Abstract
The active site of the allosteric chorismate mutase (chorismate pyruvatemutase, EC 5.4.99.5) from yeast Saccharomyces cerevisiae (YCM) was located by comparison with the mutase domain (ECM) of chorismate mutase/prephenate dehydratase [prephenate hydro-lyase (decarboxylating), EC 4.2.1.51] (the P protein) from Escherichia coli. Active site domains of these two enzymes show very similar four-helix bundles, each of 94 residues which superimpose with a rms deviation of 1.06 A. Of the seven active site residues, four are conserved: the two arginines, which bind to the inhibitor's two carboxylates; the lysine, which binds to the ether oxygen; and the glutamate, which binds to the inhibitor's hydroxyl group in ECM and presumably in YCM. The other three residues in YCM (ECM) are Thr-242 (Ser-84), Asn-194 (Asp-48), and Glu-246 (Gln-88). This Glu-246, modeled close to the ether oxygen of chorismate in YCM, may function as a polarizing or ionizable group, which provides another facet to the catalytic mechanism.
Full text
PDF



Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Braus G. H. Aromatic amino acid biosynthesis in the yeast Saccharomyces cerevisiae: a model system for the regulation of a eukaryotic biosynthetic pathway. Microbiol Rev. 1991 Sep;55(3):349–370. doi: 10.1128/mr.55.3.349-370.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chook Y. M., Gray J. V., Ke H., Lipscomb W. N. The monofunctional chorismate mutase from Bacillus subtilis. Structure determination of chorismate mutase and its complexes with a transition state analog and prephenate, and implications for the mechanism of the enzymatic reaction. J Mol Biol. 1994 Jul 29;240(5):476–500. doi: 10.1006/jmbi.1994.1462. [DOI] [PubMed] [Google Scholar]
- Davidson B. E. Chorismate mutase-prephenate dehydratase from Escherichia coli. Methods Enzymol. 1987;142:432–439. doi: 10.1016/s0076-6879(87)42054-5. [DOI] [PubMed] [Google Scholar]
- Eberhard J., Raesecke H. R., Schmid J., Amrhein N. Cloning and expression in yeast of a higher plant chorismate mutase. Molecular cloning, sequencing of the cDNA and characterization of the Arabidopsis thaliana enzyme expressed in yeast. FEBS Lett. 1993 Nov 15;334(2):233–236. doi: 10.1016/0014-5793(93)81718-f. [DOI] [PubMed] [Google Scholar]
- Gray J. V., Knowles J. R. Monofunctional chorismate mutase from Bacillus subtilis: FTIR studies and the mechanism of action of the enzyme. Biochemistry. 1994 Aug 23;33(33):9953–9959. doi: 10.1021/bi00199a018. [DOI] [PubMed] [Google Scholar]
- Hilvert D., Carpenter S. H., Nared K. D., Auditor M. T. Catalysis of concerted reactions by antibodies: the Claisen rearrangement. Proc Natl Acad Sci U S A. 1988 Jul;85(14):4953–4955. doi: 10.1073/pnas.85.14.4953. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jones T. A., Zou J. Y., Cowan S. W., Kjeldgaard M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr A. 1991 Mar 1;47(Pt 2):110–119. doi: 10.1107/s0108767390010224. [DOI] [PubMed] [Google Scholar]
- Lee A. Y., Stewart J. D., Clardy J., Ganem B. New insight into the catalytic mechanism of chorismate mutases from structural studies. Chem Biol. 1995 Apr;2(4):195–203. doi: 10.1016/1074-5521(95)90269-4. [DOI] [PubMed] [Google Scholar]
- Schmidheini T., Mösch H. U., Evans J. N., Braus G. Yeast allosteric chorismate mutase is locked in the activated state by a single amino acid substitution. Biochemistry. 1990 Apr 17;29(15):3660–3668. doi: 10.1021/bi00467a011. [DOI] [PubMed] [Google Scholar]
- Turnbull J., Cleland W. W., Morrison J. F. pH dependency of the reactions catalyzed by chorismate mutase-prephenate dehydrogenase from Escherichia coli. Biochemistry. 1991 Aug 6;30(31):7777–7782. doi: 10.1021/bi00245a016. [DOI] [PubMed] [Google Scholar]
- Xue Y., Lipscomb W. N., Graf R., Schnappauf G., Braus G. The crystal structure of allosteric chorismate mutase at 2.2-A resolution. Proc Natl Acad Sci U S A. 1994 Nov 8;91(23):10814–10818. doi: 10.1073/pnas.91.23.10814. [DOI] [PMC free article] [PubMed] [Google Scholar]