Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1995 Nov 21;92(24):11071–11075. doi: 10.1073/pnas.92.24.11071

The extent of heterocellular communication mediated by gap junctions is predictive of bystander tumor cytotoxicity in vitro.

J Fick 1, F G Barker 2nd 1, P Dazin 1, E M Westphale 1, E C Beyer 1, M A Israel 1
PMCID: PMC40573  PMID: 7479939

Abstract

Herpes simplex virus thymidine kinase (HSV-tk)/ganciclovir (GCV) viral-directed enzyme prodrug gene therapy causes potent, tumor-selective cytotoxicity in animal models in which HSV-tk gene transduction is limited to a minority of tumor cells. The passage of toxic molecules from HSV-tk+ cells to neighboring HSV-tk- cells during GCV therapy is one mechanism that may account for this "bystander" cytotoxicity. To investigate whether gap junction-mediated intercellular coupling could mediate this bystander effect, we used a flow cytometry assay to quantitate the extent of heterocellular coupling between HSV-tk+ murine fibroblasts and both rodent and human tumor cell lines. Bystander tumor cytotoxicity during GCV treatment in a coculture assay was highly correlated (P < 0.001) with the extent of gap junction-mediated coupling. These findings show that gap junction-mediated intercellular coupling contributes to the in vitro bystander effect during HSV-tk/GCV therapy and that retroviral transduction of tumor cells is not required for bystander cytotoxicity.

Full text

PDF
11071

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Azarnia R., Michalke W., Loewenstein W. R. Intercellular communication and tissue growth. VI. Failure of exchange of endogeneous molecules between cancer cells with defective junctions and noncancerous cells. J Membr Biol. 1972 Dec 29;10(3):247–258. doi: 10.1007/BF01867858. [DOI] [PubMed] [Google Scholar]
  2. Barba D., Hardin J., Ray J., Gage F. H. Thymidine kinase-mediated killing of rat brain tumors. J Neurosurg. 1993 Nov;79(5):729–735. doi: 10.3171/jns.1993.79.5.0729. [DOI] [PubMed] [Google Scholar]
  3. Barba D., Hardin J., Sadelain M., Gage F. H. Development of anti-tumor immunity following thymidine kinase-mediated killing of experimental brain tumors. Proc Natl Acad Sci U S A. 1994 May 10;91(10):4348–4352. doi: 10.1073/pnas.91.10.4348. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Beyer E. C., Paul D. L., Goodenough D. A. Connexin43: a protein from rat heart homologous to a gap junction protein from liver. J Cell Biol. 1987 Dec;105(6 Pt 1):2621–2629. doi: 10.1083/jcb.105.6.2621. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bi W. L., Parysek L. M., Warnick R., Stambrook P. J. In vitro evidence that metabolic cooperation is responsible for the bystander effect observed with HSV tk retroviral gene therapy. Hum Gene Ther. 1993 Dec;4(6):725–731. doi: 10.1089/hum.1993.4.6-725. [DOI] [PubMed] [Google Scholar]
  6. Boviatsis E. J., Chase M., Wei M. X., Tamiya T., Hurford R. K., Jr, Kowall N. W., Tepper R. I., Breakefield X. O., Chiocca E. A. Gene transfer into experimental brain tumors mediated by adenovirus, herpes simplex virus, and retrovirus vectors. Hum Gene Ther. 1994 Feb;5(2):183–191. doi: 10.1089/hum.1994.5.2-183. [DOI] [PubMed] [Google Scholar]
  7. Caruso M., Panis Y., Gagandeep S., Houssin D., Salzmann J. L., Klatzmann D. Regression of established macroscopic liver metastases after in situ transduction of a suicide gene. Proc Natl Acad Sci U S A. 1993 Aug 1;90(15):7024–7028. doi: 10.1073/pnas.90.15.7024. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Culver K. W., Ram Z., Wallbridge S., Ishii H., Oldfield E. H., Blaese R. M. In vivo gene transfer with retroviral vector-producer cells for treatment of experimental brain tumors. Science. 1992 Jun 12;256(5063):1550–1552. doi: 10.1126/science.1317968. [DOI] [PubMed] [Google Scholar]
  9. Ezzeddine Z. D., Martuza R. L., Platika D., Short M. P., Malick A., Choi B., Breakefield X. O. Selective killing of glioma cells in culture and in vivo by retrovirus transfer of the herpes simplex virus thymidine kinase gene. New Biol. 1991 Jun;3(6):608–614. [PubMed] [Google Scholar]
  10. Freeman S. M., Abboud C. N., Whartenby K. A., Packman C. H., Koeplin D. S., Moolten F. L., Abraham G. N. The "bystander effect": tumor regression when a fraction of the tumor mass is genetically modified. Cancer Res. 1993 Nov 1;53(21):5274–5283. [PubMed] [Google Scholar]
  11. Fujimoto W. Y., Subak-Sharpe J. H., Seegmiller J. E. Hypoxanthine-guanine phosphoribosyltransferase deficiency: chemical agents selective for mutant or normal cultured fibroblasts in mixed and heterozygote cultures. Proc Natl Acad Sci U S A. 1971 Jul;68(7):1516–1519. doi: 10.1073/pnas.68.7.1516. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Gilula N. B., Reeves O. R., Steinbach A. Metabolic coupling, ionic coupling and cell contacts. Nature. 1972 Feb 4;235(5336):262–265. doi: 10.1038/235262a0. [DOI] [PubMed] [Google Scholar]
  13. Martin J. C., Dvorak C. A., Smee D. F., Matthews T. R., Verheyden J. P. 9-[(1,3-Dihydroxy-2-propoxy)methyl]guanine: a new potent and selective antiherpes agent. J Med Chem. 1983 May;26(5):759–761. doi: 10.1021/jm00359a023. [DOI] [PubMed] [Google Scholar]
  14. Moolten F. L. Tumor chemosensitivity conferred by inserted herpes thymidine kinase genes: paradigm for a prospective cancer control strategy. Cancer Res. 1986 Oct;46(10):5276–5281. [PubMed] [Google Scholar]
  15. Moolten F. L., Wells J. M. Curability of tumors bearing herpes thymidine kinase genes transferred by retroviral vectors. J Natl Cancer Inst. 1990 Feb 21;82(4):297–300. doi: 10.1093/jnci/82.4.297. [DOI] [PubMed] [Google Scholar]
  16. Moolten F. L., Wells J. M., Heyman R. A., Evans R. M. Lymphoma regression induced by ganciclovir in mice bearing a herpes thymidine kinase transgene. Hum Gene Ther. 1990 Summer;1(2):125–134. doi: 10.1089/hum.1990.1.2-125. [DOI] [PubMed] [Google Scholar]
  17. Musil L. S., Beyer E. C., Goodenough D. A. Expression of the gap junction protein connexin43 in embryonic chick lens: molecular cloning, ultrastructural localization, and post-translational phosphorylation. J Membr Biol. 1990 Jun;116(2):163–175. doi: 10.1007/BF01868674. [DOI] [PubMed] [Google Scholar]
  18. Plautz G., Nabel E. G., Nabel G. J. Selective elimination of recombinant genes in vivo with a suicide retroviral vector. New Biol. 1991 Jul;3(7):709–715. [PubMed] [Google Scholar]
  19. Ram Z., Culver K. W., Walbridge S., Blaese R. M., Oldfield E. H. In situ retroviral-mediated gene transfer for the treatment of brain tumors in rats. Cancer Res. 1993 Jan 1;53(1):83–88. [PubMed] [Google Scholar]
  20. Ram Z., Culver K. W., Walbridge S., Frank J. A., Blaese R. M., Oldfield E. H. Toxicity studies of retroviral-mediated gene transfer for the treatment of brain tumors. J Neurosurg. 1993 Sep;79(3):400–407. doi: 10.3171/jns.1993.79.3.0400. [DOI] [PubMed] [Google Scholar]
  21. Ram Z., Walbridge S., Shawker T., Culver K. W., Blaese R. M., Oldfield E. H. The effect of thymidine kinase transduction and ganciclovir therapy on tumor vasculature and growth of 9L gliomas in rats. J Neurosurg. 1994 Aug;81(2):256–260. doi: 10.3171/jns.1994.81.2.0256. [DOI] [PubMed] [Google Scholar]
  22. Samejima Y., Meruelo D. 'Bystander killing' induces apoptosis and is inhibited by forskolin. Gene Ther. 1995 Jan;2(1):50–58. [PubMed] [Google Scholar]
  23. Short M. P., Choi B. C., Lee J. K., Malick A., Breakefield X. O., Martuza R. L. Gene delivery to glioma cells in rat brain by grafting of a retrovirus packaging cell line. J Neurosci Res. 1990 Nov;27(3):427–439. doi: 10.1002/jnr.490270322. [DOI] [PubMed] [Google Scholar]
  24. Smee D. F., Boehme R., Chernow M., Binko B. P., Matthews T. R. Intracellular metabolism and enzymatic phosphorylation of 9-(1,3-dihydroxy-2-propoxymethyl)guanine and acyclovir in herpes simplex virus-infected and uninfected cells. Biochem Pharmacol. 1985 Apr 1;34(7):1049–1056. doi: 10.1016/0006-2952(85)90608-2. [DOI] [PubMed] [Google Scholar]
  25. Subak-Sharpe H., Bürk R. R., Pitts J. D. Metabolic co-operation between biochemically marked mammalian cells in tissue culture. J Cell Sci. 1969 Mar;4(2):353–367. doi: 10.1242/jcs.4.2.353. [DOI] [PubMed] [Google Scholar]
  26. Takamiya Y., Short M. P., Ezzeddine Z. D., Moolten F. L., Breakefield X. O., Martuza R. L. Gene therapy of malignant brain tumors: a rat glioma line bearing the herpes simplex virus type 1-thymidine kinase gene and wild type retrovirus kills other tumor cells. J Neurosci Res. 1992 Nov;33(3):493–503. doi: 10.1002/jnr.490330316. [DOI] [PubMed] [Google Scholar]
  27. Tapscott S. J., Miller A. D., Olson J. M., Berger M. S., Groudine M., Spence A. M. Gene therapy of rat 9L gliosarcoma tumors by transduction with selectable genes does not require drug selection. Proc Natl Acad Sci U S A. 1994 Aug 16;91(17):8185–8189. doi: 10.1073/pnas.91.17.8185. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Tofilon P. J., Buckley N., Deen D. F. Effect of cell-cell interactions on drug sensitivity and growth of drug-sensitive and -resistant tumor cells in spheroids. Science. 1984 Nov 16;226(4676):862–864. doi: 10.1126/science.6494917. [DOI] [PubMed] [Google Scholar]
  29. Tomasetto C., Neveu M. J., Daley J., Horan P. K., Sager R. Specificity of gap junction communication among human mammary cells and connexin transfectants in culture. J Cell Biol. 1993 Jul;122(1):157–167. doi: 10.1083/jcb.122.1.157. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Vile R. G., Hart I. R. Use of tissue-specific expression of the herpes simplex virus thymidine kinase gene to inhibit growth of established murine melanomas following direct intratumoral injection of DNA. Cancer Res. 1993 Sep 1;53(17):3860–3864. [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES