Abstract
We propose a multiple imputation estimator for parameter estimation in a quantile regression model when some covariates are missing at random. The estimation procedure fully utilizes the entire dataset to achieve increased efficiency, and the resulting coefficient estimators are root-n consistent and asymptotically normal. To protect against possible model misspecification, we further propose a shrinkage estimator, which automatically adjusts for possible bias. The finite sample performance of our estimator is investigated in a simulation study. Finally, we apply our methodology to part of the Eating at American’s Table Study data, investigating the association between two measures of dietary intake.
Keywords: Missing data, Multiple imputation, Quantile regression, Regression quantile, Shrinkage estimation
References
- Amemiya T. Advanced Econometrics. Boston: Harvard University Press; 1985. [Google Scholar]
- Carroll R. J., Ruppert D., Stefanski L. A., Crainiceanu C. M. Measurement Error in Nonlinear Models: A Modern Perspective. 2nd ed. London: Chapman and Hall CRC Press; 2006. [Google Scholar]
- Chen Y. H., Chatterjee N., Carroll R. J. Shrinkage estimators for robust and efficient inference in haplotype-based case-control studies. J. Am. Statist. Assoc. 2009;104:220–33. doi: 10.1198/jasa.2009.0104. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hall P., Sheather S. On the distribution of a studentized quantile. J. R. Statist Soc. 1988;50:381–91. [Google Scholar]
- He X., Shao Q. M. A general Bahadur representation of $M$-estimators and its application to linear regression with nonstochastic designs. Ann. Statist. 1996;24:2608–30. [Google Scholar]
- Koenker R. Quantile Regression. Cambridge: Cambridge University Press; 2005. [Google Scholar]
- Koenker R., Bassett G. J. Regression quantiles. Econometrica. 1978;46:33–50. [Google Scholar]
- Koenker R., Xiao Z. J. Unit root quantile autoregression inference. J. Am. Statist. Assoc. 2004;99:775–87. [Google Scholar]
- Lipsitz S. R., Fitzmaurice G. M., Molenberghs G., Zhao L. P. Quantile regression methods for longitudinal data with drop-outs: application to CD4 cell counts of patients infected with the human immunodeficiency virus. Appl. Statist. 1997;46:463–76. [Google Scholar]
- Little R. J. A., Rubin D. B. Statistical Analysis with Missing Data. New York: Wiley; 1987. [Google Scholar]
- Robins J. M., Rotnitzky A., Zhao L. P. Analysis of semiparametric regression models for repeated outcomes in the presence of missing data. J. Am. Statist. Assoc. 1995;90:106–21. [Google Scholar]
- Subar A. F., Thompson F. E., Kipnis V., Midthune D., Hurwitz P., Mcnutt S., Mcintosh A., Rosenfeld S. Comparative validation of the Block, Willett, and National Cancer Institute Food Frequency Questionnaires: the Eating at American’s Table Study. Am. J. Epidemiol. 2001;154:1089–99. doi: 10.1093/aje/154.12.1089. [DOI] [PubMed] [Google Scholar]
- Tsiatis A. A. Semiparametric Theory and Missing Data. New York: Springer; 2006. [Google Scholar]
- van der Vaart A. W. Asymptotic Statistics. Cambridge: Cambridge University Press; 1998. [Google Scholar]
- Wei Y., Carroll R. J. Quantile regression with measurement error. J. Am. Statist. Assoc. 2009;104:1129–43. doi: 10.1198/jasa.2009.tm08420. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Welsh A. H. Asymptotically efficient estimation of the sparsity function at a point. Statist. Prob. Lett. 1988;6:427–32. [Google Scholar]
- Yi G. Y., He W. Median regression models for longitudinal data with dropouts. Biometrics. 2009;65:618–25. doi: 10.1111/j.1541-0420.2008.01105.x. [DOI] [PubMed] [Google Scholar]