Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1995 Nov 21;92(24):11150–11154. doi: 10.1073/pnas.92.24.11150

Antibodies against the T61 antigen inhibit neuronal migration in the chick optic tectum.

S U Meyer 1, S Henke-Fahle 1
PMCID: PMC40589  PMID: 7479955

Abstract

Cell migration in the central nervous system depends, in part, on receptors and extracellular matrix molecules that likewise support axonal outgrowth. We have investigated the influence of T61, a monoclonal antibody that has been shown to inhibit growth cone motility in vitro, on neuronal migration in the developing optic tectum. Intraventricular injections of antibody-producing hybridoma cells or ascites fluid were used to determine the action of this antibody in an in vivo environment. To document alterations in tectal layer formation, a combination of cell-nuclei staining and axonal immunolabeling methods was employed. In the presence of T61 antibody, cells normally destined for superficial layers accumulated in the ventricular zone instead, leading to a reduction of the cell-dense layer in the tectal plate. Experiments with 5-bromo-2'-deoxyuridine labeling followed by antibody staining confirmed that the nonmigrating cells remaining in the ventricular zone were postmitotic and had differentiated. The structure of radial glial cells, as judged by staining with a glia-specific antibody and the fluorescent tracer 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate (DiI), remained intact in these embryos. Our findings suggest that the T61 epitope is involved in a mechanism underlying axonal extension and neuronal migration, possibly by influencing the motility of the leading process.

