Abstract
Synaptic communication requires constant adjustments of pre- and postsynaptic efficacies. In addition to synaptic long term plasticity, the presynaptic machinery underlies homeostatic regulations which prevent out of range transmitter release. In this minireview we will discuss the relevance of selected presynaptic mechanisms to epilepsy including voltage- and ligand-gated ion channels as well as cannabinoid and adenosine receptor signaling.
Keywords: epilepsy, axon, RNA editing, potassium channels, glycine receptor, homeostatic regulation, neuropsychiatric disorders, hippocampus
Introduction
Many studies highlighted the importance of homeostasis in neuronal signaling either within neurons, then called “intrinsic plasticity” or between neurons, referred to as “synaptic scaling” (Davis and Bezprozvanny, 2001; Eichler and Meier, 2008; Turrigiano, 2011). Classic synaptic plasticity in its non-homeostatic “Hebbian” form and pathological disturbances need counterbalancing homeostatic scaling mechanisms (Abbott and Nelson, 2000). The latter was mainly regarded from the postsynaptic perspective (Thiagarajan et al., 2005; Groth et al., 2011). However, in addition to presynaptic expression of synaptic long term plasticity (Nicoll and Schmitz, 2005), slow homeostatic regulations occur in the presynapse, e.g., in form of chronic receptor or ion channel modulations.
Presynaptic ion channel and glycine receptor plasticity
Because transmitter release is controlled by action potential-(AP)-triggered calcium influx in the synaptic terminal, regulation of ion channels which shape the axonal AP and terminal depolarization is an effective mechanism of presynaptic plasticity. With this definition, the AP initiation zone (AIZ) could be viewed as part of the presynaptic equipment. A striking form of homeostatic plasticity has been documented for the AIZ: this entire subcellular structure including voltage-gated Na+ (Nav) and K+ (Kv) channels can be shifted along the axon (Figure 1), thereby counteracting hyperexcitation by increasing thresholds for AP generation (Grubb and Burrone, 2010). Such axonal remodeling may be facilitated via ion channel trafficking regulated by alternative splicing, as shown for “shaw-related” Kv3 channels (Gu et al., 2012). Other important constituents of presynaptic control are “shaker-related” KV1 channels (Wang et al., 1994). Their role is well demonstrated for the large glutamatergic mossy fiber boutons of dentate granule cells, which impinge on hippocampal CA3 pyramidal cells (Geiger and Jonas, 2000; Bischofberger et al., 2006). Here, Kv channels could gain further importance during temporal lobe epilepsy (TLE), when seizures invade the hippocampus and feedforward inhibition of CA3 pyramidal cells via interneurons is compromised (Lawrence and McBain, 2003). Indeed, seizures trigger a transcriptional upregulation of Kv1.1 channels in granule cells, thereby delaying their AP responses considerably, as recently shown in a TLE mouse model (Kirchheim et al., 2013). Consistent with the view that KV1.1 is a promising antiepileptic target, KV1.1 knockout mice develop epilepsy (Wenzel et al., 2007) and lentiviral overexpression of KV1.1 ameliorates seizures in an animal model of neocortical epilepsy (Wykes et al., 2012). The interaction of activity-dependent downscaling and potentiation of presynaptic excitability may involve the adenylyl cyclase pathway (Nicoll and Schmitz, 2005) but it is still unclear how exactly these seemingly opposed mechanisms interact in the same presynaptic compartment.
Figure 1.

Scheme depicting strategic molecules relevant for homeostasis of presynaptic function and epilepsy discussed in this minireview. In glutamatergic neurons, gain-of-function of molecules colored red/orange will increase network excitability, whereas those colored green will decrease it. The opposite holds true if the changes occur in GABAergic neurons. Abbreviations: NaV, CaV, KV, voltage-gated sodium, calcium and potassium channels; AIZ, action potential (AP) initiation zone; GlyR, glycine receptors; A1, adenosine receptor; CB1, cannabinoid receptor 1.
Epilepsy often comes with cognitive dysfunction and neuropsychiatric comorbidities (García-Morales et al., 2008). We discovered a molecule which in this regard may have an important impact: an RNA variant of the neurotransmitter receptor for glycine (GlyR). The GlyRs are subject to increased RNA editing in resected hippocampi of TLE patients (Eichler et al., 2008) which profoundly influences biophysical receptor properties. The reason is an amino acid substitution in the ligand binding domain leading to gain-of-function receptors with increased neurotransmitter affinity (Meier et al., 2005; Eichler et al., 2008; Legendre et al., 2009) and spontaneous channel activity (Kletke et al., 2013; Winkelmann et al., 2014). In addition, RNA splicing governs presynaptic GlyR expression (Winkelmann et al., 2014), and in hippocampal neurons, the lack of the GlyR β subunit (Weltzien et al., 2012) which governs postsynaptic receptor clustering (Meyer et al., 1995; Meier et al., 2000, 2001; Eichler et al., 2009; Förstera et al., 2010; Kowalczyk et al., 2013), certainly facilitates GlyR expression and function at presynapses (Figure 1). Presynaptic GlyRs are tightly packed (~200 receptor channels in a cluster with ~100 nm radius; Notelaers et al., 2012, 2014a,b), which implies that a single presynaptic cluster from the spontaneously active GlyR RNA variant will have a considerable functional impact on synaptic neurotransmitter release, even if the contribution of the glycinergic system to this brain region appears limited (Zeilhofer et al., 2005). Consistent with the excitatory nature of presynaptic chloride channels and the well documented presynaptic GlyR expression in the hippocampus (Kubota et al., 2010; Ruiz et al., 2010; Waseem and Fedorovich, 2010; Winkelmann et al., 2014), we found that the spontaneously active GlyR RNA variant actually increased presynaptic excitability and the functional impact of glutamatergic neurons or parvalbumin-positive interneurons in vivo and, depending on the type of neuron, triggered cognitive dysfunction or anxiety in our mouse model of epilepsy (Winkelmann et al., 2014). In agreement with the proposed critical role of presynaptic GlyRs in the regulation of neural network excitability, application of a low, non-receptor-saturating, glycine concentration (10 µM) to corticohippocampal slice preparations was sufficient to enhance epileptiform activity induced by block of KV1 channels (Chen et al., 2014).
Retrograde autocrine and paracrine signaling
Although the idea of cannabis as a potential antiepileptic drug is ancient, it remained elusive how it could work reliably (Adams and Martin, 1996; Miller, 2013). Recent discoveries on endogenous cannabinoid receptors (CB), of which particularly CB1 is widely expressed in presynaptic terminals of excitatory and inhibitory neurons (Figure 1), could lead to a better understanding of CB mechanisms in epilepsy (Alger, 2004; Katona and Freund, 2008; Hill et al., 2012). In GABAergic neurons, activation of CB1, e.g., via neuronal activity-dependent retrograde post-to-presynapse release of CBs anandamide or 2-AG has been shown to decrease synaptic GABA release, a mechanism termed depolarization-induced suppression of inhibition (DSI; Ohno-Shosaku et al., 2001; Wilson et al., 2001). Consistently, elevated CB1 presence observed in epilepsy models and TLE patients (Goffin et al., 2011; Karlócai et al., 2011; Bojnik et al., 2012) has been interpreted as proconvulsive (Chen et al., 2003, 2007). On the other hand, CB1 is also expressed on glutamatergic terminals, where its activation reduces glutamate release (Domenici et al., 2006; Kawamura et al., 2006). Furthermore, CB1 activation increases inward rectifier K+ (Kir) currents (Mackie et al., 1995; Chemin et al., 2001) mediated via postsynaptic channels which are also upregulated in TLE (Young et al., 2009; Stegen et al., 2012). In summary, while elevation of CB1 at GABAergic synapses and reduction at glutamatergic synapses likely constitute endogenous adaptations to epilepsy, exogenous CB1 overexpression and activation in principal neurons, possibly via receptors physiologically rarely activated, could effectively protect against seizures (Blair et al., 2006; Guggenhuber et al., 2010; Hofmann and Frazier, 2013).
Adenosine triphosphate (ATP) is released from astrocytes and can enhance neuronal excitability through its direct action onto purinergic receptors. However, ATP can also exert indirect effects upon its enzymatic conversion to adenosine and signaling through adenosine A1 receptors, which reduces synaptic glutamate release (Nicoll and Schmitz, 2005; Boison, 2013; Dias et al., 2013). Therefore, adenosine signaling is another mechanism of presynaptic homeostasis with recognized relevance to epilepsy; while too much adenosine clearance via gliosis-enhanced adenosine kinase activity is a proconvulsive factor, adenosine augmentation in the epileptic focus represents a powerful anticonvulsive principle (Boison, 2012).
Perspective
In agreement with the proposed critical role of presynaptic compartments in the regulation of neural network homeostasis, diverse pharmacological agents with a presynaptic mode of action were reported to be effective in the treatment of epilepsy. In particular drugs which provide rapid adaptation against excessive excitation, e.g., via use-dependent inhibition of Nav or Cav channels (phenytoin, carbamazepine, lamotrigine, topiramate, and levetiracetam), likely act primarily in axons (Stefani et al., 1996; Wu et al., 1998; Catterall, 1999; Vogl et al., 2012). Interestingly, these drugs also have effects on psychiatric symptoms (Barbosa et al., 2003; Lexi-Comp, 2009; Andrus and Gilbert, 2010) indicating common underlying mechanisms of cognitive dysfunction and psychiatric symptoms of epilepsy. With more research on neuron type-specific roles in behavior (Lovett-Barron et al., 2014; Winkelmann et al., 2014), new antiepileptic strategies could ground on these insights and specifically target presynaptic molecules in the affected cell types.
Conflict of interest statement
The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
References
- Abbott L. F., Nelson S. B. (2000). Synaptic plasticity: taming the beast. Nat. Neurosci. 3(Suppl), 1178–1183 10.1038/81453 [DOI] [PubMed] [Google Scholar]
- Adams I. B., Martin B. R. (1996). Cannabis: pharmacology and toxicology in animals and humans. Addiction 91, 1585–1614 10.1046/j.1360-0443.1996.911115852.x [DOI] [PubMed] [Google Scholar]
- Alger B. E. (2004). Endocannabinoids and their implications for epilepsy. Epilepsy Curr. 4, 169–173 10.1111/j.1535-7597.2004.04501.x [DOI] [PMC free article] [PubMed] [Google Scholar]
- Andrus M. R., Gilbert E. (2010). Treatment of civilian and combat-related posttraumatic stress disorder with topiramate. Ann. Pharmacother. 44, 1810–1816 10.1345/aph.1P163 [DOI] [PubMed] [Google Scholar]
- Barbosa L., Berk M., Vorster M. (2003). A double-blind, randomized, placebo-controlled trial of augmentation with lamotrigine or placebo in patients concomitantly treated with fluoxetine for resistant major depressive episodes. J. Clin. Psychiatry 64, 403–407 10.4088/jcp.v64n0407 [DOI] [PubMed] [Google Scholar]
- Bischofberger J., Engel D., Frotscher M., Jonas P. (2006). Timing and efficacy of transmitter release at mossy fiber synapses in the hippocampal network. Pflugers Arch. 453, 361–372 10.1007/s00424-006-0093-2 [DOI] [PubMed] [Google Scholar]
- Blair R. E., Deshpande L. S., Sombati S., Falenski K. W., Martin B. R., DeLorenzo R. J. (2006). Activation of the cannabinoid type-1 receptor mediates the anticonvulsant properties of cannabinoids in the hippocampal neuronal culture models of acquired epilepsy and status epilepticus. J. Pharmacol. Exp. Ther. 317, 1072–1078 10.1124/jpet.105.100354 [DOI] [PubMed] [Google Scholar]
- Boison D. (2012). Adenosine dysfunction in epilepsy. Glia 60, 1234–1243 10.1002/glia.22285 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Boison D. (2013). Adenosine kinase: exploitation for therapeutic gain. Pharmacol. Rev. 65, 906–943 10.1124/pr.112.006361 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bojnik E., Turunc E., Armagan G., Kanit L., Benyhe S., Yalcin A., et al. (2012). Changes in the cannabinoid (CB1) receptor expression level and G-protein activation in kainic acid induced seizures. Epilepsy Res. 99, 64–68 10.1016/j.eplepsyres.2011.10.020 [DOI] [PubMed] [Google Scholar]
- Catterall W. A. (1999). Molecular properties of brain sodium channels: an important target for anticonvulsant drugs. Adv. Neurol. 79, 441–456 [PubMed] [Google Scholar]
- Chemin J., Monteil A., Perez-Reyes E., Nargeot J., Lory P. (2001). Direct inhibition of T-type calcium channels by the endogenous cannabinoid anandamide. EMBO J. 20, 7033–7040 10.1093/emboj/20.24.7033 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chen K., Neu A., Howard A. L., Foldy C., Echegoyen J., Hilgenberg L., et al. (2007). Prevention of plasticity of endocannabinoid signaling inhibits persistent limbic hyperexcitability caused by developmental seizures. J. Neurosci. 27, 46–58 10.1523/jneurosci.3966-06.2007 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chen R., Okabe A., Sun H., Sharopov S., Hanganu-Opatz I. L., Kolbaev S. N., et al. (2014). Activation of glycine receptors modulates spontaneous epileptiform activity in the immature rat hippocampus. J. Physiol. 592(Pt. 10), 2153–2168 10.1113/jphysiol.2014.271700 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chen K., Ratzliff A., Hilgenberg L., Gulyas A., Freund T. F., Smith M., et al. (2003). Long-term plasticity of endocannabinoid signaling induced by developmental febrile seizures. Neuron 39, 599–611 10.1016/s0896-6273(03)00499-9 [DOI] [PubMed] [Google Scholar]
- Davis G. W., Bezprozvanny I. (2001). Maintaining the stability of neural function: a homeostatic hypothesis. Annu. Rev. Physiol. 63, 847–869 10.1146/annurev.physiol.63.1.847 [DOI] [PubMed] [Google Scholar]
- Dias R. B., Rombo D. M., Ribeiro J. A., Henley J. M., Sebastiao A. M. (2013). Adenosine: setting the stage for plasticity. Trends Neurosci. 36, 248–257 10.1016/j.tins.2012.12.003 [DOI] [PubMed] [Google Scholar]
- Domenici M. R., Azad S. C., Marsicano G., Schierloh A., Wotjak C. T., Dodt H. U., et al. (2006). Cannabinoid receptor type 1 located on presynaptic terminals of principal neurons in the forebrain controls glutamatergic synaptic transmission. J. Neurosci. 26, 5794–5799 10.1523/jneurosci.0372-06.2006 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Eichler S. A., Förstera B., Smolinsky B., Juttner R., Lehmann T. N., Fahling M., et al. (2009). Splice-specific roles of glycine receptor α3 in the hippocampus. Eur. J. Neurosci. 30, 1077–1091 10.1111/j.1460-9568.2009.06903.x [DOI] [PubMed] [Google Scholar]
- Eichler S. A., Kirischuk S., Jüttner R., Schäfermeier P. K., Legendre P., Lehmann T. N., et al. (2008). Glycinergic tonic inhibition of hippocampal neurons with depolarising GABAergic transmission elicits histopathological signs of temporal lobe epilepsy. J. Cell. Mol. Med. 12, 2848–2866 10.1111/j.1582-4934.2008.00357.x [DOI] [PMC free article] [PubMed] [Google Scholar]
- Eichler S. A., Meier J. C. (2008). E-I balance and human diseases - from molecules to networking. Front. Mol. Neurosci. 1:2 10.3389/neuro.02.002.2008 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Förstera B., Belaidi A. A., Jüttner R., Bernert C., Tsokos M., Lehmann T. N., et al. (2010). Irregular RNA splicing curtails postsynaptic gephyrin in the cornu ammonis of patients with epilepsy. Brain 133, 3778–3794 10.1093/brain/awq298 [DOI] [PubMed] [Google Scholar]
- García-Morales I., de la Pena M. P., Kanner A. M. (2008). Psychiatric comorbidities in epilepsy: identification and treatment. Neurologist 14, S15–S25 10.1097/01.nrl.0000340788.07672.51 [DOI] [PubMed] [Google Scholar]
- Geiger J. R., Jonas P. (2000). Dynamic control of presynaptic Ca(2+) inflow by fast-inactivating K(+) channels in hippocampal mossy fiber boutons. Neuron 28, 927–939 10.1016/s0896-6273(00)00164-1 [DOI] [PubMed] [Google Scholar]
- Goffin K., Van P. W., Van L. K. (2011). In vivo activation of endocannabinoid system in temporal lobe epilepsy with hippocampal sclerosis. Brain 134, 1033–1040 10.1093/brain/awq385 [DOI] [PubMed] [Google Scholar]
- Groth R. D., Lindskog M., Thiagarajan T. C., Li L., Tsien R. W. (2011). Beta Ca2+/CaM-dependent kinase type II triggers upregulation of GluA1 to coordinate adaptation to synaptic inactivity in hippocampal neurons. Proc. Natl. Acad. Sci. U S A 108, 828–833 10.1073/pnas.1018022108 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Grubb M. S., Burrone J. (2010). Activity-dependent relocation of the axon initial segment fine-tunes neuronal excitability. Nature 465, 1070–1074 10.1038/nature09160 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gu Y., Barry J., McDougel R., Terman D., Gu C. (2012). Alternative splicing regulates kv3.1 polarized targeting to adjust maximal spiking frequency. J. Biol. Chem. 287, 1755–1769 10.1074/jbc.m111.299305 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Guggenhuber S., Monory K., Lutz B., Klugmann M. (2010). AAV vector-mediated overexpression of CB1 cannabinoid receptor in pyramidal neurons of the hippocampus protects against seizure-induced excitoxicity. PLoS One 5:e15707 10.1371/journal.pone.0015707 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hill A. J., Williams C. M., Whalley B. J., Stephens G. J. (2012). Phytocannabinoids as novel therapeutic agents in CNS disorders. Pharmacol. Ther. 133, 79–97 10.1016/j.pharmthera.2011.09.002 [DOI] [PubMed] [Google Scholar]
- Hofmann M. E., Frazier C. J. (2013). Marijuana, endocannabinoids and epilepsy: potential and challenges for improved therapeutic intervention. Exp. Neurol. 244, 43–50 10.1016/j.expneurol.2011.11.047 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Karlócai M. R., Toth K., Watanabe M., Ledent C., Juhasz G., Freund T. F., et al. (2011). Redistribution of CB1 cannabinoid receptors in the acute and chronic phases of pilocarpine-induced epilepsy. PLoS One 6:e27196 10.1371/journal.pone.0027196 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Katona I., Freund T. F. (2008). Endocannabinoid signaling as a synaptic circuit breaker in neurological disease. Nat. Med. 14, 923–930 10.1038/nm.f.1869 [DOI] [PubMed] [Google Scholar]
- Kawamura Y., Fukaya M., Maejima T., Yoshida T., Miura E., Watanabe M., et al. (2006). The CB1 cannabinoid receptor is the major cannabinoid receptor at excitatory presynaptic sites in the hippocampus and cerebellum. J. Neurosci. 26, 2991–3001 10.1523/jneurosci.4872-05.2006 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kirchheim F., Tinnes S., Haas C. A., Stegen M., Wolfart J. (2013). Regulation of action potential delays via voltage-gated potassium Kv1.1 channels in dentate granule cells during hippocampal epilepsy. Front. Cell. Neurosci. 7:248 10.3389/fncel.2013.00248 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kletke O., Sergeeva O. A., Lorenz P., Oberland S., Meier J. C., Hatt H., et al. (2013). New insights in endogenous modulation of ligand-gated ion channels: Histamine is an inverse agonist at strychnine sensitive glycine receptors. Eur. J. Pharmacol. 710, 59–66 10.1016/j.ejphar.2013.04.002 [DOI] [PubMed] [Google Scholar]
- Kowalczyk S., Winkelmann A., Smolinsky B., Förstera B., Neundorf I., Schwarz G., et al. (2013). Direct binding of GABA(A) receptor β2 and β3 subunits to gephyrin. Eur. J. Neurosci. 37, 544–554 10.1111/ejn.12078 [DOI] [PubMed] [Google Scholar]
- Kubota H., Alle H., Betz H., Geiger J. R. (2010). Presynaptic glycine receptors on hippocampal mossy fibers. Biochem. Biophys. Res. Commun. 393, 587–591 10.1016/j.bbrc.2010.02.019 [DOI] [PubMed] [Google Scholar]
- Lawrence J. J., McBain C. J. (2003). Interneuron diversity series: containing the detonation—feedforward inhibition in the CA3 hippocampus. Trends Neurosci. 26, 631–640 10.1016/j.tins.2003.09.007 [DOI] [PubMed] [Google Scholar]
- Legendre P., Förstera B., Jüttner R., Meier J. C. (2009). Glycine receptors caught between genome and proteome—functional implications of RNA editing and splicing. Front. Mol. Neurosci. 2:23 10.3389/neuro.02.023.2009 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lexi-Comp (2009). “Carbamazepine,” in The Merck Manual, ed Porter R. S. (Whitehouse Station, N.J., U.S.A: Merck Sharp and Dohme Corp., a subsidiary of Merck and Co., Inc.). [Google Scholar]
- Lovett-Barron M., Kaifosh P., Kheirbek M. A., Danielson N., Zaremba J. D., Reardon T. R., et al. (2014). Dendritic inhibition in the hippocampus supports fear learning. Science 343, 857–863 10.1126/science.1247485 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mackie K., Lai Y., Westenbroek R., Mitchell R. (1995). Cannabinoids activate an inwardly rectifying potassium conductance and inhibit Q-type calcium currents in AtT20 cells transfected with rat brain cannabinoid receptor. J. Neurosci. 15, 6552–6561 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Meier J. C., Henneberger C., Melnick I., Racca C., Harvey R. J., Heinemann U., et al. (2005). RNA editing produces glycine receptor α3P185L resulting in high agonist potency. Nat. Neurosci. 8, 736–744 10.1038/nn1467 [DOI] [PubMed] [Google Scholar]
- Meier J., Meunier-Durmort C., Forest C., Triller A., Vannier C. (2000). Formation of glycine receptor clusters and their accumulation at synapses. J. Cell Sci. 113, 2783–2795 [DOI] [PubMed] [Google Scholar]
- Meier J., Vannier C., Serge A., Triller A., Choquet D. (2001). Fast and reversible trapping of surface glycine receptors by gephyrin. Nat. Neurosci. 4, 253–260 10.1038/85099 [DOI] [PubMed] [Google Scholar]
- Meyer G., Kirsch J., Betz H., Langosch D. (1995). Identification of a gephyrin binding motif on the glycine receptor beta subunit. Neuron 15, 563–572 10.1016/0896-6273(95)90145-0 [DOI] [PubMed] [Google Scholar]
- Miller J. W. (2013). Slim evidence for cannabinoids for epilepsy. Epilepsy Curr. 13, 81–82 10.5698/1535-7597-13.2.81 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nicoll R. A., Schmitz D. (2005). Synaptic plasticity at hippocampal mossy fibre synapses. Nat. Rev. Neurosci. 6, 863–876 10.1038/nrn1786 [DOI] [PubMed] [Google Scholar]
- Notelaers K., Smisdom N., Rocha S., Janssen D., Meier J. C., Rigo J. M., et al. (2012). Ensemble and single particle fluorimetric techniques in concerted action to study the diffusion and aggregation of the glycine receptor alpha3 isoforms in the cell plasma membrane. Biochim. Biophys. Acta 1818, 3131–3140 10.1016/j.bbamem.2012.08.010 [DOI] [PubMed] [Google Scholar]
- Notelaers K., Rocha S., Paesen R., Smisdom N., De C. B., Meier J. C., et al. (2014a). Analysis of alpha3 GlyR single particle tracking in the cell membrane. Biochim. Biophys. Acta 1843, 544–553 10.1016/j.bbamcr.2013.11.019 [DOI] [PubMed] [Google Scholar]
- Notelaers K., Rocha S., Paesen R., Swinnen N., Vangindertael J., Meier J. C., et al. (2014b). Membrane distribution of the glycine receptor alpha3 studied by optical super-resolution microscopy. Histochem. Cell Biol. [Epub ahead of print]. 10.1007/s00418-014-1197-y [DOI] [PubMed] [Google Scholar]
- Ohno-Shosaku T., Maejima T., Kano M. (2001). Endogenous cannabinoids mediate retrograde signals from depolarized postsynaptic neurons to presynaptic terminals. Neuron 29, 729–738 10.1016/s0896-6273(01)00247-1 [DOI] [PubMed] [Google Scholar]
- Ruiz A., Campanac E., Scott R. S., Rusakov D. A., Kullmann D. M. (2010). Presynaptic GABAA receptors enhance transmission and LTP induction at hippocampal mossy fiber synapses. Nat. Neurosci. 13, 431–438 10.1038/nn.2512 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stefani A., Spadoni F., Siniscalchi A., Bernardi G. (1996). Lamotrigine inhibits Ca2+ currents in cortical neurons: functional implications. Eur. J. Pharmacol. 307, 113–116 10.1016/0014-2999(96)00265-8 [DOI] [PubMed] [Google Scholar]
- Stegen M., Kirchheim F., Hanuschkin A., Staszewski O., Veh R. W., Wolfart J. (2012). Adaptive intrinsic plasticity in human dentate gyrus granule cells during temporal lobe epilepsy. Cereb. Cortex 22, 2087–2101 10.1093/cercor/bhr294 [DOI] [PubMed] [Google Scholar]
- Thiagarajan T. C., Lindskog M., Tsien R. W. (2005). Adaptation to synaptic inactivity in hippocampal neurons. Neuron 47, 725–737 10.1016/j.neuron.2005.06.037 [DOI] [PubMed] [Google Scholar]
- Turrigiano G. (2011). Too many cooks? Intrinsic and synaptic homeostatic mechanisms in cortical circuit refinement. Annu. Rev. Neurosci. 34, 89–103 10.1146/annurev-neuro-060909-153238 [DOI] [PubMed] [Google Scholar]
- Vogl C., Mochida S., Wolff C., Whalley B. J., Stephens G. J. (2012). The synaptic vesicle glycoprotein 2A ligand levetiracetam inhibits presynaptic Ca2+ channels through an intracellular pathway. Mol. Pharmacol. 82, 199–208 10.1124/mol.111.076687 [DOI] [PubMed] [Google Scholar]
- Wang H., Kunkel D. D., Schwartzkroin P. A., Tempel B. L. (1994). Localization of Kv1.1 and Kv1.2, two K channel proteins, to synaptic terminals, somata and dendrites in the mouse brain. J. Neurosci. 14, 4588–4599 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Waseem T. V., Fedorovich S. V. (2010). Presynaptic glycine receptors influence plasma membrane potential and glutamate release. Neurochem. Res. 35, 1188–1195 10.1007/s11064-010-0174-7 [DOI] [PubMed] [Google Scholar]
- Weltzien F., Puller C., O’Sullivan G. A., Paarmann I., Betz H. (2012). Distribution of the glycine receptor beta-subunit in the mouse CNS as revealed by a novel monoclonal antibody. J. Comp. Neurol. 520, 3962–3981 10.1002/cne.23139 [DOI] [PubMed] [Google Scholar]
- Wenzel H. J., Vacher H., Clark E., Trimmer J. S., Lee A. L., Sapolsky R. M., et al. (2007). Structural consequences of Kcna1 gene deletion and transfer in the mouse hippocampus. Epilepsia 48, 2023–2046 10.1111/j.1528-1167.2007.01189.x [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wilson R. I., Kunos G., Nicoll R. A. (2001). Presynaptic specificity of endocannabinoid signaling in the hippocampus. Neuron 31, 453–462 10.1016/s0896-6273(01)00372-5 [DOI] [PubMed] [Google Scholar]
- Winkelmann A., Maggio N., Eller J., Caliskan G., Semtner M., Häussler U., et al. (2014). Changes in neural network homeostasis trigger neuropsychiatric symptoms. J. Clin. Invest. 124, 696–711 10.1172/jci71472 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wu S. P., Tsai J. J., Gean P. W. (1998). Frequency-dependent inhibition of neuronal activity by topiramate in rat hippocampal slices. Br. J. Pharmacol. 125, 826–832 10.1038/sj.bjp.0702096 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wykes R. C., Heeroma J. H., Mantoan L., Zheng K., MacDonald D. C., Deisseroth K., et al. (2012). Optogenetic and potassium channel gene therapy in a rodent model of focal neocortical epilepsy. Sci. Transl. Med. 4:161ra152 10.1126/scitranslmed.3004190 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Young C. C., Stegen M., Bernard R., Muller M., Bischofberger J., Veh R. W., et al. (2009). Upregulation of inward rectifier K+ (Kir2) channels in dentate gyrus granule cells in temporal lobe epilepsy. J. Physiol. 587, 4213–4233 10.1113/jphysiol.2009.170746 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zeilhofer H. U., Studler B., Arabadzisz D., Schweizer C., Ahmadi S., Layh B., et al. (2005). Glycinergic neurons expressing enhanced green fluorescent protein in bacterial artificial chromosome transgenic mice. J. Comp. Neurol. 482, 123–141 10.1002/cne.20349 [DOI] [PubMed] [Google Scholar]
