Skip to main content
Frontiers in Physiology logoLink to Frontiers in Physiology
. 2014 Jun 24;5:228. doi: 10.3389/fphys.2014.00228

Vitamin D and adipose tissue—more than storage

Shivaprakash J Mutt 1,2,*, Elina Hyppönen 3,4,5, Juha Saarnio 6, Marjo-Riitta Järvelin 2,7,8,9, Karl-Heinz Herzig 1,2,10,*
PMCID: PMC4067728  PMID: 25009502

Abstract

The pandemic increase in obesity is inversely associated with vitamin D levels. While a higher BMI was causally related to lower 25-hydroxyvitamin D (25(OH)D), no evidence was obtained for a BMI lowering effect by higher 25(OH)D. Some of the physiological functions of 1,25(OH)2D3 (1,25-dihydroxycholecalciferol or calcitriol) via its receptor within the adipose tissue have been investigated such as its effect on energy balance, adipogenesis, adipokine, and cytokine secretion. Adipose tissue inflammation has been recognized as the key component of metabolic disorders, e.g., in the metabolic syndrome. The adipose organ secretes more than 260 different proteins/peptides. However, the molecular basis of the interactions of 1,25(OH)2D3, vitamin D binding proteins (VDBPs) and nuclear vitamin D receptor (VDR) after sequestration in adipose tissue and their regulations are still unclear. 1,25(OH)2D3 and its inactive metabolites are known to inhibit the formation of adipocytes in mouse 3T3-L1 cell line. In humans, 1,25(OH)2D3 promotes preadipocyte differentiation under cell culture conditions. Further evidence of its important functions is given by VDR knock out (VDR−/−) and CYP27B1 knock out (CYP27B1 −/−) mouse models: Both VDR−/− and CYP27B1−/− models are highly resistant to the diet induced weight gain, while the specific overexpression of human VDR in adipose tissue leads to increased adipose tissue mass. The analysis of microarray datasets from human adipocytes treated with macrophage-secreted products up-regulated VDR and CYP27B1 genes indicating the capacity of adipocytes to even produce active 1,25(OH)2D3. Experimental studies demonstrate that 1,25(OH)2D3 has an active role in adipose tissue by modulating inflammation, adipogenesis and adipocyte secretion. Yet, further in vivo studies are needed to address the effects and the effective dosages of vitamin D in human adipose tissue and its relevance in the associated diseases.

Keywords: 1,25-dihydroxycholecalciferol or calcitriol; vitamin D binding protein; gene regulation; adipose tissue; adipogenesis; secretion; adipokines

Introduction

Adipose tissue is no longer regarded as a simple storage organ since it has been convincingly shown that it secretes more than 260 different proteins/peptides (Lehr et al., 2012). Lean people have about 5 kg of adipose tissue, while in obese and severely obese individuals the adipose tissue/organ could amount to 50 kg or more (Frankenfield et al., 2001). Excess in adipose tissue has been attributed to a variety of diseases including cancer, diabetes, cardiovascular and neurodegenerative diseases and decrease in life expectancy (Adams et al., 2006; Despres and Lemieux, 2006; Kahn et al., 2006; Van Gaal et al., 2006). Adiposity is one of the most serious public health problems, associated with vitamin D insufficiency due to the decreased bioavailability of vitamin D3 (Wortsman et al., 2000). The Institute of Medicine (IOM) recommended 25-hydroxyvitamin D (25(OH)D) levels as reliable biomarker for assessment of Vitamin D status; currently values ≤50 nmol/l or ≤20 ng/ml are considered inadequate or not sufficient and values ≥50 nmol/l or ≥20 ng/ml as adequate or sufficient (Ross et al., 2011) (Figure 1). 25(OH)D levels have been determined by a variety of methods yielding different results. The National Institutes of Health’s Office of Dietary Supplements together with National Institute of Standards and Technology (NIST) therefore developed a standard reference material-972 (SRM-972) for accuracy of laboratory vitamin D measurements (Phinney et al., 2012). A recent study by the D-CarDia consortium employed a Mendelian randomization (MR) approach to establish causality and direction of the association between vitamin D status and obesity measured by body mass index (BMI) using information from 21 adult cohorts (up to 42,024 participants) (Vimaleswaran et al., 2013). The consortium found that a higher BMI was causally related to lower 25(OH)D; no evidence was obtained for a BMI lowering effect of higher 25(OH)D. However, the study did not provide insights into the cellular action of 1,25(OH)2D3 (1,25-dihydroxycholecalciferol or calcitriol). While the knowledge of the effects of 1,25(OH)2D3 as an essential hormone and transcription factor is further emerging, it is increasingly acknowledged that 1,25(OH)2D3 down regulates inflammatory responses in the adipose tissue. The anti-inflammatory effects of 1,25(OH)2D3 might have notable influences on population health and disease prevention, since inflammation is thought to be the underlying cause of a range of metabolic disorders (Hotamisligil, 2006; Huotari and Herzig, 2008; Vlasova et al., 2010).

Figure 1.

Figure 1

Effect of 1,25(OH)2D3 on adipose tissue/lean and obese state. *Vitamin D levels (25(OH)D) according to the Institute of Medicine, Food and Nutrition Board. Dietary Reference Intakes for Calcium and Vitamin D. Washington, DC: National Academy Press, 2011.

Vitamin D and adipogenesis

Adipose tissue expansion is a remarkable process characterized by the enlargement of adipocyte size known as hypertrophy and by the increase in the number of adipocytes known as hyperplasia, which is more strongly associated with severity of obesity (Arner and Spalding, 2010). Both processes emerge through sequential stages of differentiation to form mature adipocytes; this process is called adipogenesis. Mesodermal cells are influenced by various signals like bone morphogenetic proteins (BMPs), fibroblast growth factors (FGFs), transforming-growth factor β (TGFβ) and insulin like growth factor 1 (IGF1) to form preadipocytes (Lowe et al., 2011). Furthermore, preadipocytes undergo differentiation to mature adipocytes by several intracellular signaling molecules (Figure 2) including janus kinase-signal transducer and activator of transcription 3 (JAK-STAT3) (Zhang et al., 2011), glutathione (Vigilanza et al., 2011), SMAD proteins (Jin et al., 2006) and ribosomal protein S6 kinase 1 (S6K1) (Carnevalli et al., 2010) affecting adipogenic transcription factors. In preadipocytes, differentiation factors need to be released from their suppressive signaling molecules such as members of wingless (WNT) family (Ross et al., 2000), protein of the retinoblastoma (Rb) family (Scime et al., 2005), preadipocyte factor 1 (Pref1) (Smas and Sul, 1993) and Necdin, member of the melanoma-associated antigen family of proteins (Fujiwara et al., 2012) to undergo differentiation. The terminal differentiation to mature adipocytes is regulated by a number of transcriptional factors including early key regulator CAAT/enhancer binding proteins (C/EBPβ followed by C/EBPα, C/EBPδ), the master regulator PPARγ and sterol regulatory binding protein 1 (SREBP1) (Payne et al., 2009; White and Stephens, 2010). These transcriptional factors induce expression of various genes related to lipogenesis, lipolysis and insulin sensitivity including fatty acid binding protein (FABP4), lipoprotein lipase (LPL), glucose transporter (GLUT4) and fatty acid synthase (FASN) (Lefterova et al., 2008; Nielsen et al., 2008; Madsen et al., 2014).

Figure 2.

Figure 2

Overview of 1,25(OH)2D3 on regulating factors in adipogenesis. 1,25(OH)2D3 has both stimulating and inhibition effect on adipogenesis. 1,25(OH)2D3 suppress dickkopf1(DKK1) and secreted frizzled-related protein 2 (SFRP2) expression in mouse bone marrow stromal cells (BMSCs) there by suppressing adipogenic peroxisome proliferator-activated receptor γ/retinoid X receptor complex (PPARγ/RXRα) mediated by stabilization of β-catenin through wingless-type MMTV integration site family, member 10 (WNT10) inhibition. Furthermore, 1,25(OH)2D3 regulates several adipogenic mediators during differentiation, proliferation and maturation of mesodermal cells into adipocytes including CCAAT/enhancer-binding proteins α, β, and γ (C/EBPα, β, and γ), C/EBPβ corepressor eight twenty-one (ETO), PPARγ/RXRα, fatty acid binding protein 4 (FABP4), lipoprotein lipase (LPL), fatty acid synthase (FASN), stearoyl-coA desaturase-1 (SCD1), glucose transporter type 4 (GLUT4) and phosphoenolpyruvate carboxykinase (PEPCK). The arrows in the figure indicate activation and blunted line indicate inhibition. The red lines and (+/−) indicate stimulatory or inhibitory effect of 1,25(OH)2D3 on adipogenesis dependent on the species or cellular systems studied.

Investigations of the molecular regulation of 1,25(OH)2D3 on adipogenesis have been conducted in vitro. In mouse 3T3-L1 preadipocytes, 1,25(OH)2D3 inhibits adipogenesis by acting on multiple targets suppressing C/EBPα and PPARγ expression, specifically antagonizing the transacting activity of PPARγ, and sequestering the nuclear receptor retinoic X receptor (RXR), a member nuclear receptor superfamily and down regulating both C/EBP β mRNA expression and C/EBP β nuclear protein levels (Kong and Li, 2006) (Figure 2). 1,25(OH)2D3 stimulates expression of the C/EBP β corepressor, eight twenty-one (ETO), and thus further inhibits the action of any remaining C/EBP β transcriptional effects required for adipogenesis (Blumberg et al., 2006).

Although early studies have established an inhibitory action of 1,25(OH)2D3 in 3T3-L1 preadipocytes differentiation, recently, a more specific effect of 1,25(OH)2D3 on WNT signaling emerged. WNT/β-catenin maintain preadipocytes in their undifferentiated state and thus preventing adipogenesis (Ross et al., 2000). The anti-adipogenic effect of 1,25(OH)2D3 is mediated by maintenance of WNT10B and nuclear β-catenin levels expression levels in 3T3-L1 preadipocytes, thereby suppressing transcription factor PPARγ (Lee et al., 2012). In addition, 1,25(OH)2D3 also inhibited mouse bone marrow stromal cells(BMSCs) differentiation into adipocytes by suppression of dickkopf1 (DKK1) and secreted frizzled-related protein 2 (SFRP2) expression levels via VDR mediated WNT signaling (Cianferotti and Demay, 2007).

In contrast, 1,25(OH)2D3 treatment of porcine mesenchymal stem cells (MSCs) stimulated both proliferation and differentiation in a dose dependent manner toward adipocytic phenotype by increasing PPARγ, LPL and adipocyte-binding protein 2 (AP2) mRNA levels (Mahajan and Stahl, 2009). In human tissue, 1,25(OH)2D3 promotes differentiation of already committed subcutaneous preadipocytes through increased expression of adipogenic markers FABP4 and LPL (Nimitphong et al., 2012). Narvaez et al. (2013) demonstrated that mesenchymal cells differentiate in the presence of 1,25(OH)2D3 toward adipocytes with an enhanced lipid accumulation and increased expression of adipogenic marker genes (FASN, FABP4, and PPARγ).

In conclusion, 1,25(OH)2D3 regulates adipogenesis at various levels of the entire differentiation process (Figure 2). However, there are significant differences summarized in Table 1; the reasons for these differences are not clear at the moment—methodological differences as well as physiological roles of the adipose tissue in different species in their environments might affect these processes. Further studies are needed to address the effects of vitamin D in adipose tissue and its relevance in the associated diseases.

Table 1.

Effect of 1,25(OH)2D3 on adipogenesis in different species.

Species and cell type Effect on adipogenesis References
MOUSE
3T3-L1 preadipocytes Inhibition Blumberg et al., 2006; Kong and Li, 2006; Lee et al., 2012
    - VDR and RXR mediated suppression of C/EBPα, PPARγ & C/EBPβ (increased C/EBPβ corepressor ETO)
    - Through maintenance of WNT10B and β-catenin levels
Primary preadipocytes Promotion Nimitphong et al., 2012
    - Increasing FABP4, adiponectin and PPARγ
Mouse bone marrow stromal cells(BMSCs) Inhibition Cianferotti and Demay, 2007
    - Suppression of DKK1 and SFRP2 (WNT suppressors)
PORCINE
Porcine preadipocytes Inhibition Zhuang et al., 2007
    - Inhibition of PPARγ & RXR, down regulated LPL, PEPCK, GPDH, SCD1 & GLUT4
Porcine mesenchymal stem cells (MSCs) Promotion Mahajan and Stahl, 2009
    - Increased adipogenic markers (PPARγ, LPL AP2)
HUMAN
Subcutaneous preadipocytes Promotion Nimitphong et al., 2012
    - Increasing expression (FABP4 & LPL)
Mesenchymal progenitor cells from human adipose tissue Promotion Narvaez et al., 2013
    - Increase of adipogenic marker genes (FASN, FABP & PPARγ)

Vitamin D and adipose tissue inflammation

In obesity, adipose tissue undergoes hypertrophic enlargement, which results in an imbalanced blood flow leading to hypoxia, inflammation and macrophage infiltration (Goossens, 2008; Trayhurn, 2013). The hypertrophied adipocytes are characterized by a reduced secretion of adiponectin and increased secretion of several proinflammatory cytokines such as interleukin IL-6, IL-8, TNF-α, resistin and MCP1 (Wellen and Hotamisligil, 2003; Maury and Brichard, 2010; Vlasova et al., 2010).

1,25(OH)2D3 acts at several levels to modulate the function of the immune system (Lemire, 2000). Several in vitro studies in the mouse 3T3-L1 cell line and human adipocytes have demonstrated that 1,25(OH)2D3 inhibits chronic inflammation in adipose tissue (Table 2). However, earlier studies performed in 3T3-L1 and human adipocytes demonstrate contradictory results favoring inflammatory cytokine expression (Sun and Zemel, 2008); the reasons for the contradictory findings are unclear. Recent evidence focuses on the involvement of 1,25(OH)2D3 in the regulation of adipose tissue inflammation by reducing the proinflammatory cytokines secreted from adipose tissue.

Table 2.

1,25(OH)2D3 and inflammation.

Cell type 1,25(OH)2D3 Mechanism of action References
Mouse 3T3-L1 and human adipocytes (differentiated from subcutaneous preadipocytes) Increased IL-6 & TNFα in mouse 3T3-L1 Sun and Zemel, 2007
Increased IL -6 and IL -8 in human adipocytes
Mouse 3T3-L1 and human adipocytes (differentiated from subcutaneous preadipocytes) Increased CD14, MIF, M-CSF, MIP, TNFα, IL -6, and MCP-1 Sun and Zemel, 2008
Human adipocytes (differentiated from subcutaneous preadipocytes) Regulated nearly 140 genes favoring inflammation and oxidative stress Sun et al., 2008
Mouse 3T3-L1 and Swiss mice on HFD supplemented with 1,25(OH)2D3 Reduction of IL -6 in both cell culture medium and tissue EFP Lira et al., 2011
Preadipocytes isolated from human subcutaneous WAT Reduction in MCP-1 and adiponectin Lorente-Cebrian et al., 2012
Bone marrow-derived human mesenchymal stem cells and mature adipocytes from subcutaneous adipose tissue Reduction in IL -6 and inhibited NF-κB nuclear translocation Mutt et al., 2012
Mouse 3T3-L1 and human preadipocytes Decreased IL -6, MCP-1, IL -1β and inactivation of NF-κB by inducing IκBα, decreased p38 phosphorylation Marcotorchino et al., 2012
Human subcutaneous adipose tissue fragments Reduction in MCP-1, IL -6, and IL -8. Wamberg et al., 2013
Human preadipocytes Reduction in MCP-1, IL -8 and IL -6 and inactivation of NF-κB by upregulation of IκBα Gao et al., 2013
Human preadipocytes differentiated to mature adipocytes Reduction in MCP1, IL -8, RANTES, IL -6 and IL -1β Ding et al., 2013a,b
Increased IκBα levels and reduced NF-κB p65 phosphorylation results in inhibition of NF-κB
Decreased phosphorylated p38 MAPK

In differentiated adipocytes from human subcutaneous white adipose tissue 1,25(OH)2D3 attenuates TNF-α induced MCP-1 secretion, while it inhibited secretion of adiponectin without affecting its mRNA levels (Lorente-Cebrian et al., 2012). In human subcutaneous adipose tissue fragments 1,25(OH)2D3 reduced IL-1β induced expression of the inflammatory genes MCP-1, IL-6 and IL-8. However, results from the cell culture experiments have not been consistent with the in vivo findings. In a randomized controlled trial including fifty-five obese subjects, oral supplementation of vitamin D 7000 IU per day over 26 weeks did neither affect inflammation markers in the circulation nor in the adipose tissue (Wamberg et al., 2013). In mice on high fat diet, dietary supplementation of 1,25(OH)2D3 (0.05 mg/kg of diet) reduced their IL-6 protein content in epididymal adipose tissue and in the 3T3-L1 cell line stimulated by LPS (Lira et al., 2011).

Signal transduction of inflammatory pathways in adipose tissue involves activation of NF-κB and translocation of p65 to nucleus mediated by degradation of IκBα (Tourniaire et al., 2013). Mutt et al. (2012) have demonstrated that, 1,25(OH)2D3 suppressed LPS-stimulated IL-6 secretion in human isolated mature and MSC differentiated adipocytes. This was confirmed by Marcotorchino et al. (2012), who demonstrated that 1,25(OH)2D3 inhibits the inflammatory markers in both mouse and human adipocytes via the involvement of p38 MAP kinase and NF-κB classical inflammatory pathway and later by Gao et al. (2013) and Ding et al. (2013a).

In summary, the presence of 1,25(OH)2D3 inhibited chemokine and cytokine secretion in human adipocytes. 1,25(OH)2D3 strongly inhibited the activation of the NF-κB and MAPK signaling pathways, which prevent gene transcription of the proinflammatory factors (Figure 3). 1,25(OH)2D3 has been shown by different groups in different models to significantly reduce inflammation in the adipose tissue. However, further studies are needed to provide more evidence for the physiological relevance and the concentration levels of active 1,25(OH)2D3 in lean and obese subjects required to ameliorate the inflammation and associated complications.

Figure 3.

Figure 3

Molecular actions of 1,25(OH)2D3 in inflammation and energy homeostasis in adipocytes. Stimulation via e.g., lipopolysaccharide (LPS), TNF-α via specific receptors e.g., Toll like receptor (TLR), IL-6 receptors (IL-6R) activate Nuclear factor kappa-B (NFκB) or p38 mitogen-activated protein kinase (P38MAPK) signaling dependent transcription of inflammatory genes such as interleukin 6 (IL-6), tumor necrosis factor alpha (TNF-α) and interleukin 1 beta (IL-1β). 1,25(OH)2D3 inhibits inflammation by inhibiting Inhibitor kappa-B (IκBα) phosphorylation and translocation of NFκB as well P38MAPK into the nucleus. Furthermore, 1,25(OH)2D3 affects energy homeostasis. VDR−/− mice increases energy expenditure through uncoupling proteins (UCPs). The arrows in the figure indicate activation and blunted line indicate inhibition. The red lines and arrows indicate the effect of 1,25(OH)2D3 on inflammatory signaling pathway.

Vitamin D and adipose tissue energy homeostasis

The discovery of VDR expression in adipocytes was the cornerstone for the investigations of the effect of vitamin D on adipose tissue beyond its role in bone metabolism (Stumpf, 1995; Ding et al., 2012). Recent findings in genetically modified mouse models highlighted a new role for vitamin D and its receptor VDR in adipose tissue energy homeostasis. VDR knockout (VDR−/−) mice had reduced body weight and lower serum leptin concentrations, despite of an increased compensatory food intake compared to wild type mice of different genetic background C57BL6 and CD1. VDR−/− mice were highly resistant to high fat diet induced weight gain (Narvaez et al., 2009). In addition, these mice are characterized by a relatively short lifespan, alopecia, osteoporosis, ectopic calcification, progressive loss of hearing and balance (Keisala et al., 2009; Tuohimaa, 2009). Mice lacking CYP27B1 [the (25(OH)D)-1α-hydroxylase enzyme, converts 25(OH)D3 in to 1,25(OH)2D3], displayed features similar to VDR−/− with reduced body weight, hypoleptinemia and hyperphagia. Interestingly, uncoupling protein 1 (UCP-1) expression in white adipose tissue of the VDR−/− mice was increased 25-fold.

In addition to reduced body weight, VDR−/− mice had less body fat and lower levels of plasma triglycerides and cholesterol in comparison to the wild type counterparts even though mice were challenged with a high fat diet (Wong et al., 2009; Weber and Erben, 2013). The depletion of adipose tissue in younger VDR−/− mice progresses with aging and resulted in severe mammary adipose tissue atrophy, along with the increased respiration and energy expenditure (Welsh et al., 2011). The effect on plasma lipid profile and unaltered food intake in these mice was confirmed by an increased β-oxidation rate in isolated adipocytes mediated by the induction of carnitine palmitoyltransferase II (CPTII) (Figure 3). VDR−/− mice had an increased basal metabolism demonstrated by the total energy expenditure, oxygen consumption and CO2 production in comparison with the wild type mice (Wong et al., 2009). In addition, UCP1, UCP2, and UCP3 mRNAs were upregulated in brown adipose tissue of the VDR−/− mice fed high fat diet. In contrast to VDR knock out models with the ablation of the receptor in the whole animal, adipose tissue specific overexpression of human VDR via the adipocyte fatty acid binding protein (aP2) promoter/enhancer element resulted in a decreased energy expenditure and oxygen consumption and thus the mice had an increased body weight and fat mass (Wong et al., 2011).