Full text

PDF
11150

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Auerbach R., Kubai L., Knighton D., Folkman J. A simple procedure for the long-term cultivation of chicken embryos. Dev Biol. 1974 Dec;41(2):391–394. doi: 10.1016/0012-1606(74)90316-9. [DOI] [PubMed] [Google Scholar]
  2. Caviness V. S., Jr, Rakic P. Mechanisms of cortical development: a view from mutations in mice. Annu Rev Neurosci. 1978;1:297–326. doi: 10.1146/annurev.ne.01.030178.001501. [DOI] [PubMed] [Google Scholar]
  3. Chuong C. M. Differential roles of multiple adhesion molecules in cell migration: granule cell migration in cerebellum. Experientia. 1990 Sep 15;46(9):892–899. doi: 10.1007/BF01939381. [DOI] [PubMed] [Google Scholar]
  4. D'Arcangelo G., Miao G. G., Chen S. C., Soares H. D., Morgan J. I., Curran T. A protein related to extracellular matrix proteins deleted in the mouse mutant reeler. Nature. 1995 Apr 20;374(6524):719–723. doi: 10.1038/374719a0. [DOI] [PubMed] [Google Scholar]
  5. Dräger U. C., Edwards D. L., Barnstable C. J. Antibodies against filamentous components in discrete cell types of the mouse retina. J Neurosci. 1984 Aug;4(8):2025–2042. doi: 10.1523/JNEUROSCI.04-08-02025.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Gao W. Q., Hatten M. E. Neuronal differentiation rescued by implantation of Weaver granule cell precursors into wild-type cerebellar cortex. Science. 1993 Apr 16;260(5106):367–369. doi: 10.1126/science.8469990. [DOI] [PubMed] [Google Scholar]
  7. Goffinet A. M. Events governing organization of postmigratory neurons: studies on brain development in normal and reeler mice. Brain Res. 1984 Aug;319(3):261–296. doi: 10.1016/0165-0173(84)90013-4. [DOI] [PubMed] [Google Scholar]
  8. Gray G. E., Glover J. C., Majors J., Sanes J. R. Radial arrangement of clonally related cells in the chicken optic tectum: lineage analysis with a recombinant retrovirus. Proc Natl Acad Sci U S A. 1988 Oct;85(19):7356–7360. doi: 10.1073/pnas.85.19.7356. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Gray G. E., Leber S. M., Sanes J. R. Migratory patterns of clonally related cells in the developing central nervous system. Experientia. 1990 Sep 15;46(9):929–940. doi: 10.1007/BF01939386. [DOI] [PubMed] [Google Scholar]
  10. Gray G. E., Sanes J. R. Migratory paths and phenotypic choices of clonally related cells in the avian optic tectum. Neuron. 1991 Feb;6(2):211–225. doi: 10.1016/0896-6273(91)90357-6. [DOI] [PubMed] [Google Scholar]
  11. Götz M., Bolz J. Formation and preservation of cortical layers in slice cultures. J Neurobiol. 1992 Sep;23(7):783–802. doi: 10.1002/neu.480230702. [DOI] [PubMed] [Google Scholar]
  12. Halfter W., Deiss S. Axonal pathfinding in organ-cultured embryonic avian retinae. Dev Biol. 1986 Apr;114(2):296–310. doi: 10.1016/0012-1606(86)90194-6. [DOI] [PubMed] [Google Scholar]
  13. Halfter W., Fua C. S. Immunohistochemical localization of laminin, neural cell adhesion molecule, collagen type IV and T-61 antigen in the embryonic retina of the Japanese quail by in vivo injection of antibodies. Cell Tissue Res. 1987 Sep;249(3):487–496. doi: 10.1007/BF00217320. [DOI] [PubMed] [Google Scholar]
  14. Hatten M. E. The role of migration in central nervous system neuronal development. Curr Opin Neurobiol. 1993 Feb;3(1):38–44. doi: 10.1016/0959-4388(93)90033-u. [DOI] [PubMed] [Google Scholar]
  15. Henke-Fahle S., Bonhoeffer F. Inhibition of axonal growth by a monoclonal antibody. Nature. 1983 May 5;303(5912):65–67. doi: 10.1038/303065a0. [DOI] [PubMed] [Google Scholar]
  16. Komuro H., Rakic P. Modulation of neuronal migration by NMDA receptors. Science. 1993 Apr 2;260(5104):95–97. doi: 10.1126/science.8096653. [DOI] [PubMed] [Google Scholar]
  17. Komuro H., Rakic P. Selective role of N-type calcium channels in neuronal migration. Science. 1992 Aug 7;257(5071):806–809. doi: 10.1126/science.1323145. [DOI] [PubMed] [Google Scholar]
  18. Kröger S., Schwarz U. The avian tectobulbar tract: development, explant culture, and effects of antibodies on the pattern of neurite outgrowth. J Neurosci. 1990 Sep;10(9):3118–3134. doi: 10.1523/JNEUROSCI.10-09-03118.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. LaVail J. H., Cowan W. M. The development of the chick optic tectum. I. Normal morphology and cytoarchitectonic development. Brain Res. 1971 May 21;28(3):391–419. doi: 10.1016/0006-8993(71)90053-9. [DOI] [PubMed] [Google Scholar]
  20. Pollerberg E. G., Sadoul R., Goridis C., Schachner M. Selective expression of the 180-kD component of the neural cell adhesion molecule N-CAM during development. J Cell Biol. 1985 Nov;101(5 Pt 1):1921–1929. doi: 10.1083/jcb.101.5.1921. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Rager G., von Oeynhausen B. Ingrowth and ramification of retinal fibers in the developing optic tectum of the chick embryo. Exp Brain Res. 1979 Apr 2;35(2):213–227. doi: 10.1007/BF00236612. [DOI] [PubMed] [Google Scholar]
  22. Rakic P. Neuron-glia relationship during granule cell migration in developing cerebellar cortex. A Golgi and electronmicroscopic study in Macacus Rhesus. J Comp Neurol. 1971 Mar;141(3):283–312. doi: 10.1002/cne.901410303. [DOI] [PubMed] [Google Scholar]
  23. Rakic P. Principles of neural cell migration. Experientia. 1990 Sep 15;46(9):882–891. doi: 10.1007/BF01939380. [DOI] [PubMed] [Google Scholar]
  24. Rathjen F. G., Wolff J. M., Frank R., Bonhoeffer F., Rutishauser U. Membrane glycoproteins involved in neurite fasciculation. J Cell Biol. 1987 Feb;104(2):343–353. doi: 10.1083/jcb.104.2.343. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Sandrock A. W., Jr, Matthew W. D. An in vitro neurite-promoting antigen functions in axonal regeneration in vivo. Science. 1987 Sep 25;237(4822):1605–1608. doi: 10.1126/science.3306923. [DOI] [PubMed] [Google Scholar]
  26. Schnell L., Schwab M. E. Axonal regeneration in the rat spinal cord produced by an antibody against myelin-associated neurite growth inhibitors. Nature. 1990 Jan 18;343(6255):269–272. doi: 10.1038/343269a0. [DOI] [PubMed] [Google Scholar]
  27. Vanselow J., Thanos S., Godement P., Henke-Fahle S., Bonhoeffer F. Spatial arrangement of radial glia and ingrowing retinal axons in the chick optic tectum during development. Brain Res Dev Brain Res. 1989 Jan 1;45(1):15–27. doi: 10.1016/0165-3806(89)90003-5. [DOI] [PubMed] [Google Scholar]
  28. Watanabe M., Frelinger A. L., 3rd, Rutishauser U. Topography of N-CAM structural and functional determinants. I. Classification of monoclonal antibody epitopes. J Cell Biol. 1986 Nov;103(5):1721–1727. doi: 10.1083/jcb.103.5.1721. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES