In the current study we compared effects of wild-type and down-regulation-resistant mutant m3 muscarinic receptors on Chinese hamster ovary (CHO-K1) cell desensitization, proliferation, and transformation. We found that down-regulation of m3 muscarinic acetylcholine receptors was the principal mechanism of desensitization of receptor-activated inositol phosphate phospholipid hydrolysis in these cells. Activation of wild-type and mutant receptors inhibited anchorage-independent growth as assayed by colony formation in agar. However, the potency for inhibition of anchorage-independent growth was greater for cells expressing the mutant receptor. Activation of either receptor also initially inhibited anchorage-dependent cell proliferation in randomly growing populations. Rates of DNA synthesis and cell division were profoundly reduced by carbachol in cells expressing either receptor at early time points. Analysis of cell cycle parameters indicated that cell cycle progression was inhibited at transitions from G1 to S and G2/M to G1 phases. However, mutant receptor effects on anchorage-dependent growth were sustained, whereas wild-type receptor effects were transient. Thus, receptor down-regulation restored cell cycle progression. In contrast, activation of either receptor blocked entry into the cell cycle from quiescence, and this response was not reduced by receptor down-regulation. Therefore, activation of m3 muscarinic acetylcholine receptors inhibited CHO cell anchorage-dependent and -independent growth. In anchored cells carbachol inhibited the cell cycle at three distinct points. Inhibitions at two of these points were eliminated by wild-type receptor down-regulation while the other was not. These results directly demonstrate that desensitization mechanisms can act as principal determinants of cellular growth responses.

Full text

PDF
10929

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adie E. J., Mullaney I., McKenzie F. R., Milligan G. Concurrent down-regulation of IP prostanoid receptors and the alpha-subunit of the stimulatory guanine-nucleotide-binding protein (Gs) during prolonged exposure of neuroblastoma x glioma cells to prostanoid agonists. Quantification and functional implications. Biochem J. 1992 Jul 15;285(Pt 2):529–536. doi: 10.1042/bj2850529. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Allen L. F., Lefkowitz R. J., Caron M. G., Cotecchia S. G-protein-coupled receptor genes as protooncogenes: constitutively activating mutation of the alpha 1B-adrenergic receptor enhances mitogenesis and tumorigenicity. Proc Natl Acad Sci U S A. 1991 Dec 15;88(24):11354–11358. doi: 10.1073/pnas.88.24.11354. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Ashkenazi A., Peralta E. G., Winslow J. W., Ramachandran J., Capon D. J. Functional diversity of muscarinic receptor subtypes in cellular signal transduction and growth. Trends Pharmacol Sci. 1989 Dec;Suppl:16–22. [PubMed] [Google Scholar]
  4. Collins S., Bouvier M., Lohse M. J., Benovic J. L., Caron M. G., Lefkowitz R. J. Mechanisms involved in adrenergic receptor desensitization. Biochem Soc Trans. 1990 Aug;18(4):541–544. doi: 10.1042/bst0180541. [DOI] [PubMed] [Google Scholar]
  5. Conklin B. R., Brann M. R., Buckley N. J., Ma A. L., Bonner T. I., Axelrod J. Stimulation of arachidonic acid release and inhibition of mitogenesis by cloned genes for muscarinic receptor subtypes stably expressed in A9 L cells. Proc Natl Acad Sci U S A. 1988 Nov;85(22):8698–8702. doi: 10.1073/pnas.85.22.8698. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Detjen K., Tseng M. J., Logsdon C. D. High- and low-affinity CCKA receptor states mediate specific growth inhibitory effects on CHO cells. Biochem Biophys Res Commun. 1995 Aug 4;213(1):44–51. doi: 10.1006/bbrc.1995.2096. [DOI] [PubMed] [Google Scholar]
  7. Felder C. C., Ma A. L., Conklin B. R. Carbachol-induced reverse transformation of Chinese hamster ovary cells transfected with and expressing the m5 muscarinic acetylcholine receptor. FEBS Lett. 1989 Mar 13;245(1-2):75–79. doi: 10.1016/0014-5793(89)80195-4. [DOI] [PubMed] [Google Scholar]
  8. Felder C. C., MacArthur L., Ma A. L., Gusovsky F., Kohn E. C. Tumor-suppressor function of muscarinic acetylcholine receptors is associated with activation of receptor-operated calcium influx. Proc Natl Acad Sci U S A. 1993 Mar 1;90(5):1706–1710. doi: 10.1073/pnas.90.5.1706. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Gutkind J. S., Novotny E. A., Brann M. R., Robbins K. C. Muscarinic acetylcholine receptor subtypes as agonist-dependent oncogenes. Proc Natl Acad Sci U S A. 1991 Jun 1;88(11):4703–4707. doi: 10.1073/pnas.88.11.4703. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hausdorff W. P., Caron M. G., Lefkowitz R. J. Turning off the signal: desensitization of beta-adrenergic receptor function. FASEB J. 1990 Aug;4(11):2881–2889. [PubMed] [Google Scholar]
  11. Julius D., Livelli T. J., Jessell T. M., Axel R. Ectopic expression of the serotonin 1c receptor and the triggering of malignant transformation. Science. 1989 Jun 2;244(4908):1057–1062. doi: 10.1126/science.2727693. [DOI] [PubMed] [Google Scholar]
  12. Karasik A., Reddy S. S., Pepinsky R. B., Brock T., Kahn C. R. Augmented desensitization to epidermal growth factor (EGF) immediate actions: a novel mechanism for altered EGF growth response in mutant A431 cells. J Cell Physiol. 1990 Feb;142(2):231–235. doi: 10.1002/jcp.1041420203. [DOI] [PubMed] [Google Scholar]
  13. Levy-Toledano R., Accili D., Taylor S. I. Deletion of C-terminal 113 amino acids impairs processing and internalization of human insulin receptor: comparison of receptors expressed in CHO and NIH-3T3 cells. Biochim Biophys Acta. 1993 Dec 16;1220(1):1–14. doi: 10.1016/0167-4889(93)90090-c. [DOI] [PubMed] [Google Scholar]
  14. Milligan G., Green A. Agonist control of G-protein levels. Trends Pharmacol Sci. 1991 Jun;12(6):207–209. doi: 10.1016/0165-6147(91)90551-3. [DOI] [PubMed] [Google Scholar]
  15. Mitchell F. M., Buckley N. J., Milligan G. Enhanced degradation of the phosphoinositidase C-linked guanine-nucleotide-binding protein Gq alpha/G11 alpha following activation of the human M1 muscarinic acetylcholine receptor expressed in CHO cells. Biochem J. 1993 Jul 15;293(Pt 2):495–499. doi: 10.1042/bj2930495. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Mullaney I., Dodd M. W., Buckley N., Milligan G. Agonist activation of transfected human M1 muscarinic acetylcholine receptors in CHO cells results in down-regulation of both the receptor and the alpha subunit of the G-protein Gq. Biochem J. 1993 Jan 1;289(Pt 1):125–131. doi: 10.1042/bj2890125. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Mullaney I., Mitchell F. M., McCallum J. F., Buckley N. J., Milligan G. The human muscarinic M1 acetylcholine receptor, when express in CHO cells, activates and downregulates both Gq alpha and G11 alpha equally and non-selectively. FEBS Lett. 1993 Jun 14;324(2):241–245. doi: 10.1016/0014-5793(93)81401-k. [DOI] [PubMed] [Google Scholar]
  18. Olivier A. R., Parker P. J. Bombesin, platelet-derived growth factor, and diacylglycerol induce selective membrane association and down-regulation of protein kinase C isotypes in Swiss 3T3 cells. J Biol Chem. 1994 Jan 28;269(4):2758–2763. [PubMed] [Google Scholar]
  19. Pouysségur J., Seuwen K. Transmembrane receptors and intracellular pathways that control cell proliferation. Annu Rev Physiol. 1992;54:195–210. doi: 10.1146/annurev.ph.54.030192.001211. [DOI] [PubMed] [Google Scholar]
  20. Reid T. W., Reid W. A. The labile nature of the insulin signal(s) for the stimulation of DNA synthesis in mouse lens epithelial and 3T3 cells. J Biol Chem. 1987 Jan 5;262(1):229–233. [PubMed] [Google Scholar]
  21. Rozengurt E. Growth factors and cell proliferation. Curr Opin Cell Biol. 1992 Apr;4(2):161–165. doi: 10.1016/0955-0674(92)90027-a. [DOI] [PubMed] [Google Scholar]
  22. Stephens E. V., Kalinec G., Brann M. R., Gutkind J. S. Transforming G protein-coupled receptors transduce potent mitogenic signals in NIH 3T3 cells independent on cAMP inhibition or conventional protein kinase C. Oncogene. 1993 Jan;8(1):19–26. [PubMed] [Google Scholar]
  23. Van Obberghen-Schilling E., Chambard J. C., Paris S., L'Allemain G., Pouysségur J. alpha-Thrombin-induced early mitogenic signalling events and G0 to S-phase transition of fibroblasts require continual external stimulation. EMBO J. 1985 Nov;4(11):2927–2932. doi: 10.1002/j.1460-2075.1985.tb04025.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Williams C. L., Lennon V. A. Activation of muscarinic acetylcholine receptors inhibits cell cycle progression of small cell lung carcinoma. Cell Regul. 1991 May;2(5):373–381. doi: 10.1091/mbc.2.5.373. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Wojcikiewicz R. J., Furuichi T., Nakade S., Mikoshiba K., Nahorski S. R. Muscarinic receptor activation down-regulates the type I inositol 1,4,5-trisphosphate receptor by accelerating its degradation. J Biol Chem. 1994 Mar 18;269(11):7963–7969. [PubMed] [Google Scholar]
  26. Yang J., Logsdon C. D., Johansen T. E., Williams J. A. Human m3 muscarinic acetylcholine receptor carboxyl-terminal threonine resides are required for agonist-induced receptor down-regulation. Mol Pharmacol. 1993 Dec;44(6):1158–1164. [PubMed] [Google Scholar]
  27. van de Westerlo E., Yang J., Logsdon C., Williams J. A. Down-regulation of the G-proteins Gq alpha and G11 alpha by transfected human M3 muscarinic acetylcholine receptors in Chinese hamster ovary cells is independent of receptor down-regulation. Biochem J. 1995 Sep 1;310(Pt 2):559–563. [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES