Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1961 Jul;36(4):409–414. doi: 10.1104/pp.36.4.409

The reductive pentose phosphate cycle. III. Enzyme activities in cell-free extracts of photosynthetic organisms1

A Peterkofsky 1,2, E Racker 1
PMCID: PMC406159  PMID: 16655531

Full text

PDF
409

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ARNON D. I., ALLEN M. B., WHATLEY F. R. Photosynthesis by isolated chloroplasts. IV. General concept and comparison of three photochemical reactions. Biochim Biophys Acta. 1956 Jun;20(3):449–461. doi: 10.1016/0006-3002(56)90339-0. [DOI] [PubMed] [Google Scholar]
  2. ARNON D. I. Glyceraldehyde phosphate dehydrogenase of green plants. Science. 1952 Dec 5;116(3023):635–637. doi: 10.1126/science.116.3023.635. [DOI] [PubMed] [Google Scholar]
  3. AXELROD B., BANDURSKI R. S. Phosphoglyceryl kinase in higher plants. J Biol Chem. 1953 Oct;204(2):939–948. [PubMed] [Google Scholar]
  4. Arnon D. I. COPPER ENZYMES IN ISOLATED CHLOROPLASTS. POLYPHENOLOXIDASE IN BETA VULGARIS. Plant Physiol. 1949 Jan;24(1):1–15. doi: 10.1104/pp.24.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. BENSON A. A., BASSHAM J. A., CALVIN M., HALL A. G., HIRSCH H. E., KAWAGUCHI S., LYNCH V., TOLBERT N. E. The path of carbon in photosynthesis. XV. Ribulose and sedoheptulose. J Biol Chem. 1952 May;196(2):703–716. doi: 10.2172/915054. [DOI] [PubMed] [Google Scholar]
  6. BROWN G. W., Jr, BROWN W. R., COHEN P. P. Comparative biochemistry of urea synthesis. II. Levels of urea cycle enzymes in metamorphosing Rana catesbeiana tadpoles. J Biol Chem. 1959 Jul;234(7):1775–1780. [PubMed] [Google Scholar]
  7. CALVIN M., MASSINI P. The path of carbon in photosynthesis. XX. The steady state. Experientia. 1952 Dec 15;8(12):445–457. doi: 10.1007/BF02139287. [DOI] [PubMed] [Google Scholar]
  8. COOPER J., SRERE P. A., TABACHNICK M., RACKER E. The oxidative pentose phosphate cycle. II. Quantitative determination of intermediates and enzymes. Arch Biochem Biophys. 1958 Apr;74(2):306–314. doi: 10.1016/0003-9861(58)90002-x. [DOI] [PubMed] [Google Scholar]
  9. DE LA HABA G., LEDER I. G., RACKER E. Crystalline transketolase from bakers' yeast: isolation and properties. J Biol Chem. 1955 May;214(1):409–426. [PubMed] [Google Scholar]
  10. GIBBS M. Triosephosphate dehydrogenase and glucose-6-phosphate dehydrogenase in the pea plant. Nature. 1952 Jul 26;170(4317):164–165. doi: 10.1038/170164a0. [DOI] [PubMed] [Google Scholar]
  11. Gibbs M., Kandler O. ASYMMETRIC DISTRIBUTION OF C IN SUGARS FORMED DURING PHOTOSYNTHESIS. Proc Natl Acad Sci U S A. 1957 Jun 15;43(6):446–451. doi: 10.1073/pnas.43.6.446. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. HORECKER B. L., SMYRNIOTIS P. Z., KLENOW H. The formation of sedoheptulose phosphate. J Biol Chem. 1953 Dec;205(2):661–682. [PubMed] [Google Scholar]
  13. HURWITZ J., WEISSBACH A., HORECKER B. L., SMYRNIOTIS P. Z. Spinach phosphoribulokinase. J Biol Chem. 1956 Feb;218(2):769–783. [PubMed] [Google Scholar]
  14. JAKOBY W. B., BRUMMOND D. O., OCHOA S. Formation of 3-phosphoglyceric acid by carbon dioxide fixation with spinach leaf enzymes. J Biol Chem. 1956 Feb;218(2):811–822. [PubMed] [Google Scholar]
  15. NOSSAL P. M. A mechanical cell disintegrator. Aust J Exp Biol Med Sci. 1953 Dec;31(6):583–589. doi: 10.1038/icb.1953.64. [DOI] [PubMed] [Google Scholar]
  16. PARDEE A. B., YATES R. A. Pyrimidine biosynthesis in Escherichia coli. J Biol Chem. 1956 Aug;221(2):743–756. [PubMed] [Google Scholar]
  17. PENEFSKY H. S., PULLMAN M. E., DATTA A., RACKER E. Partial resolution of the enzymes catalyzing oxidative phosphorylation. II. Participation of a soluble adenosine tolphosphatase in oxidative phosphorylation. J Biol Chem. 1960 Nov;235:3330–3336. [PubMed] [Google Scholar]
  18. RACKER E., SCHROEDER E. A. The reductive pentose phosphate cycle. II. Specific C-1 phosphatases for fructose 1,6-diphosphate and sedoheptulose 1,7-diphosphate. Arch Biochem Biophys. 1958 Apr;74(2):326–344. doi: 10.1016/0003-9861(58)90004-3. [DOI] [PubMed] [Google Scholar]
  19. RACKER E. The reductive pentose phosphate cycle. I. Phosphoribulokinase and ribulose diphosphate carboxylase. Arch Biochem Biophys. 1957 Jul;69:300–310. doi: 10.1016/0003-9861(57)90496-4. [DOI] [PubMed] [Google Scholar]
  20. SOROKIN C., MYERS J. A high-temperature strain of Chlorella. Science. 1953 Mar 27;117(3039):330–331. doi: 10.1126/science.117.3039.330. [DOI] [PubMed] [Google Scholar]
  21. TABACHNICK M., SRERE P. A., COOPER J., RACKER E. The oxidative pentose phosphate cycle. III. The interconversion of ribose 5-phosphate, ribulose 5-phosphate and xylulose 5-phosphate. Arch Biochem Biophys. 1958 Apr;74(2):315–325. doi: 10.1016/0003-9861(58)90003-1. [DOI] [PubMed] [Google Scholar]
  22. WEISSBACH A., HORECKER B. L., HURWITZ J. The enzymatic formation of phosphoglyceric acid from ribulose diphosphate and carbon dioxide. J Biol Chem. 1956 Feb;218(2):795–810. [PubMed] [Google Scholar]
  23. WU R., RACKER E. Regulatory mechanisms in carbohydrate metabolism. III. Limiting factors in glycolysis of ascites tumor cells. J Biol Chem. 1959 May;234(5):1029–1035. [PubMed] [Google Scholar]
  24. WU R. Regulatory mechanisms in carbohydrate metabolism. V. Limiting factors of glycolysis in HeLa cells. J Biol Chem. 1959 Nov;234:2806–2810. [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES