Skip to main content

Some NLM-NCBI services and products are experiencing heavy traffic, which may affect performance and availability. We apologize for the inconvenience and appreciate your patience. For assistance, please contact our Help Desk at info@ncbi.nlm.nih.gov.

Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1995 Nov 21;92(24):11249–11253. doi: 10.1073/pnas.92.24.11249

CD27-CD70 interactions regulate B-cell activation by T cells.

T Kobata 1, S Jacquot 1, S Kozlowski 1, K Agematsu 1, S F Schlossman 1, C Morimoto 1
PMCID: PMC40609  PMID: 7479974

Abstract

CD27, a member of the tumor necrosis factor (TNF) receptor family, binds to its ligand CD70, a member of the TNF family, and subsequently induces T-cell costimulation and B-cell activation. CD27 is expressed on resting T and B cells, whereas CD70 is expressed on activated T and B cells. Utilizing transfected murine pre-B-cell lines expressing human CD27 or CD70, we have examined the effect of such transfectant cells on human B-cell IgG production and B-cell proliferation. We show that the addition of CD27-transfected cells to a T-cell-dependent, pokeweed mitogen-driven B-cell IgG synthesis system resulted in marked inhibition of IgG production, whereas the addition of CD70-transfected cells enhanced IgG production. The inhibition and enhancement of pokeweed mitogen-driven IgG production by CD27 and CD70 transfectants were abrogated by pretreatment with anti-CD27 and anti-CD70 monoclonal antibodies, respectively. In contrast, little or no inhibition of IgG production and B-cell proliferation was noted with CD27-transfected cells or either anti-CD27 or CD70 monoclonal antibody in a T-cell-independent Staphylococcus aureus/interleukin 2-driven B-cell activation system. In this same system CD70-transfected cells enhanced B-cell IgG production and B-cell proliferation, and this enhancement could be gradually abrogated by addition of increasing numbers of CD27-transfected cells. These results clearly demonstrate that interactions among subsets of T cells expressing CD27 and CD70 play a key role in regulating B-cell activation and immunoglobulin synthesis.

Full text

PDF
11249

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Agematsu K., Kobata T., Sugita K., Freeman G. J., Beckmann M. P., Schlossman S. F., Morimoto C. Role of CD27 in T cell immune response. Analysis by recombinant soluble CD27. J Immunol. 1994 Aug 15;153(4):1421–1429. [PubMed] [Google Scholar]
  2. Agematsu K., Kobata T., Sugita K., Hirose T., Schlossman S. F., Morimoto C. Direct cellular communications between CD45R0 and CD45RA T cell subsets via CD27/CD70. J Immunol. 1995 Apr 15;154(8):3627–3635. [PubMed] [Google Scholar]
  3. Beutler B., van Huffel C. Unraveling function in the TNF ligand and receptor families. Science. 1994 Apr 29;264(5159):667–668. doi: 10.1126/science.8171316. [DOI] [PubMed] [Google Scholar]
  4. Bigler R. D., Bushkin Y., Chiorazzi N. S152 (CD27). A modulating disulfide-linked T cell activation antigen. J Immunol. 1988 Jul 1;141(1):21–28. [PubMed] [Google Scholar]
  5. Bloom B. R., Salgame P., Diamond B. Revisiting and revising suppressor T cells. Immunol Today. 1992 Apr;13(4):131–136. doi: 10.1016/0167-5699(92)90110-S. [DOI] [PubMed] [Google Scholar]
  6. Bowman M. R., Crimmins M. A., Yetz-Aldape J., Kriz R., Kelleher K., Herrmann S. The cloning of CD70 and its identification as the ligand for CD27. J Immunol. 1994 Feb 15;152(4):1756–1761. [PubMed] [Google Scholar]
  7. Camerini D., Walz G., Loenen W. A., Borst J., Seed B. The T cell activation antigen CD27 is a member of the nerve growth factor/tumor necrosis factor receptor gene family. J Immunol. 1991 Nov 1;147(9):3165–3169. [PubMed] [Google Scholar]
  8. Clark E. A., Ledbetter J. A. How B and T cells talk to each other. Nature. 1994 Feb 3;367(6462):425–428. doi: 10.1038/367425a0. [DOI] [PubMed] [Google Scholar]
  9. Dhein J., Walczak H., Bäumler C., Debatin K. M., Krammer P. H. Autocrine T-cell suicide mediated by APO-1/(Fas/CD95) Nature. 1995 Feb 2;373(6513):438–441. doi: 10.1038/373438a0. [DOI] [PubMed] [Google Scholar]
  10. Gimmi C. D., Freeman G. J., Gribben J. G., Sugita K., Freedman A. S., Morimoto C., Nadler L. M. B-cell surface antigen B7 provides a costimulatory signal that induces T cells to proliferate and secrete interleukin 2. Proc Natl Acad Sci U S A. 1991 Aug 1;88(15):6575–6579. doi: 10.1073/pnas.88.15.6575. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Goodwin R. G., Alderson M. R., Smith C. A., Armitage R. J., VandenBos T., Jerzy R., Tough T. W., Schoenborn M. A., Davis-Smith T., Hennen K. Molecular and biological characterization of a ligand for CD27 defines a new family of cytokines with homology to tumor necrosis factor. Cell. 1993 May 7;73(3):447–456. doi: 10.1016/0092-8674(93)90133-b. [DOI] [PubMed] [Google Scholar]
  12. Green D. R., Bissonnette R., Zheng H. G., Onda T., Echeverri F., Mogil R. J., Steele J. K., Voralia M., Fotedar A. Immunoregulatory activity of the T-cell receptor alpha chain demonstrated by retroviral gene transfer. Proc Natl Acad Sci U S A. 1991 Oct 1;88(19):8475–8479. doi: 10.1073/pnas.88.19.8475. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hintzen R. Q., Lens S. M., Koopman G., Pals S. T., Spits H., van Lier R. A. CD70 represents the human ligand for CD27. Int Immunol. 1994 Mar;6(3):477–480. doi: 10.1093/intimm/6.3.477. [DOI] [PubMed] [Google Scholar]
  14. Inoue T., Asano Y., Matsuoka S., Furutani-Seiki M., Aizawa S., Nishimura H., Shirai T., Tada T. Distinction of mouse CD8+ suppressor effector T cell clones from cytotoxic T cell clones by cytokine production and CD45 isoforms. J Immunol. 1993 Mar 15;150(6):2121–2128. [PubMed] [Google Scholar]
  15. Kobata T., Agematsu K., Kameoka J., Schlossman S. F., Morimoto C. CD27 is a signal-transducing molecule involved in CD45RA+ naive T cell costimulation. J Immunol. 1994 Dec 15;153(12):5422–5432. [PubMed] [Google Scholar]
  16. Kuchroo V. K., Byrne M. C., Atsumi Y., Greenfield E., Connolly J. B., Whitters M. J., O'Hara R. M., Jr, Collins M., Dorf M. E. T-cell receptor alpha chain plays a critical role in antigen-specific suppressor cell function. Proc Natl Acad Sci U S A. 1991 Oct 1;88(19):8700–8704. doi: 10.1073/pnas.88.19.8700. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Martorell J., Rojo I., Vilella R., Martinez-Caceres E., Vives J. CD27 induction on thymocytes. J Immunol. 1990 Sep 1;145(5):1356–1363. [PubMed] [Google Scholar]
  18. Maurer D., Fischer G. F., Fae I., Majdic O., Stuhlmeier K., Von Jeney N., Holter W., Knapp W. IgM and IgG but not cytokine secretion is restricted to the CD27+ B lymphocyte subset. J Immunol. 1992 Jun 15;148(12):3700–3705. [PubMed] [Google Scholar]
  19. Maurer D., Holter W., Majdic O., Fischer G. F., Knapp W. CD27 expression by a distinct subpopulation of human B lymphocytes. Eur J Immunol. 1990 Dec;20(12):2679–2684. doi: 10.1002/eji.1830201223. [DOI] [PubMed] [Google Scholar]
  20. Miller A., Lider O., Roberts A. B., Sporn M. B., Weiner H. L. Suppressor T cells generated by oral tolerization to myelin basic protein suppress both in vitro and in vivo immune responses by the release of transforming growth factor beta after antigen-specific triggering. Proc Natl Acad Sci U S A. 1992 Jan 1;89(1):421–425. doi: 10.1073/pnas.89.1.421. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Morimoto C., Letvin N. L., Distaso J. A., Aldrich W. R., Schlossman S. F. The isolation and characterization of the human suppressor inducer T cell subset. J Immunol. 1985 Mar;134(3):1508–1515. [PubMed] [Google Scholar]
  22. Moskophidis D., Pircher H., Ciernik I., Odermatt B., Hengartner H., Zinkernagel R. M. Suppression of virus-specific antibody production by CD8+ class I-restricted antiviral cytotoxic T cells in vivo. J Virol. 1992 Jun;66(6):3661–3668. doi: 10.1128/jvi.66.6.3661-3668.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Nadler L. M., Ritz J., Hardy R., Pesando J. M., Schlossman S. F., Stashenko P. A unique cell surface antigen identifying lymphoid malignancies of B cell origin. J Clin Invest. 1981 Jan;67(1):134–140. doi: 10.1172/JCI110005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Nishioka Y., Lipsky P. E. The role of CD40-CD40 ligand interaction in human T cell-B cell collaboration. J Immunol. 1994 Aug 1;153(3):1027–1036. [PubMed] [Google Scholar]
  25. Reinherz E. L., Schlossman S. F. The differentiation and function of human T lymphocytes. Cell. 1980 Apr;19(4):821–827. doi: 10.1016/0092-8674(80)90072-0. [DOI] [PubMed] [Google Scholar]
  26. Robertson M. J., Caligiuri M. A., Manley T. J., Levine H., Ritz J. Human natural killer cell adhesion molecules. Differential expression after activation and participation in cytolysis. J Immunol. 1990 Nov 15;145(10):3194–3201. [PubMed] [Google Scholar]
  27. Singer G. G., Abbas A. K. The fas antigen is involved in peripheral but not thymic deletion of T lymphocytes in T cell receptor transgenic mice. Immunity. 1994 Aug;1(5):365–371. doi: 10.1016/1074-7613(94)90067-1. [DOI] [PubMed] [Google Scholar]
  28. Sleasman J. W., Morimoto C., Schlossman S. F., Tedder T. F. The role of functionally distinct helper T lymphocyte subpopulations in the induction of human B cell differentiation. Eur J Immunol. 1990 Jun;20(6):1357–1366. doi: 10.1002/eji.1830200623. [DOI] [PubMed] [Google Scholar]
  29. Smith C. A., Farrah T., Goodwin R. G. The TNF receptor superfamily of cellular and viral proteins: activation, costimulation, and death. Cell. 1994 Mar 25;76(6):959–962. doi: 10.1016/0092-8674(94)90372-7. [DOI] [PubMed] [Google Scholar]
  30. Streuli M., Morimoto C., Schrieber M., Schlossman S. F., Saito H. Characterization of CD45 and CD45R monoclonal antibodies using transfected mouse cell lines that express individual human leukocyte common antigens. J Immunol. 1988 Dec 1;141(11):3910–3914. [PubMed] [Google Scholar]
  31. Sugita K., Hirose T., Rothstein D. M., Donahue C., Schlossman S. F., Morimoto C. CD27, a member of the nerve growth factor receptor family, is preferentially expressed on CD45RA+ CD4 T cell clones and involved in distinct immunoregulatory functions. J Immunol. 1992 Nov 15;149(10):3208–3216. [PubMed] [Google Scholar]
  32. Sugita K., Robertson M. J., Torimoto Y., Ritz J., Schlossman S. F., Morimoto C. Participation of the CD27 antigen in the regulation of IL-2-activated human natural killer cells. J Immunol. 1992 Aug 15;149(4):1199–1203. [PubMed] [Google Scholar]
  33. Sugita K., Torimoto Y., Nojima Y., Daley J. F., Schlossman S. F., Morimoto C. The 1A4 molecule (CD27) is involved in T cell activation. J Immunol. 1991 Sep 1;147(5):1477–1483. [PubMed] [Google Scholar]
  34. Takebe Y., Seiki M., Fujisawa J., Hoy P., Yokota K., Arai K., Yoshida M., Arai N. SR alpha promoter: an efficient and versatile mammalian cDNA expression system composed of the simian virus 40 early promoter and the R-U5 segment of human T-cell leukemia virus type 1 long terminal repeat. Mol Cell Biol. 1988 Jan;8(1):466–472. doi: 10.1128/mcb.8.1.466. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Yoshizumi H., Kamikawaji N., Nishimura Y., Sasazuki T. Generation of a novel CD8+ cytotoxic T lymphocyte that requires soluble factor to lyse autologous antigen-presenting cells. Eur J Immunol. 1993 Dec;23(12):3173–3180. doi: 10.1002/eji.1830231220. [DOI] [PubMed] [Google Scholar]
  36. van Lier R. A., Borst J., Vroom T. M., Klein H., Van Mourik P., Zeijlemaker W. P., Melief C. J. Tissue distribution and biochemical and functional properties of Tp55 (CD27), a novel T cell differentiation antigen. J Immunol. 1987 Sep 1;139(5):1589–1596. [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES