Skip to main content
Journal of Insect Science logoLink to Journal of Insect Science
. 2013 Oct 1;13:100. doi: 10.1673/031.013.10001

Floral Associations of Cyclocephaline Scarab Beetles

Matthew Robert Moore 1,a,*, Mary Liz Jameson 1,b
PMCID: PMC4062068  PMID: 24738782

Abstract

The scarab beetle tribe Cyclocephalini (Coleoptera: Scarabaeidae: Dynastinae) is the second largest tribe of rhinoceros beetles, with nearly 500 described species. This diverse group is most closely associated with early diverging angiosperm groups (the family Nymphaeaceae, magnoliid clade, and monocots), where they feed, mate, and receive the benefit of thermal rewards from the host plant. Cyclocephaline floral association data have never been synthesized, and a comprehensive review of this ecological interaction was necessary to promote research by updating nomenclature, identifying inconsistencies in the data, and reporting previously unpublished data. Based on the most specific data, at least 97 cyclocephaline beetle species have been reported from the flowers of 58 plant genera representing 17 families and 15 orders. Thirteen new cyclocephaline floral associations are reported herein. Six cyclocephaline and 25 plant synonyms were reported in the literature and on beetle voucher specimen labels, and these were updated to reflect current nomenclature. The valid names of three unavailable plant host names were identified. We review the cyclocephaline floral associations with respect to inferred relationships of angiosperm orders. Ten genera of cyclocephaline beetles have been recorded from flowers of early diverging angiosperm groups. In contrast, only one genus, Cyclocephala, has been recorded from dicot flowers. Cyclocephaline visitation of dicot flowers is limited to the New World, and it is unknown whether this is evolutionary meaningful or the result of sampling bias and incomplete data. The most important areas for future research include: 1) elucidating the factors that attract cyclocephalines to flowers including floral scent chemistry and thermogenesis, 2) determining whether cyclocephaline dicot visitation is truly limited to the New World, and 3) inferring evolutionary relationships within the Cyclocephalini to rigorously test vicarance hypotheses, host plant shifts, and mutualisms with angiosperms.

Keywords: Cantharophily, Scarabaeidae, Dynastinae, Araceae, Arecaceae, Annonaceae, Nymphaceae

Introduction

The Cyclocephalini (Coleoptera: Scarabaeidae: Dynastinae) is the second largest rhinoceros beetle tribe, currently containing 15 genera and nearly 500 described beetle species (Jameson et al. 2002; Ratcliffe 2003; Smith 2006). Cyclocephalines have a pantropical distribution, though the majority of the group's generic and species diversity is concentrated in the New World (Ratcliffe 2003; Ratcliffe and Cave 2006). Most genera are sexually dimorphic, with males having enlarged protarsal claws and females having expanded elytral epipleura (Moore 2012). Cyclocephalines are important economically and ecologically as root pests (larvae) and pollinators (adults) (Ratcliffe 2003; Ratcliffe and Paulsen 2008). Adult cyclocephaline beetles can be found within the inflorescences of early diverging angiosperm groups (the family Nymphaeaceae, magnoliid clade, and monocots; Figure 1) and have been shown to contribute to pollination in the Annonaceae, Araceae, Arecaceae, Cyclanthaceae, Magnoliaceae, and Nymphaeaceae (Cramer et al. 1975; Beach 1982; Beach 1984; Young 1986; Young 1988b; Gottsberger 1989; Dieringer et al. 1999; Hirthe and Porembski 2003; Maia et al. 2012). Studies of these interactions indicate that some early diverging angiosperm groups offer rewards to cyclocephalines in the form of mating sites, food, and metabolic boosts associated with floral thermogenicity in return for pollination services (Gottsberger 1986; Young 1986; Seymour et al. 2009). Cyclocephaline visitation of dicot flowers is poorly known and little studied.

Figure 1.

Figure 1.

Cyclocephaline beetle genera and their associations with angiosperm plant lineages (plant phylogeny from APGIII 2009). Icons denote beetle genera that are associated with angiosperm plant lineages. Numbers in the icons indicate the number of species for each beetle genus. If the number of beetle species is unresolved due to conflict in the literature, this is indicated with ~ symbol (the number may be × ± I species). If the beetle genus has not been satisfactorily associated with the plant lineage, it is denoted with a ? symbol. For each angiosperm plant lineage, the number of families and genera that the beetles are associated with is denoted with #f (number of families) and #g (number of genera). See Appendix I for data. High quality figures are available online.

Cyclocephaline floral associations have been reported in journals, books, and monographs since the late 18th century. However, the prevalence, geographic scope, and biological importance of these records are difficult to gauge because publications summarizing cyclocephaline floral visitation are somewhat dated and report floral visitation only for specific plant families, geographic areas, or vegetation types (Henderson 1986; Gibernau 2003; Gottsberger and Silberbauer-Gottsberger 2006; Gibernau 2011). The fragmentary nature of these data and the citation of unpublished observations have hampered the ability to identify floral association trends within cyclocephaline genera and species.

The phylogeny of the Cyclocephalini was investigated for the first time by Clark (2011), and the generic-level relationships within the tribe remain an area of active research by M. R. Moore. Tribal circumscription of the Cyclocephalini is subject to change based on ongoing phylogenetic analyses. This research will provide an evolutionary framework for interpreting patterns of floral visitation. Compilation and synthesis of a checklist of floral associations is needed in order to understand the ecology of the Cyclocephalini within a phylogenetic context.

This checklist synthesizes data (plant and beetle species, geographic locality, and original citation) for the floral associations of adult cyclocephaline beetles. Invalid nomenclature in the surveyed literature is identified and corrected; conflicting data, sources of error, and uncertainty in the data are identified; and unpublished floral association data from examined voucher specimens are added. The aim of this work is to promote future research of these ecological interactions by providing a comprehensive data set of the taxonomic and geographic scope of floral visitation for cyclocephaline beetles.

Materials and Methods

Literature was surveyed from 1758 (Linnaeus) to 2012. Keyword searches for all cyclocephaline genera (sensu Ratcliffe and Cave 2006; Clark 2011) were conducted in the following databases: BioOne® (www.bioone.org), BIOSIS Previews® (http://apps.webofknowledge.com/), JSTOR (www.istor.org), and Biodiversity Heritage Library (www.biodiversitvlibrary.org). Every host plant reference from Pike et al. (1976) was checked for floral association data.

All reported cyclocephaline species names from the literature were verified by referencing the original species description and monographic treatments of the Dynastinae (Endrödi 1985; Ratcliffe 2003; Ratcliffe and Cave 2006). Synonyms or misspelled cyclocephaline species names in the literature were updated to reflect current nomenclature. All reported host plant names were verified using the peer-reviewed botanical taxonomic databases Tropicos (www.tropicos.org) and The Plant List (www.plantlist.org). Synonyms or misspelled plant names were updated to reflect current nomenclature based on The Plant List (2010). In some cases, scientific names in the literature could not be identified as valid or invalid (e.g., unavailable manuscript names or conflicting synonyms). Some unverified plant names were reported according to the original citation for the floral association, and the name was noted as unresolved. Occasionally, host plant and beetle species were not assigned an author in the reference for an association. This caused problems due to the prevalence of synonyms and homonyms in the plant and insect literature. Resulting ambiguities were rectified to the extent possible and explained in the remarks column (Appendix 1).

Borrowed specimens of cyclocephaline species allowed for direct evaluation of specieslevel identifications that were reported by several authors. Particularly, this included specimens of Cyclocephala sexpunctata Laporte (1840) and C. brevis Höhne (1847) collected by George Schatz, Helen Young (La Selva Biological Station, Costa Rica), Alberto Seres, and Nelson Ramirez (Henri Pittier National Park, Venezuela), with floral association data that were subsequently published or unpublished. Identifications of these specimens (or specimen vouchers) were critically examined (Moore 2011). Exemplar material borrowed from the University of Nebraska State Museum (authoritatively identified by B. C. Ratcliffe) and monographic treatments (Ratcliffe 2003; Ratcliffe and Cave 2006) served as the basis for evaluating species identifications as well as detailed images of some type specimens. The operating assumption was that the collectors and authors were consistent with their species-level determinations. Identifications deemed incorrect based on current taxonomy were updated and noted accordingly. Unpublished host plant data were also found with cyclocephaline specimens in collections. These specimens were collected by M. R. Moore and deposited at Wichita State University, Wichita, Kansas, USA, or loaned from the following institutions:

  • INBC: Instituto Nacional de Biodiversidad, Santo Domingo de Herédia, Costa Rica (Angel Solis)

  • MLUH: Zentralmagazin Naturwissenschaftlicher Sammlungen, Martin Luther Universität Halle-Wittenberg, Halle, Saxony-Anhalt, Germany (Karla Schneider)

  • MNHN: Muséum national d'Histoire naturelle, Paris, France (Olivier Montreuil)

  • SEMC: Snow Entomological Museum, University of Kansas, Lawrence, KS (Zach Falin and Jennifer Thomas)

  • UNSM: University of Nebraska State Museum, Lincoln, NE (Brett Ratcliffe and Matt Paulsen)

  • USNM: U.S. National Museum, Washington, D.C. (currently housed at the University of Nebraska State Museum for off-site enhancement) (Floyd Shockley and Dave Furth)

  • UVGC: Universidad del Valle de Guatemala, Guatemala City, Guatemala (Jack Schuster and Enio Cano)

  • WICH: Wichita State University, Wichita, KS (Mary Liz Jameson)

  • ZMHB: Museum für Naturkunde der Humboldt Universität zu Berlin, Berlin, Germany (Johannes Frisch and Joachim Willers)

Concrete and anecdotal evidence of floral associations were also included in the checklist. The nature of the published association occasionally needed clarification or elaboration (e.g., cyclocephalines reported near flowers but not on them or museum specimens covered in resin and pollen). These clarifications were provided in the remarks column of Appendix 1. A large amount of unpublished and inaccessible data exists with regard to cyclocephaline floral visitation. These records provide ambiguous data for plant species, cyclocephaline species, locality, and associated voucher information. For example, Schatz (1990, Table 7.3) recorded known and predicted (without distinguishing the two) plant taxa pollinated by dynastines in the Neotropics. Schatz (1990, Table 7.4) recorded cyclocephaline plant visitation at La Selva Biological Station, but a large amount of data could not be extracted because of the nonspecific nature of the record (i.e., the data were reported at the tribal-level rather than at the species-level). These inaccessible data are important because they report certain associations that are not recorded elsewhere in the literature. Repetitive data from these types of records were omitted from the checklist. Only unique generic or species-level plant associations were reported for the beetle tribe from these data sets. These non-specific records are reported at the end the checklist with the intention that they be reevaluated with the addition of more data.

Results

Based on species-specific records from the literature and voucher label data, at least 97 cyclocephaline species from nine or 10 genera (depending on the identity of the cyclocephaline reported by Gibbs et al. (1977)) were recorded in association with the flowers of at least 161 species representing 58 genera, 17 families, and 15 orders (Appendix 1). Examined voucher specimens occasionally had unique, unpublished, floral association data. Thirteen new plant associations are provided in Table 1. Examined voucher specimens that did not have unique data are noted in Appendix 1. The most specific data are summarized at the generic-level for the plant association (plant classification according to the Angiosperm Phylogeny Group III (2009)) in Table 2 and are provided in full detail (lowest-level taxonomy, geographic data, and references) in Appendix 1. Cyclocephaline beetle genera and their associations with angiosperm plant lineages were mapped onto the APG III angiosperm phylogeny (Figure 1).

Table 1.

Previously unpublished cyclocephaline beetle floral association data.

graphic file with name t01_01.jpg

Table 2.

Generic-level summary of floral association records for the Cyclocephalini (group names in parentheses are based on APG III (2009)) [? indicates a potentially dubius record, see Appendix I].

graphic file with name t02a_01.jpg

Continued.

graphic file with name t02b_01.jpg

Five of the 15 cyclocephaline genera were not reported as floral visitors in any of the surveyed literature: Acrobolbia Ohaus (1912), Ancognatha Erichson (1847), Harposcelis Burmeister (1847), Stenocrates Burmeister (1847), and Surutu Martínez (1955). Preliminary phylogenetic analysis of the Cyclocephalini indicated that the Neotropical genus Parapucaya Prell (1934) (Dynastinae: Pentodontini) and the Indonesian archipelago genus Neohyphus Heller (1896) (Dynastinae: Oryctoderini) fall within a potential newly defined Cyclocephalini (Clark 2011). These genera were included in the systematic literature searches but yielded no floral association records. The results of Clark (2011) hypothesized that the genus Erioscelis Burmeister (1847) is sister to all remaining genera of the Cyclocephalini + Neohyphyus + Parapucaya. Erioscelis was included in this checklist because of its documented visitation of several genera in the Araceae (also visited by other cyclocephalines) and its historical inclusion in the Cyclocephalini.

Floral associations that are less specific or ambiguous (non-specific records) were also reported (Appendix 1). For example, Listabarth (1996) reported dynastine scarabs, with no further species identification, on three species of Bactris palms (Arecales). These data include records for Scarabaeidae, Dynastinae, and beetles on flowers that fit the general pattern of cyclocephaline floral visitation (nocturnal visitation of bowl-shaped, thermogenic inflorescences). Non-specific records were included in the checklist with the hope that they may be reevaluated with additional data.

Gathering and interpreting floral association data were complicated by the prevalancy of synonyms, invalid names, and unavailable names in the literature. Based on The International Code of Zoological Nomenclature (ICZN 1999), an unavailable name is a name that is excluded from use due to the requirements of the code. For example, the unavailable name Cyclocephala inpunctata was reported in the surveyed literature (Gottsberger 1986, 1988). C. inpunctata has never been described in the literature. This name is unavailable and was likely reported in error. Based on published locality data for the floral association, images of the beetle (Gottsberger 1988; Figure 4a, 5 a–d), and subsequently published records, we consider this species to be Cyclocephala quatuordecimpunctata Mannerheim (1829) (personal communication with B. C. Ratcliffe, April 2011). Synonyms of six cyclocephaline genus or species names were reported in the surveyed literature; these invalid names were updated based on current nomenclature (Appendix 2). Synonyms of 25 plant genus or species names were reported in the surveyed literature and on voucher specimen label data; these invalid names were updated based on current nomenclature (Appendix 3).

Seven unresolved or unavailable plant names were reported from label data and in the surveyed literature (Appendix 4). According to The Plant List (2010), unresolved names are those for which “it is not yet possible to assign a status of either ‘accepted’ or ‘synonym.’” Two of these names, Philodendron atlanticum and Dieffenbachia longivaginata, were unavailable manuscript names (place-holder names for species that were later described) of Thomas Croat and Michael Grayum (Missouri Botanical Garden, St. Louis, Missouri, USA). These species were identified as Philodendron ligulatum Schott and Dieffenbachia tonduzii Croat and Grayum, respectively (personal communication with T. Croat and M. Grayum, April 2011). Xanthosoma macrorrhizas i s an unavailable name that was reported by Valerio (1984). This species may be the cultivated, naturalized, non-native species Alocasia macrorrhizos (L.) G. Don (personal communication with T. Croat, April 2011).

Certain cyclocephaline species were commonly reported as floral visitors. For example, Cyclocephala sexpunctata had over 20 floral visitation records in the surveyed literature (Appendix 1). C. sexpunctata is externally nearly identical to C. brevis (sensu Ratcliffe 2003; Ratcliffe and Cave 2006). Research on these two species showed that they represent four, or potentially five, morphospecies (Moore 2011). This conclusion was based on male genitalic characters, the form of the female epipleuron, and extensive range and spatial data (Moore 2011). The taxonomy of the species C. sexpunctata and C. brevis remains unresolved (a possible species complex), and their floral associations were reported in detail (Moore 2011). Some voucher specimens for reported floral associations of C. sexpunctata and C. brevis remain to be examined, and some data will require reinterpretation after the examination of type specimens.

Discussion

Examination of cyclocephaline floral associations with respect to inferred relationships of angiosperm orders revealed that 10 of the 15 genera of cyclocephaline beetles have been recorded from flowers of early diverging angiosperm groups (the family Nymphaeaceae, magnoliid clade, and monocots; Figure 1). In contrast, only one genus, Cyclocephala, has been recorded from dicot flowers (Figure 1). Experimental and observational studies have demonstrated that cyclocephalines can act as pollinators in Nymphaeales, Magnoliales, Arecales, Pandanales, and Alismatales (Figure 1; Table 2) (Cramer et al. 1975; Beach 1982; Beach 1984; Young 1986; Young 1988b; Gottsberger 1989; Dieringer et al. 1999; Hirthe and Porembski 2003; Maia et al. 2012). In these early diverging plant groups, a wide set of floral traits and floral pollination syndromes indicate a correlation with cyclocephaline beetles (large pollen grains with sticky exudates, sturdy and funnel-shaped inflorescences or large disc-shaped flowers, timing of anthesis, and therm ogenesis) (Thien et al. 2009; Gibernau et al. 2010). These angiosperm orders offer rewards to cyclocephalines in the form of mating sites, food, and heat resources associated with floral thermogenicity (Young 1986; Seymour et al. 2009).

Some cyclocephaline/flower associations are mutualistic (Cramer et al. 1975; Beach 1982; Beach 1984; Young 1986; Young 1988b; Gottsberger 1989; Dieringer et al. 1999; Hirthe and Porembski 2003; Maia et al. 2012). Ervik and Knudsen (2003) provide a compelling argument that scarab pollination of the Nymphaeaceae (Nymphales) is a mutualistic relationship that dates to the early Cretaceous. Whether this represents an example of coevolution is unclear, and only one study has addressed this hypothesis (Schiestl and Dötterl 2012). Schiestl and Dötterl (2012) argued that volatile organic compound production/detection systems arose in the Scarabaeoidea during the Jurassic, whereas floral volatile organic compounds arose in the Cretaceous/Paleocene. This was taken as evidence that early diverging angiosperm plant/scarab associations evolved due to a preexisting sensory bias in scarabs rather than as a result of coevolution (Schiestl and Dötterl 2012). However, coevolution could not be ruled out for the mutualism between cyclocephaline scarabs and aroid flowers (Schiestl and Dötterl 2012).

Floral visitation of the core eudicot clade (Figure 1) by cyclocephalines is poorly described and, in certain cases, differs significantly from a pollination mutualism. Such cases involve feeding and mating within flowers in which cyclocephalines have no apparent pollinating function and may destroy the reproductive capability of the plant. For example, in the Brazilian dicot Opuntia monocantha Haw. (Caryophyllales), Cyclocephala have been observed mating within the flowers and feeding on stamens (Lenzi and Inácio Orth 2011). Observations made on Echinopsis ancistrophora Speg. subsp. ancistrophora (Caryophyllales) flowers indicate that Cyclocephala visitors display destructive feeding behavior and do not contribute to reproduction (Schlumpberger et al. 2009). Cyclocephala metrica Steinheil (1874) was observed feeding on seeds in flower heads of Verbesina encelioides (Cav.) Benth. and Hook. f. ex A. Gray (Asterales) in Argentina (Hayward 1946). Seed predation in phytophagous scarabs is rare, the only other known example being some members of the subtribe Anisopliina (Scarabaeidae: Rutelinae: Anomalini) that feed on grass seeds (Poaceae) (Jameson et al. 2007).

In contrast to apparent destructive associations with dicots, only one detailed account provides evidence of a cyclocephaline beetle pollinating a eudicot. Prance (1976) observed male and female Cyclocephala verticalis Burmeister (1847) occupying the inflorescences of Le cy this, Corythophora, and Eschweilera (Ericales) in Amazonas, Brazil. C. verticalis was strong enough to lift the closed androphore flap of Lecythidaceae (Encales) inflorescences and displayed selective feeding of floral parts, eating only staminode tissue at the apex of the androphore and leaving fertile stamens untouched (Prance 1976). Based on these observations, C. verticalis was considered a likely pollinator of some Lecythidaceae genera, though this hypothesis was not tested (Prance 1976).

Gottsberger (1986) considered cyclocephaline floral visitation of the dicot families Apocynaceae (Gentianales), Calophyllaceae (Malpighiales), and Sapotaceae (Ericales) to be opportunistic. In the absence of early diverging angiosperm host flowers, Gottsberger (1986) hypothesized that cyclocephalines would visit strongly scented flowers of other groups. Cyclocephalines have been shown to aggregate based on floral scent compounds alone (Gottsberger et al. 2012). Cyclocephaline species (and populations) likely are biased towards a wide range of floral scent compounds. Eudicot species with geographically variable floral scent profiles may evolve scents that incidentally stimulate cyclocephaline aggregation by randomly sampling the sensory bias range of scarabs present in that area (e.g., Schlumpberger and Raguso 2008; Schlumpberger et al. 2009). This scenario, if accurate, would lend support to the hypothesis of Schiestl and Dötterl (2012) that preexisting sensory biases in cyclocephalines have an important role in determining the host flower profile of a given cyclocephaline species.

Based on the assembled data (Appendix 1), cyclocephaline visitation of eudicots is limited to the New World. It is unknown whether this shift represents an evolutionary event that occurred in New World cyclocephalines. Observations of cyclocephalines on dicot flowers (Figure 1) have largely been made by chance and have not been the subject of rigorous experimentation or sampling protocols. Thus, it is quite possible that Old World cyclocephalines (Ruteloryctes, Peltonotus, and potentially Neohyphus) visit both early diverging angiosperm groups and dicot groups, but dicot associations have not been recorded. However, it is certain that the known diversity of host flowers lineages is much higher for New World cyclocephalines (15 orders, 17 families, and 58 genera) compared to Old World cyclocephalines (two orders, two families, and three genera) (Appendix 1). This correlation may indicate that the radiation of the cyclocephalines in the New World was accompanied by a subsequent increase in the diversity of their floral associations.

Cyclocephaline species are generally oligophagous or polyphagous. For cyclocephaline species with multiple host records, only seven species have been recorded from a single host plant genus (monophagous), 23 species have been reported from multiple host plant genera within a family (oligophagous), and 27 species have been recorded from multiple host plant families (polyphagous) (Appendix 1). Single inflorescences often contain multiple cyclocephaline species, and an extreme example is Dieffenbachia nitidipetiolata Croat and Grayum (Alismatales), which was visited by at least nine Cyclocephala species at La Selva Biological Station, Costa Rica (Young 1990; see Croat 2004 for plant identification). These multi-species aggregations might be explained if floral scents are serving as sex pheromones for multiple cyclocephaline species (Schatz 1990). This hypothesis may be supported by the observations of Gottsberger et al. (2012) that Cyclocephala literata Burmeister will aggregate due to floral scent compounds alone.

The consequences of polyphagous and oligophagous cyclocephalines for pollination efficiency have been experimentally addressed, indicating that cyclocephaline floral visitors are differentially important as pollinators due to an interaction between their relative abundance and specific behavior (Young 1986, 1988a, b, 1990). It is less clear how cyclocephalines species, which often mate inside inflorescences, maintain sexual isolation in close proximity to multiple congenerics. A single infloresence may host large crowds of beetles, often more then 30 individuals (Maia et al. 2012). Sexual isolation may be maintained due to interspecific mating morphology (Moore 2012). Sexually dimorphic cyclocephaline species have enlarged protarsal claws (males), and the elytral epipleuron variably expanded into a shelf or flange (females). Morphological differences among epipleural expansions are useful for species-level identification in the Cyclocephalini (Ratcliffe 2003). Females have sclerotized patches, sometimes with setae, on the ventral portion of epipleural expansions (Moore 2012). It is hypothesized that the interaction between the male protarsal claw, the female epipleural expansions, and the ventral portion of the female elytra serves as a pre-copulatory sexual isolation mechanism. Further sexual isolation between species is accomplished by species-specific differences in male genitalic structure (Moore 2012). The male protarsal claw and the female epipleuron may also be involved in intraspecific mate competition. For example, male Cyclocephala gravis Bates were observed clinging tightly to the epipleural structures of a female (guarding behavior), thus limiting the mating access of other C. gravis males (Moore 2012). Cyclocephaline beetles exhibit some similarity to hopliine scarabs (Scarabaeidae: Rutelinae: Hopliini), which are generalist flower visitors in South Africa (Ahrens et al. 2011). Sexual dimorphism has evolved independently several times within the Hopliini (Ahrens et al. 2011). Evolution of sexual dimorphism in hopliines could be tied to the group's biology, as they feed and compete for mates within inflorescences (Midgeley 1992; Ahrens et al. 2011). Sexual dimorphism in cyclocephalines and hopliines may be analogous, driven by selection pressures related to oligophagous and polyphagous flower feeding, mating behavior, and host visitation.

Cyclocephaline beetles and floral associations provide an ideal system for investigating ecology (pollination, competition) and evolution (sexual selection, mutualisms). A wellfounded phylogenetic framework for the Cyclocephalini is needed to advance this work. While ecological associations between beetles and early diverging angiosperm groups is fairly well-established, additional research is necessary to understand the ecological and historical associations of cyclocephaline beetles and dicots. Specifically, research is needed to address the apparent cyclocephaline diversification on New World dicots. Research on cryptic species of host plants and beetles is fundamental to understanding this system. This includes the role of floral volatile compounds in attracting cyclocephaline beetles and patterns of pollination, herbivory, and interspecific competition within floral hosts.

Acknowledgements

We thank Brett Ratcliffe (University of Nebraska State Museum) and Ron Cave (University of Florida) for providing travel funding, specimens for this research, and valuable advice on preparing this manuscript. We are grateful to Michael Grayum, Thomas Croat (both Missouri Botanical Garden), and Boris Schlumpberger (University of Munich) for their botanical expertise. Curators and collections managers in the Methods section are gratefully acknowledged. This work was supported, in part by NSF DBI 0743783 to S. Scott, E. Moriyama, L.-K. Soh, and M. L. Jameson; NSF DEB 0716899 to B. C. Ratcliffe and R. D. Cave; and Wichita State University.

Appendix 1.

Checklist of floral associations for the Cyclocephalini (Scarabaeidae: Dynastinae).

graphic file with name ta01a_01.jpg

Continued.

graphic file with name ta01b_01.jpg

Continued.

graphic file with name ta01c_01.jpg

Continued.

graphic file with name ta01d_01.jpg

Continued.

graphic file with name ta01e_01.jpg

Continued.

graphic file with name ta01f_01.jpg

Continued.

graphic file with name ta01g_01.jpg

Continued.

graphic file with name ta01h_01.jpg

Continued.

graphic file with name ta01i_01.jpg

Continued.

graphic file with name ta01j_01.jpg

Continued.

graphic file with name ta01k_01.jpg

Continued.

graphic file with name ta01l_01.jpg

Continued.

graphic file with name ta01m_01.jpg

Continued.

graphic file with name ta01n_01.jpg

Continued.

graphic file with name ta01o_01.jpg

Continued.

graphic file with name ta01p_01.jpg

Continued.

graphic file with name ta01q_01.jpg

Appendix 2.

Cyclocephaline synonyms reported in the floral association literature.

graphic file with name ta02_01.jpg

Appendix 3.

Plant synonyms reported in floral association literature and on voucher specimen label data.

graphic file with name ta03_01.jpg

Appendix 4.

Unavailable and unresolved plant names from the floral association literature and voucher specimen label data.

graphic file with name ta04_01.jpg

References

  1. Aguirre A, Guevara R, Dirzo R. Effects of forest fragmentation on assemblages of pollinators and floral visitors to male- and female-phase inflorescences of Astrocaryum mexicanum (Arecaceae) in a Mexican rain forest. Journal of Tropical Ecology. 2011;27:25–33. [Google Scholar]
  2. Ahrens D, Scott M, Vogler AP. The phylogeny of monkey beetles based on mitochondrial and ribosomal RNA genes (Coleoptera: Scarabaeidae: Hopliini). Molecular Phylogenetics and Evolution. 2011;60:408–415. doi: 10.1016/j.ympev.2011.04.011. [DOI] [PubMed] [Google Scholar]
  3. Anderson AB, Overal WL, Henderson A. Pollination ecology of a forestdominant palm (Orbignya phalerata Mart.) in northern Brazil. Biotropica. 1988;20:192–205. [Google Scholar]
  4. Anderson RS, Gómez-Pignataro LD. Systenotelus, a remarkable new genus of weevil (Coleoptera: Curculionidae) associated with Carludovica (Cyclanthaceae) in Costa Rica and Panamá. Revista de Biología Tropical. 1997;45:887–904. [Google Scholar]
  5. Angiosperm Phylogeny Group III (APG III) An update of The Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG III. Botanical Journal of the Linnean Society. 2009;161:105–121. [Google Scholar]
  6. Arrow GJ. Notes and descriptions of some Dynastidae from tropical America, chiefly supplementary to the ‘Biologia Centrali-Americana. ’ Annals and Magazine of Natural History (series 7) 1902;10:137–147. [Google Scholar]
  7. Arrow GJ. Description of a few new species of Coleoptera from Sapucay, Paraguay. Proceedings of the Zoological Society of London. 1903;2:255–258. [Google Scholar]
  8. Arrow GJ. On the lamellicorn beetles of the genus Peltonotus with descriptions of four new species. Annals and Magazine of Natural History (series 8) 1910;5:153–157. [Google Scholar]
  9. Arrow GJ. Notes on the coleopterous subfamily Dynastinae, with descriptions of new genera and species. Annals and Magazine of Natural History (series 8) 1911;8:151–176. [Google Scholar]
  10. Balslev H, Henderson A. A new Ammandra (Palmae) from Ecuador. Systematic Botany. 1987;12:501–504. [Google Scholar]
  11. Bates HW. Pectinicornia and Lamellicornia, Family Dynastidae. Godman FD, Salvin O, editors. Biologia Centrali-Americana. Insecta, Coleoptera, volume 2, part 2. 1888:296–342.
  12. Bates HW. Coleoptera. In: Whymper E, editor. Supplementary Appendix to Travels Amongst the Great Andes of the Equator. John Murray; 1891. pp. 7–39. [Google Scholar]
  13. Bawa KS, Bullock SH, Perry DR, Coville RE, Grayum MH. Reproductive biology of tropical lowland rainforest trees. II. Pollination systems. American Journal of Botany. 1985b;72:346–356. [Google Scholar]
  14. Bawa KS, Perry DR, Beach JH. Reproductive biology of tropical lowland rainforest trees. I. Sexual systems and incompatibility mechanisms. American Journal of Botany. 1985a;72:331–345. [Google Scholar]
  15. Beach JH. Beetle pollination of Cyclanthus bipartitus (Cyclanthaceae). American Journal of Botany. 1982;69:1074–1081. [Google Scholar]
  16. Beach JH. The reproductive biology of the peach or “pejibaye” palm (Bactris gasipaes) and a wild congener (B. porschiana) in the Atlantic lowlands of Costa Rica. Principes. 1984;28:107–119. [Google Scholar]
  17. Beath DN. Pollination Ecology of the Araceae. International Aroid Society, Inc; 1998. Available online: http://www.aroid.org/pollination/beath/index.php. [Google Scholar]
  18. Beath DN. Dynastine scarab beetle pollination in Diejfenbachia longispatha (Araceae) on Barro Colorado Island (Panama) compared with La Selva Biological Station (Costa Rica). Aroideana. 1999;22:63–71. [Google Scholar]
  19. Bernal R, Ervik F. Floral biology and pollination of the dioecious plam Phytelephas seemannii in Colombia: an adaptation to staphylinid beetles. Biotropica. 1996;28:682–696. [Google Scholar]
  20. Bogner J. The genus Bognera Mayo & Nicolson (Araceae). Aroideana. 2008;31:3–14. [Google Scholar]
  21. Bullock SH. Notes on the phenology of inflorescences and pollination of some rain forest palms in Costa Rica. Principes. 1981;25:101–105. [Google Scholar]
  22. Burmeister H. Handbuch der Entomologie, volume 5. T. C. F. Enslin; 1847. [Google Scholar]
  23. Búrquez A, Sarukhán KJ, Pedroza AL. Floral biology of a primary rainforest palm, Astrocaryum mexicanum Liebm. Botanical Journal of the Linnean Society. 1987;94:407–419. [Google Scholar]
  24. Casey TL. A review of the American species of Rutelinae, Dynastinae and Cetoniinae. Memoirs on the Coleoptera. 1915;11:1–347. [Google Scholar]
  25. Cavalcante TRM. Polinização manual e natural da gravi oleira (Annona muricata L.). MS dissertation. Universidad Federal de Viçosa; Viçosa, Brazil: 2000. [Google Scholar]
  26. Cavalcante TRM, Naves RV, Franceschinelli EV, da Silva RP. Polinizaçao de frutos em araticum. Bragantia, Campinas. 2009;68:13–21. [Google Scholar]
  27. Chen HY, Yeng WS, Boyce PC, Hung WM, Yok MCK. Studies of Homalomeneae (Araceae) of Borneo VII: Homalomena debilicrista, a new species from Malaysian Borneo, and observations of its pollination mechanics. Plant Diversity and Evolution. 2011;129:77–87. [Google Scholar]
  28. Clark DR. Phylogenetic analysis of the scarab beetle tribe Cyclocephalini (Coleoptera: Scarabaeidae: Dynastinae) based on adult morphological characters. Masters Thesis, Wichita State University; Wichita, KS, USA: 2011. [Google Scholar]
  29. Cockerell TDA. Biological notes on some Coleoptera from New Mexico. Journal of the New York Entomological Society. 1897;5:149–150. [Google Scholar]
  30. Cook OF. New genera and species of ivory palms from Colombia, Ecuador and Peru. Journal of the Washington Academy of Sciences. 1927;17:218–230. [Google Scholar]
  31. Cramer JM, Meese ADJ, Tuenissen PA. A note on the pollination of nocturnally flowering species of Nymphaea. Acta Botanica Neerlandica. 1975;24:489–490. [Google Scholar]
  32. Croat TB. A revision of Syngonium (Araceae). Annals of the Missouri Botanical Garden. 1981;68:565–651. [Google Scholar]
  33. Croat TB. A revision of Philodendron subgenus Philodendron (Araceae) for Mexico and Central America. Annals of the Missouri Botanical Garden. 1997;84:311–704. [Google Scholar]
  34. Croat TB. Revision of “Dieffenbachia” (Araceae) of Mexico, Central America, and the West Indies. Annals of the Missouri Botanical Garden. 2004;91:668–772. [Google Scholar]
  35. de Oliveira HN, Ávila CJ. Ocorréncia de Cyclocephala forsteri em Acronomia acule ata. Pesquisa Agropecuária Tropical. 2011;41:293–295. [Google Scholar]
  36. Dechambre RP. Missions Entomologiques en Guyane et au Brésil (Coleoptera, Dynastidae). Revue Française d'Entomologie. 1979;1:160–168. [Google Scholar]
  37. Dechambre RP. Six nouvelles espèces de Cyclocephala. Revue Française d'Entomologie (Nouvelle-Serie) 1980;2:42–49. [Google Scholar]
  38. Dejean PFMA. Catalogue de la collection de Coléoptères de M. le Baron Dejean. Paris, France: 1821. [Google Scholar]
  39. Dieringer G, Delgado L. Notes on the biology of Cyclocephala jalapensis (Coleoptera: Scarabaeidae): an endemic of eastern Mexico. The Southwestern Entomologist. 1994;19:309–311. [Google Scholar]
  40. Dieringer G, Espinosa JE. Reproductive Ecology of Magnolia schiedeana (Magnoliaceae), a threatened cloud forest tree species in Veracruz, Mexico. Bulletin of the Torrey Botanical Club. 1994;121:154–159. [Google Scholar]
  41. Dieringer G, Cabrera R L, Lara M, Loya L, Reyes-Castillo P. Beetles pollination and floral thermogenicity in Magnolia tamaulipana (Magnoliaceae). International Journal of Plant Sciences. 1999;160:64–71. [Google Scholar]
  42. Dieringer G, Reyes-Castillo P, Lara M, Cabrera RL, Loya L. Endothermy and floral utilization of Cyclocephala caelestis (Coleoptera: Scarabaeoidae: Melolonthidae): a cloud forest endemic beetle. Acta Zoologica Mexicana. 1998;73:145–153. [Google Scholar]
  43. Endrödi S. Neue Cyclocephala-Arten. Annales Historico-Naturales Musei Nationalis Hungarici (pars Zoologica) 1963;55:323–333. [Google Scholar]
  44. Endrödi S. Eine Reihe von neuen Cyclocephala-Arten (Col., Melolonthidae, Dynastinae). Folia Entomologica Hungarica. 1964;17:433–470. [Google Scholar]
  45. Endrödi S. Monographie der Dynastinae (Coleoptera, Lamellicornia). I. Teil. Entomologische Abhandlungen. 1966;33:1–460. [Google Scholar]
  46. Endrödi S. Einige neue Cyclocephalini und Pentodontini. Acta Zoologica Hungarica. 1969;15:21–42. [Google Scholar]
  47. Endrödi S. Cyclocephala hardyi sp. n. Folia Entomologica Hungarica (N.S.) 1975;28:281–284. [Google Scholar]
  48. Endrödi S. Sechs neue Dynastinen-Arten aus Amerika und Borneo (Coleoptera: Dynastinae). Folia Entomologica Hungarica. 1980;41:37–42. [Google Scholar]
  49. Endrödi S. The Dynastinae of the World. Dr. W. Junk Publishers; 1985. [Google Scholar]
  50. Erichson WF. Conspectus insectorum coleopterorum quae in Republica Peruana observata sunt. Archiv für Naturgeschichte. 1847;13:67–185. [Google Scholar]
  51. Ervik F. Notes on the phenology and pollination of the dioecious palms Mauritia flexuosa (Calamoideae) and Aphandra natalia (Phytelephantoideae) in Ecuador. In: Barthlott W, Naumann CM, Schmidt-Loeske K, Schuchmann KL, editors. Animal-plant interactions in tropical environments: results of the annual meeting of the German Society for Tropical Ecology held at Bonn. Germany: 1993. pp. 7–12. February 13–16, 1992. [Google Scholar]
  52. Ervik F, Knudsen JT. Water lilies and scarabs: faithful partners for 100 million years? Biological Journal of the Linnean Society. 2003;80:539–543. [Google Scholar]
  53. Ervik F, Tollsten L, Knudsen JT. Floral scent chemistry and pollination ecology in phytelephantoid palms (Arecaceae). Plant Systematic s and Evolution. 1999;217:279–297. [Google Scholar]
  54. Fabricius JC. Systema Entomologiae. Leipzig, Germany: 1775. [Google Scholar]
  55. Fabricius JC. Species Insectorum, Volume 1. Kiel, Germany: 1781. [Google Scholar]
  56. Fabricius JC. Supplementum Entomologiae Systematicae. Proft et Storch; Hafniae: 1798. [Google Scholar]
  57. García-Robledo C, Kattan G, Murcia C, Quintero-Marín P. Beetle pollination and fruit prédation of Xanthosoma daguense (Araceae) in an Andean cloud forest in Colombia. Journal of Tropical Ecology. 2004;20:459–469. [Google Scholar]
  58. García-Robledo C, Quintero-Marín P, MoraKepfer F. Geographic variation and succession of arthropod communities in inflorescences and infructescences of Xanthosoma (Araceae). Biotropica. 2005;37:650–656. [Google Scholar]
  59. Gessner F. A abertura das flores de Victoria regia, em relaçào à luz. Boletim do Museu Paranense Emilio Goeldi. 1962;17:1–13. [Google Scholar]
  60. Gibernau M. Pollinators and visitors of aroid inflorescences. Aroideana. 2003;26:66–83. [Google Scholar]
  61. Gibernau M. Pollinators and visitors of aroid inflorescences: an addendum. Aroideana. 2011;34:70–83. [Google Scholar]
  62. Gibernau M, Barabé D. Pollination ecology of Philodendron squamiferum (Araceae). Canadian Journal of Botany. 2002;80:316–320. [Google Scholar]
  63. Gibernau M, Barabé D, Labat B. Flowering and pollination of Philodendron melinonii (Araceae) in French Guiana. Plant Biology. 2000;2:331–334. [Google Scholar]
  64. Gibernau M, Barabé D, Cerdan P, Dejean A. Beetle pollination of Philodendron solimoesense (Araceae) in French Guiana. International Journal of Plant Science. 1999;160:1135–1143. doi: 10.1086/314195. [DOI] [PubMed] [Google Scholar]
  65. Gibernau M, Barabé D, Labat D, Cerdan P, Dejean A. Reproductive Biology of Montrichardia arborescens (Araceae) in French Guiana. Journal of Tropical Ecology. 2003;19:103–107. [Google Scholar]
  66. Gibernau M, Chartier M, Barabé D. Recent advances towards an evolutionary comprehension of Araceae pollination. In: Seberg O, Petersen G, Barfod AS, Davis JI, editors. Diversity, phylogeny, and evolution in the Monocotyledons. Aarhus University Press; 2010. pp. 101–114. [Google Scholar]
  67. Gibbs PE, Semir J, da Cruz ND. Floral biology of Talauma ovata St. Hil. (Magnoliaceae). Ciéncia e Cultura. 1977;29:1437–1441. [Google Scholar]
  68. Goldwasser LP. I. Branching patterns, generating rules, and astrogenetic trajectories in Bu gula (Cheilostomata, Bryozoa). II. Mutualism and its ecological and evolutionary consequences. PhD Dissertation, University of California-Berkeley; Berkely, CA, USA: 1987. [Google Scholar]
  69. Goldwasser L. Scarab beetles, elephant ear (Xanthosoma robustum), and their associates. In: Natkarni NM, Wheelwright NT, editors. Monteverde. Ecology and Conservation of a Tropical Cloud Forest. Oxford University Press; 2000. pp. 268–271. [Google Scholar]
  70. Gonçalves EG, Maia ACD. New evidence of pollination in Gearum brasiliense (Araceae: Spathicarpeae). 2006;29:148–151. [Google Scholar]
  71. Gottsberger G. Some pollination strategies in Neotropical Savannas and Forests. Plant Systematics and Evolution. 1986;152:29–45. [Google Scholar]
  72. Gottsberger G. The reproductive biology of primitive angiosperms. Taxon. 1988;37:630–643. [Google Scholar]
  73. Gottsberger G. Beetle pollination and flowering rhythm of Annona spp. (Annonaceae) in Brazil. Entwicklungsgeschichte und Systematik der Planzen. 1989;167:165–187. [Google Scholar]
  74. Gottsberger G. Pollination of some species of the Carludovicoideae, and remarks on the origin and evolution of Cyclanthaceae. Botanische Jahrbücher für Systematik, Pflanzengeschichte und Pflanzengeographie. 1991;113:221–235. [Google Scholar]
  75. Gottsberger G. Pollination and evolution in neotropical Annonaceae. Plant Species Biology. 1999;14:143–152. [Google Scholar]
  76. Gottsberger G, Amaral A. Pollination strategies in Brazilian Philodendron species. Berichte der Deutschen Botanischen Gesellschaft. 1984;97:391–410. [Google Scholar]
  77. Gottsberger G, Webber AC, Hildenbrand M. Nutritious tissues in flowers of Annonaceae. Annonaceae Newsletter. 1998;12:25–26. [Google Scholar]
  78. Gottsberger G, Silberbauer-Gottsberger I. Pollination strategies of Annona species from the cerrado vegetation in Brazil. Lagascalia. 1988;15:665–672. [Google Scholar]
  79. Gottsberger G, Silberbauer-Gottsberger I. Olfactory and visual attraction of Erioscelis emarginata (Cyclocephalini, Dynastinae) to the inflorescences of Philodendron selloum (Araceae). Biotropica. 1991;23:23–28. [Google Scholar]
  80. Gottsberger G, Silberbauer-Gottsberger I. Life in the Cerrado: a South American Tropical Seasonal Ecosystem. Volume 2. Pollination and Seed Dispersal. Reta Verlag; 2006. [Google Scholar]
  81. Gottsberger G, Silberbauer-Gottsberger I, Seymour RS, Dötterl S. Pollination ecology of Magnolia ovata may explain the overall large flower size of the genus. Flora-Morphology, Distribution, Functional Ecology of Plants. 2012;207:107–118. [Google Scholar]
  82. Grayum MH. Palynology and phylogeny of the Araceae. Botany PhD Dissertation, University of Massachusetts. Amherst; MA, USA: 1984. [Google Scholar]
  83. Grayum MH. Correlations between pollination biology and pollen morphology in the Araceae, with some implications for angiosperm evolution. In: Blackmore S, Ferguson IK, editors. Pollen and Spores: Form and Function. Linnean Society Symposium Series No. 12. Academic Press; 1986. pp. 313–327. [Google Scholar]
  84. Grayum MH. Evolution and phylogeny of the Araceae. Annals of the Missouri Botanical Garden. 1990;77:628–697. [Google Scholar]
  85. Grayum MH. Revision of Philodendron subgenus Pteromischum (Araceae) for Pacific and Caribbean Tropical America. Systematic Botany Monographs. 1996;47:1–233. [Google Scholar]
  86. Grimm R. Peltonotus nasutus Arrow, 1910 und Phaeochrous-Arten als Bestäuber von Amorphophallus paeoniifolius (Araceae) in Thailand (Coleoptera: Scarabaeidae). Entomologische Zeitschrift mit Insekten-Börse. 2009;119:167–168. [Google Scholar]
  87. Hardon JJ. Interspecific hybrids in the genus Elaeis II. Vegetative growth and yield of F1 hybrids E. guineensis × E. oleifera. Euphytica. 1969;18:380–388. [Google Scholar]
  88. Hay A, Gottschalk M, Holguin A. Huanduj: Brugmansia. Kew Publishing; 2012. [Google Scholar]
  89. Hayward KJ. Departamento de Entomología. Revista Industrial y Agrícola de Tucumán. 1946;36:60–72. [Google Scholar]
  90. Heller KM. Neue Käfer von Celebes. Abhandlungen der der Berichte des Königlichen Zoologischen und Anthropologisch-Ethnographischen Museums zu Dresden. 1896;3:12–14. [Google Scholar]
  91. Henderson A. Observations on pollination of Cryosophila albida. Principes. 1984;28:120–126. [Google Scholar]
  92. Henderson A. A review of pollination studies in the Palmae. Botanical Review. 1986;52:221–259. [Google Scholar]
  93. Henderson A, Pardini R, dos Santos JF, Rebello Vanin S, Almeida D. Pollination of Bactris (Palmae) in an Amazon Forest. Brillonia. 2000;52:160–171. [Google Scholar]
  94. Herbst JFW. Pauli J, Editor. Natursystem aller bekannten in- und ausländischen Insekten, als eine Fortsetzung der von Büffonschen Naturgeschichte. Nach dem System des Ritters von Linné und Fabricius zu bearbeitet angefangen von Carl Gustav Jablonsky. Der Käfer zweyter Theil. 1790;3:1–324. [Google Scholar]
  95. Heyne A, Taschenberg O. Die Exotischen Käfer in Wort und Bild. G. Reusche; 1907. [Google Scholar]
  96. Hirthe G, Porembski S. Pollination of Nymphaea lotus (Nymphaeaceae) by rhinoceros beetles and bees in the northeastern Ivory Coast. Plant Biology. 2003;5:670–676. [Google Scholar]
  97. Höhne W. Neue Cyclocephalen (Col. Dyn.). Deutsche Entomologische Zeitschrift. 1923;1923:345–373. [Google Scholar]
  98. International Commission on Zoological Nomenclature (ICZN) International Code of Zoological Nomenclature. 4th edition. International Trust for Zoological Nomenclature; 1999. [Google Scholar]
  99. Jameson ML, Micó E, Galante E. Evolution and phylogeny of the scarab subtribe Anisopliina (Coleoptera: Scarabaeidae: Rutelinae: Anomalini). Systematic Entomology. 2007;32:429–449. [Google Scholar]
  100. Jameson ML, Ratcliffe BC, Maly V. Review of the genus Acrobolbia with remarks on its classification, and a key to the world genera of Cyclocephalini (Coleoptera: Scarabaeidae: Dynastinae). Folia Heyrovskyana. 2002;10:1–15. [Google Scholar]
  101. Jameson ML, Wada K. Revision of the genus Peltonotus Burmeister (Coleoptera: Scarabaeidae: Dynastinae) from southeastern Asia. Zootaxa. 2004;502:1–66. [Google Scholar]
  102. Kirsch TFW. [1871], Beiträge zur Käferfauna von Bogotá. Berliner Entomologische Zeitschrift. 1870;14(1870):337–378. pages misnumbered, first one as 353. [Google Scholar]
  103. Knuth PEOW, Appel O, Loew E. Handbuch der Blütenbiologie, unter Zugrundelegung von Herman Müllers Werk: “Die Befruchtung der Blumen durch Insekten.” Volume 3. W. Engelmann; 1904. [Google Scholar]
  104. Krell F-T, Hirthe G, Seine R, Porembski S. Rhinoceros beetles pollinate water lilies in Africa (Coleoptera: Scarabaeidae: Dynastinae; Magnoliidae: Nymphaeceae). Ecotropica. 2003;9:103–106. [Google Scholar]
  105. Kress WJ, Beach JH. Flowering plant reproductive systems. In: McDade L, Bawa KS, Hespenheide HA, Hartshorn GS, editors. La Selva: Ecology and Natural History of a Neotropical Rainforest. The University of Chicago Press; 1994. pp. 161–182. [Google Scholar]
  106. Küchmeister HA, Webber C, Silberbauer-Gottsberger I, Gottsberger G. A Polinizaçao e sua relação com a termogênese em espécies de Arecaceae e Annonaceae da Amazonia central. Acta Amazonica. 1998;28:217–245. [Google Scholar]
  107. Küchmeister H, Gottsberger G, Silberbauer-Gottsberger I. Pollination biology of Orbignya spectabilis, a ‘monoecious’ Amazonian palm. In: Barthlott W, Naumann CM, Schmidt-Loske K, Schuchmann KL, editors. Animal-plant interactions in tropical environments: results of the annual meeting of the German Society for Tropical Ecology held at Bonn. Germany: 1993. pp. 67–76. February 13–16, 1992. [Google Scholar]
  108. Lachance M-A, Starmer WT, Rosa CA, Bowles JM, Stuart J, Baker F, Janzen DH. Biogeography of the yeasts of ephemeral flowers and their insects. FEMS Yeast Research. 2001;1:1–8. doi: 10.1111/j.1567-1364.2001.tb00007.x. [DOI] [PubMed] [Google Scholar]
  109. Laporte FL. Histoire Naturelle des Insectes Coleoptérès. Avec une introduction Renferment l'Anatomie et la Physiologie des Animaux articulés, par M. Brullé, Volume 2. P. Duménil; 1840. [Google Scholar]
  110. Lenzi M, Orth A. Visitantes florais de Opuntia monacantha (Cactaceae) em restingas de Florianópolis, SC, Brasil. Acta Biológica Paranaense. 2011;40:19–32. [Google Scholar]
  111. Linnaeus C. Systerna Naturae, edito decima. Leipzig; Germany: 1758. [Google Scholar]
  112. Linnaeus C. Sy sterna Naturae, Volume 1, pars 2, edito duodécima reformata. Stockholm; Sweden: 1767. [Google Scholar]
  113. Linsley EG. Observations on some matinal bees at flowers of Cucurbita, Ipomoea and Datura in desert areas of New Mexico and southeastern Arizona. Journal of the New York Entomological Society. 1960;68:13–20. [Google Scholar]
  114. Listabarth C. A survey of pollination strategies in the Bactrinidinae (Palmae). F Bulletin de l'Institut Francais d Etudes AndineslX: 1992. pp. 699–714.
  115. Listabarth C. Pollination of Bactris by Phyllotrox and Epurea. Implications of the palm breeding beetles on pollination at the community level. Biotropica. 1996;28:69–81. [Google Scholar]
  116. Luederwalt H. Cyclocephala cribrata Burm. (Lamellicornidae, Dynastinae). Habitant legal das Bromeliaceas. Revista do Musen Pauli sta. 1926;14:129–132. [Google Scholar]
  117. Maas PJM, Westra LYT, Chatrou LW. Duguetia (Annonaceae). Flora Neotropica. 2003;88:1–274. [Google Scholar]
  118. Madison M. Protection of developing seeds in neotropical Araceae. Aroideana. 1979;2:52–61. [Google Scholar]
  119. Madison M. Notes on Caladium (Araceae) and its allies. Selbyana. 1981;5:342–377. [Google Scholar]
  120. Maia ACD, Schlindwein C. Caladium bicolor (Araceae) and Cyclocephala celata (Coleoptera, Dynastinae): A well-established pollination system in the northern Atlantic rainforest of Pernambuco, Brazil. Plant Biology. 2006;8:529–534. doi: 10.1055/s-2006-924045. [DOI] [PubMed] [Google Scholar]
  121. Maia ACD, Schlindwein C, Navarro DMAF, Gibernau M. Pollination of Philodendron acutatum (Araceae) in the Atlantic forest of northeastern Brazil: a single scarab beetle species guarantees high fruit set. International Journal of Plant Science. 2010;171:740–748. [Google Scholar]
  122. Maia ACD, Gibernau M, Carvalho AT, Gonçalves EG, Schlindwein C. The cowl does not make the monk: scarab beetle pollination of the Neotropical aroid Taccarum ulei (Araceae, Spathicarpeae). Biological Journal of the Linne an Society. 2012;108:22–34. doi: 10.1111/j.1095-8312.2012.01985.x. [Google Scholar]
  123. Mannerheim CV. Description de quarante nouvelles espèces de scarabéides du Brésil avec figures. Nouveaux Mémoires de la Société Impériale des Naturalistes de Moscou. 1829;1:29–80. [Google Scholar]
  124. Martínez A. Un nuevo genero y especie de escarabeido dinastino (Col. Scarabaeidae, Dynatinae). Mitteilungen der Münchener Entomologischen Gesellschaft. 1955;45:242–249. [Google Scholar]
  125. Martínez A. Notas sobre Cyclocephalini Americanos con descripción de dos nuevas especies (Col. Scarab., Dynast.). Ciencia. 1968;26:185–191. [Google Scholar]
  126. Midgeley J. Why do some hopliinid beetles have large hind-legs? Journal of the Entomological Society of Southern Africa. 1992;55:157–159. [Google Scholar]
  127. Momose K, Yumoto T, Nagamitsu T, Kato M, Nagamasu H, Sakai S, Harrison RD, Itioka T, Hamid AA, Inoue T. Pollination biology in a lowland dipterocarp forest in Sarawak, Malaysia. I. Characteristics of the plant-pollinator community in a lowland dipterocarp forest. American Journal of Botany. 1998;85:1477–1501. [PubMed] [Google Scholar]
  128. Moore I. A list of beetles of San Diego County, California. San Diego Society of Natural History-Occasional Papers. 1937;2:1–109. [Google Scholar]
  129. Moore MR. Disentangling the phenotypic variation and pollination biology of the Cyclocephala sexpunctata species complex (Coleoptera: Scarabaeidae: Dynastinae). Masters Thesis, Wichita State University; Wichita, KS, USA: 2011. [Google Scholar]
  130. Moore MR. A new female elytron character for the tribe Cyclocephalini (Coleoptera: Scarabaeidae: Dynastinae) and an observation of its possible function. The Coleopterists Bulletin. 2012;66:200–202. [Google Scholar]
  131. Mora-Urpi J, Solis EM. Polinización en Bactris gasipaes H. B. K. (Palmae). Revista de Biología Tropical. 1980;28:153–174. [Google Scholar]
  132. Mora-Urpi J. Polinización en Bactris gasipaes H. B. K. (Palmae): Nota Adicional. Revista de Biología Tropical. 1982;30:174–176. [Google Scholar]
  133. Morón MA. Descripción del macho de Cyclocephala picta Burm. 1847 (Coleoptera: Melolonthidae, Dynastinae). Anales del Instituto de Biología de la Universidad Nacional Autónoma de México (serie Zoología) 1977;48:133–140. [Google Scholar]
  134. Morón MA. Notas sobre Cyclocephala Latreille (Coleoptera: Melolonthidae, Dynastinae) associadas con Xanthosoma Schott (Araceae) en Chiapas, México. Giornale Italiano di Entomología. 1997;8:399–407. [Google Scholar]
  135. Murray NA. Revision of Cymbopetalum and Porcelia (Annonaceae). Systematic Botany Monographs. 1993;40 [Google Scholar]
  136. Núñez LA, Bernal R, Knudsen JT. Diurnal palm pollination by mystropine beetles: is it weather-related? Plant Systematic s and Evolution. 2005;254:149–171. [Google Scholar]
  137. Núñez-Avellaneda LA, Rojas-Robles R. Biología reproductiva y ecología de la polinización de la palma milpesos Oenocarpus batana en los Andes Colombianos. Caldasia. 2008;30:101–125. [Google Scholar]
  138. Núñez-Avellaneda LA, Neita JC. Rol de los escarabajos Cyclocephalini (Dynastinae: Scarabaeidae) en la polinización de palmas silvestres en Colombia. In: Hernández-Ortiz V, Deloya C, Castillo PR, editors. Memorias VIII Reunion Latinoamericana de Escarabaeidología (Coleoptera: Scarabaeoidea). Jalapa; Mexico: 2009. pp. 16–17. [Google Scholar]
  139. Ohaus F. Neue südamerikanische Dynastiden (Col.). Deutsche Entomologische Zeitschrift. 1910;1910:671–690. [Google Scholar]
  140. Ohaus F. Beiträge zur Kenntnis der Ruteliden. X. Stettiner Entomologische Zeitung. 1912;1912:273–319. [Google Scholar]
  141. Olivier AG. Entomologie, ou Historie Naturelle des Insectes, avec leurs Caractèrs Génériques et Spécifiques, leur Description, leur Synonymie, et leur Figure Enluminée. Coleoptérès, volume 1 (genera separately paged). Jean Francois Baudouin; 1789. [Google Scholar]
  142. Pardo-Locarno LC, Arroyo JE, Quiñónez F. Observaciones de los escarabajos copronecrófagos y sapromelífagos de San Luis Robles, Nariño. Boletín Científico Centro de Museos: Meseo de Historia Natural. 2008;8:113–139. [Google Scholar]
  143. Pellmyr O. Cyclocephala: visitor and probable pollinator of Caladium bicolor (Araceae). Acta Amazonica. 1985;15:269–272. [Google Scholar]
  144. Pike KS, Rivers RL, Ratcliffe BC, Oseto CY, Mayo ZB. A world bibliography of the genus Cyclocephala (Coleoptera: Scarabaeidae). Miscellaneous publication of the University of Nebraska Agricultural Experiment Station. 1976;32:1–36. [Google Scholar]
  145. Ponchel Y. The Dynastidae of the world. Biologie et collecte de quelques dynastides. 2006. Available online: http://dynastidae.voila.net/biologie.html.
  146. Ponchel Y. Note sur Cyclocephala virgo Dechambre, 1999 et mise point sur trios espèces de Dynastidae récemment decrites de Guyane (Coleoptera Dynastidae). L Entomologiste. 2010;66:171–172. [Google Scholar]
  147. Prance GT. The pollination and androphore structure of some Amazonian Lecythidaceae. Biotropica. 1976;8:235–241. [Google Scholar]
  148. Prance GT, Anderson AB. Studies of the floral biology of neotropical Nymphaeaceae 3. Acta Amazónica. 1976;6:163–170. [Google Scholar]
  149. Prance GT, Arias JR. A study of the floral biology of Victoria amazonica (Poepp.) Sowerby (Nymphaeaceae). Acta Amazonica. 1975;5:109–139. [Google Scholar]
  150. Prance GT. A note on the pollination of Nymphaea amazonum Mart, and Zucc. (Nymphaeaceae). Brittonia. 1980;32:505–507. [Google Scholar]
  151. Prell H. Beiträge zur Kenntnis der Dynastinen (XII). Beschreibungen und Bemerkungen. Entomologische Zeitschrift. 1934;47 [Google Scholar]
  152. Raguso RA, Henzei C, Buchmann SL, Nabhan GP. Trumpet flowers of the Sonoran desert: floral biology of Peniocereus cacti and sacred Datura. International Journal of Plant Sciences. 2003;164:877–892. [Google Scholar]
  153. Ramírez N. Biologia de polinizacion en una comunidad arbustiva tropical de la alta Guayana Venezolana. Biotropica. 1989;21:319–330. [Google Scholar]
  154. Ramírez N. Especificidad de los sistemas de polinización en una comunidad arbustiva de la Guyana Venezolana. Ecotropicos. 1992;5:1–19. [Google Scholar]
  155. Ramirez N, Brito Y. Pollination biology in a palm swamp community in the Venezuelan central plains. Botanical Journal of the Linne an Society. 1992;110:277–302. [Google Scholar]
  156. Ratcliffe BC. Four new species of Neotropical Cyclocephalini (Coleoptera: Scarabaeidae). Acta Amazonica. 1977;7:429–434. [Google Scholar]
  157. Ratcliffe BC. Nine new species and 11 country records of Cyclocephala (Coleoptera: Scarabaeidae: Dynastinae) from Panama and Costa Rica. The Coleopterists Bulletin. 1992a;46:216–235. [Google Scholar]
  158. Ratcliffe BC. New species and country records of Brazilian Cyclocephala (Coleoptera: Scarabaeidae: Dynastinae). Tidschrift voor Entomologie. 1992b;136:179–190. [Google Scholar]
  159. Ratcliffe BC. The Dynastine scarab beetles of Costa Rica and Panama (Coleoptera: Scarabaeidae: Dynastinae). Bulletin of the University of Nebraska State Museum. 2003;16:1–506. [Google Scholar]
  160. Ratcliffe BC, Delgado L. New species and notes of Cyclocephala from Mexico (Coleoptera: Scarabaeidae: Dynastinae). Folia Entomologica Mexicana. 1990;80:41–57. [Google Scholar]
  161. Ratcliffe BC, Morón MA. Morón MA, Ratcliffe BC, Deloya C. Atlas de los Escarabajos de México. Coleoptera: Lamellicornia. Volume 1. Familia Melolonthidae. Comisión Nacional para el Conocimiento y Uso de la Biodiversidad (CONABIO) and Sociedad Mexicana de Entomologia; 1997. Dynastinae. pp. 53–98. [Google Scholar]
  162. Ratcliffe BC, Paulsen MJ. The scarabaeoid beetles of Nebraska. Bulletin of the University of Nebraska State Museum. 2008;22:1–569. [Google Scholar]
  163. Ratcliffe BC, Cave RD. New species of Cyclocephala from Honduras and El Salvador. The Coleopterists Bulletin. 2002;56:152–157. [Google Scholar]
  164. Ratcliffe BC, Cave RD. The Dynastine scarab beetles of Honduras, Nicaragua, and El Salvador (Coleoptera: Scarabaeidae: Dynastinae). Bulletin of the University of Nebraska State Museum. 2006;21:1–424. [Google Scholar]
  165. Rickson FR, Cresti M, Beach JH. Plant cells which aid in pollen digestion within a beetle's gut. Oecologia. 1990;82:424–426. doi: 10.1007/BF00317493. [DOI] [PubMed] [Google Scholar]
  166. Rosa CA, Morais PB, Santos SR, Peres Neto RR, Mendonça-Hagler LC, Hagler AN. Yeast communities associated with different plant resources in sandy coastal plains of southeastern Brazil. Mycological Research. 1995;99:1047–1054. [Google Scholar]
  167. Rosa CA, Lachance M-A, Starmer WT, Barker JSF, Bowles JM, Schlag-Edler B. Kodamaea nitidulidarum, Candida restingae and Kodamaea anthophila, three new related yeast species from ephemeral flowers. International Journal and Systematic Bacteriology. 1999;49:309–318. doi: 10.1099/00207713-49-1-309. [DOI] [PubMed] [Google Scholar]
  168. Saylor LW. Synoptic revision of the United States scarab beetles of the subfamily Dynastinae, No. 1: Tribe Cyclocephalini. Journal of the Washington Academy of Sciences. 1945;35:378–386. [Google Scholar]
  169. Scariot AO, Lieras E, Hay JD. Reproductive biology of the palm Acrocomia aculeata in central Brazil. Biotropica. 1991;23:12–22. [Google Scholar]
  170. Schatz GE. A new Cymbopetalum (Annonaceae) from Costa Rica and Panama with observations on natural hybridization. Annals of the Missouri Botanical Graden. 1985;72:535–538. [Google Scholar]
  171. Schatz GE. Systematic and ecological studies of Central American Annonaceae. PhD Thesis, University of Wisconsin-Madison; Madison; WI, USA: 1987. [Google Scholar]
  172. Schatz GE. Some aspects of pollination biology in Central American forests. In: Bawa KS, Hadley M, editors. Reproductive Ecology of Tropical Forest Plants. UNESCO and The Parthenon Publishing Group; 1990. pp. 69–84. [Google Scholar]
  173. Schiestl FP, Dötterl S. The evolution of floral scent and olfactory preferences in pollinators: coevolution or pre-existing bias. Evolution. 2012;66(7):2042–2055. doi: 10.1111/j.1558-5646.2012.01593.x. doi: 10.1111/j.1558-5646.2012.01593.x. [DOI] [PubMed] [Google Scholar]
  174. Schrottky C. Blumen und Insekten in Paraguay. Zeitschrift für wissenschlaftliche Insektenbiologie. 1908;4:22–26. [Google Scholar]
  175. Schrottky C. Die Befruchtung von Philodendron und Caladium durch einen Käfer (Erioscelis emarginata). Zeitschrift für wissenschlaftliche Insektenbiologie. 1910;6:67–68. [Google Scholar]
  176. Schlumpberger BO, Cocucci AA, Moré M, Sérsic AN, Raguso RA. Extreme variation in floral characters and its consequences for pollinator attraction among populations of an Andean cactus. Annals of Botany. 2009;103:1489–1500. doi: 10.1093/aob/mcp075. [DOI] [PMC free article] [PubMed] [Google Scholar]
  177. Schlumpberger BO, Raguso RA. Geographic variation in floral scent of Echinopsis ancistrophora (Cactaceae); evidence for constraints on hawkmoth attraction. Oikos. 2008;117:801–814. [Google Scholar]
  178. Seres A, Ramírez N. Biologia floral y polinizacion de algunas Monocotiledoneas de un Bosque Nublado Venezolano. Annals of the Missouri Botanical Garden. 1995;82:61–81. [Google Scholar]
  179. Seymour RS, Matthews PDG. The role of thermogenesis in the pollination biology of the Amazon waterlily Victoria amazónica. Annals of Botany. 2006;98:1129–1135. doi: 10.1093/aob/mcl201. [DOI] [PMC free article] [PubMed] [Google Scholar]
  180. Seymour RS, White CR, Gibernau M. Endothermy of dynastine scarab beetles (Cyclocephala colasi) associated with pollination biology of a thermogenic arum lily (Philodendron solimoe sense). The Journal of Experimental Biology. 2009;212:2960–2968. doi: 10.1242/jeb.032763. [DOI] [PubMed] [Google Scholar]
  181. Sharp D. Description of some new species of beetles (Scarabaeidae) from Central America. Journal of the Linnean Scoiety of London (Zoology) 1877;13:129–138. [Google Scholar]
  182. Silberbauer-Gottsberger I. Pollination and evolution in palms. Phyton. 1990;30:213–233. [Google Scholar]
  183. Silberbauer-Gottsberger I, Gottsberger G, Webber AC. Morphological and functional flower characteristics of New and Old World Annonaceae with respect to their mode of pollination. Taxon. 2003;52:701–718. [Google Scholar]
  184. Silberbauer-Gottsberger I, Gottsberger RA, Gottsberger G. Flowering rhythm and pollination in a hybrid population of Annona in a small cerrado area in Mato Grosso, Brazil. Annonaceae News letter. 1997;11:55–60. [Google Scholar]
  185. Smith ABT. A review of the familygroup names for the superfamily Scarabaeoidea (Coleoptera) with corrections to nomenclature and a current classification. The Coleopterists Bulletin. 2006;60:144–204. [Google Scholar]
  186. Stechauner-Rohringer R, Pardo-Locarno LC. Redescripción de inmaduros, ciclo de vida, distribución e importancia agrícola de Cyclocephala lumilata Burmeister (Coleóptera: Melolonthidae: Dynastinae) en Colombia. Boletín Científico Centro de Museos, Museo de Historia Natural. 2010;14:203–220. [Google Scholar]
  187. Steinheil E. Symbolae ad historiam Coleopterorum Argentiniae meridionales, ossia enumerazione dei coleotteri raccolti dal Prof. P. Strobel nell' Argentina meridionale, e descrizione dell specie nuove. II Centuria. Atti della Societa Italiana de Scienze Naturll e del Museo Civico di Storia Naturale di Milano. 1874;15:554–578. [Google Scholar]
  188. The Plant List. 2010. Version 1. Available online: http://www.theplantlist.org.
  189. Thien LB, Bernhardt P, Devall MS, Chen Z-D, Luo Y-B, Fan J-H, Yuan L-C, Williams JH. Pollination biology of basal angiosperms (ANITA grade). American Journal of Botany. 2009;96(1):1–17. doi: 10.3732/ajb.0800016. [DOI] [PubMed] [Google Scholar]
  190. Tropicos. Missouri Botanical Garden. Available online: http://www.tropicos.org.
  191. Valla JJ, Cirino DR. Biologia floral del Irupé, Victoria cruziana D.'Orb (Nymphaeaceae). Darwiniana. 1972;17:477–500. [Google Scholar]
  192. Valerio CE. Insect visitors of the inflorescence of the aroid Dieffenbachia oerstedii (Araceae) in Costa Rica. Brenesia. 1984;22:139–146. [Google Scholar]
  193. Valerio CE. Notes on phenology and pollination of Xanthosoma wendlandii (Araceae) in Costa Rica. Revista de Biología Tropical. 1988;36:55–61. [Google Scholar]
  194. Villalta R. Estudio de la biologia floral e identificacion de agentes polinizadores de guanábana (Annona muricata L.) en la zona atlantica de Costa Rica. Heredia, Costa Rica: Universidad Nacional; 1988. Thesis. [Google Scholar]
  195. Voeks RA. Reproductive ecology of the piassava palm (Attalea funifera) of Bahia, Brazil. Journal of Tropical Ecology. 2002;18:121–136. [Google Scholar]
  196. von Bayern T. Meine Reise in die Brasilianischen Tropen. D. Remmer; 1897. [Google Scholar]
  197. Webber AC. Biologia floral de algumas Annonaceae na região de Manaus AM. Masters Thesis, Instituto Nascional de Pesquiras da Amazonia; Manaus, AM, Brazil: 1981. [Google Scholar]
  198. Webber AC, Gottsberger G. Floral biology and pollination of Cymbopetalum euneurum in Manaus, Amazonia. Annonaceae Newsietter. 1993;9:25–28. [Google Scholar]
  199. Warming E. Tropische Fragmente. I. Die Bestäubung von Philodendron bipinnatifldum Schott. Botanische Jahrbücher für Systematik, Pflanzengeschichte und Pflanzengeographie. 1883;4:328–340. [Google Scholar]
  200. Wiersema JH. A monograph of the Nymphaea subgenus Hydrocallis (Nymphaeaceae). Systematic Botany Monographs. 1987;16:1–112. [Google Scholar]
  201. Young HJ. Beetle pollination of Dieffenbachia longispatha (Araceae). American Journal of Botany. 1986;73:931–944. [Google Scholar]
  202. Young HJ. Aroid observations: Philodendron rothschuhianum. Aroideana. 1987;10:22. [Google Scholar]
  203. Young HJ. Differential importance of beetle species pollinating Dieffenbachia longispatha (Araceae). Ecology. 1988a;69:832–844. [Google Scholar]
  204. Young HJ. Neighborhood size in a beetle pollinated tropical aroid: effects of low density and asynchronous flowering. O ecologia. 1988b;76:461–466. doi: 10.1007/BF00377043. [DOI] [PubMed] [Google Scholar]
  205. Young HJ. Pollination and reproductive biology of an understory neotropical aroid. In: Bawa KS, Hadley M, editors. Reproductive Ecology of Tropical Forest Plants. UNESCO and The Parthenon Publishing Group; 1990. pp. 151–164. [Google Scholar]

Articles from Journal of Insect Science are provided here courtesy of University of Wisconsin Libraries

RESOURCES