In conclusion, these transgenic animal models indicate a critical and complex role for 1,25(OH)2D3 and VDR signaling in energy homeostasis. However, notwithstanding the cell and mouse studies, further studies need to explore the role of vitamin D on human adipose tissue metabolism in vivo.

Genetic view on the actions of VDR in adipocytes: integration with other tissues

The VDR genomic interactions in different types of cells and tissues have been mapped by in vitro experiments where target cells (primary or secondary) have been treated with 1,25(OH)2D3. Upon stimulation of VDR by its ligand, it forms a heterodimer with RXR and subsequently binds to the vitamin D response elements (VDREs) within the regulatory regions of target genes. The abundance of VDR binding sites and the regulation of changes in gene expressions are analyzed using array technology and the combination of chromatin immunoprecipitation (ChIP) with massive parallel sequencing (ChIP-seq). These advanced techniques have provided novel mechanistic insights of 1,25(OH)2D3 action via VDR in the regulation of cellular metabolism and disease states. However, studies on genome-wide actions of VDR in adipocytes are sparse.

Recent microarray studies of human adipocytes and preadipocytes incubated with macrophage-conditioned medium derived from U937 monocytes, confirmed the induction of genes associated with the metabolism and action of 1,25(OH)2D3, including CYP27B1 and VDR (Trayhurn et al., 2011). An earlier single microarray study in human subcutaneous adipose tissue derived preadipocytes differentiated to adipocytes demonstrated 237 1,25(OH)2D3 responsive genes (cell proliferation, angiogenesis, cell cycle, inflammation and response to oxidative stress) (Sun et al., 2008).

Most recent studies in the other cell types such as monocytes, primary CD4+ T-lymphocytes, adenocarcinoma, hepatic stellate and lymphoblastoid cell lines (LCLs) (Ramagopalan et al., 2010; Heikkinen et al., 2011; Meyer et al., 2012; Ding et al., 2013b; Handel et al., 2013; Tuoresmäki et al., 2014) contribute to a systemic understanding of 1,25(OH)2D3 induced gene regulation. Depending on the cell type, concentration and length of 1,25(OH)2D3 incubation approximately 2000 VDR genomic binding sites have been found in these studies. Yet, alterations in DNA accessibility in cell lines after short-term stimulation with 1,25(OH)2D3 may not reflect the physiological 1,25(OH)2D3 levels in vivo due to the different tissue environment and sympathetic influence. In primary CD4+ lymphocyte cells, isolated from nine healthy individuals with measured serum 25(OH)D levels, VDR binding sites ranged from 200 to 7118 across the genome and the corresponding 25(OH)D levels directly correlated with the number of VDR binding sites, suggesting far greater number of VDR binding sites in 1,25(OH)2D3 sufficient than the insufficient subjects (Handel et al., 2013).

Genome-wide VDR cistromes are not available in adipocytes, but recent VDR binding sites in other cell types has been mapped with ChIP-seq from both upstream and downstream of the transcription start site. Further genome wide view actions of VDR in adipocytes as well as integration of other tissue specific cell types are warranted.

Conclusion and future directions

Adipose tissue acts in addition to nutrient storage as an active endocrine organ. In the obese state, sub-clinical inflammation increases the risk of a variety of chronic diseases. Vitamin D deficiency is common in overweight and obese individuals, and it is possible that lower circulating concentrations may contribute to increases in metabolic risk. A genome-wide association study of 25(OH)D concentrations in 33996 individuals of European descent from 15 cohorts found variants near genes involved in cholesterol synthesis, hydroxylation, and vitamin D transport affect vitamin D status (Wang et al., 2010). Genetic variation at these loci identifies individuals who have a substantially increased risk of vitamin D insufficiency.

On the cellular level, 1,25(OH)2D3 has a significant role in adipogenesis and inflammation which might be species dependent. Holick et al. (1989) demonstrated that the peak circulating concentrations of 25(OH)D in the elderly are about 30% of that of the young. These findings suggest that there will be significant challenges in the translation of the finding from models and non-human primates to the targeted human populations (healthy, diseased, black, white, age, BMI, geographical latitude, race). More evidence accumulates that one dose does not fit all (Powe et al., 2014). Powe and colleagues evaluated vitamin D binding proteins (VDBP) and 25(OH)D levels in black and white Americans. Black adult Americans had low 25(OH)D levels and with the threshold of 20 or 30 ng/ml, 77–96% of them would be classified as vitamin D deficient. Surprisingly, the black study participants had higher bone mineral density, higher calcium levels and only slightly higher parathyroid levels than the white study participants due to VDBP gene polymorphisms (rs7041 and rs4588). The authors speculated that the low levels of VDBP might protect against the adverse effects of vitamin D deficiency. Sufficient levels of this essential hormone and the development of potent novel vitamin D receptor analogs (Peräkylä et al., 2005; Leyssens et al., 2014), which could be easily and cheaply substituted, are beneficial in the maintenance of health and prevention of a number of diseases associated with vitamin D deficiency. Recent systemic review and meta-analysis summary of observational studies and randomized interventions investigated the association between the circulating 25(OH)D concentrations and cause specific mortality in 900,000 subjects in 26 countries (Chowdhury et al., 2014). There was an inverse association of mortality risk and vitamin D levels, yet the observed association could be direct [suboptimal 25(OH)D concentrations] or indirect through higher BMI or disadvantageous social circumstances. Thus, prospective intervention studies are needed to establish potential causal associations between vitamin D levels and disease outcomes.

Conflict of interest statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Acknowledgments

This work was support in part by the grants from the Finnish Academy project 139900, Finnish Cultural Foundation, North Ostrobothnia Regional fund.

Glossary

Abbreviations

25(OH)D

25-hydroxyvitamin D

1,25(OH)2D3

1,25-dihydroxycholecalciferol

VDBPs

Vitamin D binding proteins

VDR

Vitamin D receptor

DKK1

dickkopf 1

SFRP2

Frizzled-related protein 2

BMSCs

bone marrow stromal cells

PPARγ

peroxisome proliferator-activated receptor gamma

RXRα

retinoid X receptor alpha

WNT10

wingless-type MMTV integration site family member 10

C/EBP (α, β, and γ)

CCAAT/enhancer-binding proteins (α, β, and γ)

ETO

C/EBPβ corepressor eight twenty-one

FABP4

fatty acid binding protein 4

LPL

lipoprotein lipase

FASN

fatty acid synthase

SCD1

stearoyl-coA desaturase 1

GLUT4

glucose transporter type 4

PEPCK

phosphoenolpyruvate carboxykinase

LPS

lipopolysaccharide

TLR

toll like receptor

IL-6R

IL-6 receptors

NFκB

nuclear factor kappa-B

P38MAPK

p38 mitogen-activated protein kinase

IL-6

interleukin 6

TNF-α

tumor necrosis factor alpha

IL-1β

interleukin 1 beta

IκBα

inhibitor kappa-B

UCPs

uncoupling proteins

VDR −/−

VDR knock out

CYP27B1−/−

CYP27B1 knock out

BMI

Body mass index

BMPs

bone morphogenetic proteins

FGFs

fibroblast growth factors

TGFβ

transforming-growth factor β

IGF1

insulin like growth factor 1

JAK-STAT3

janus kinase-signal transducer and activator of transcription 3

S6K1

ribosomal protein S6 kinase 1

WNT

wingless family

Rb

protein of retinoblastoma family

Pref1

preadipocyte factor 1

Necdin

melanoma-associated antigen family of proteins member

SREBP1

sterol regulatory binding protein 1

MSCs

mesenchymal stem cells

AP2

adipocyte-binding protein 2

MCP1

monocyte chemoattractant protein 1

CYP27B1

(25(OH)D)-1α-hydroxylase

CPTII

carnitine palmitoyltransferase II

WAT

White adipose tissue

VDREs

vitamin D response elements

ChIP-seq

chromatin immunoprecipitation—sequencing

LCLs

lymphoblastoid cell lines

References

  1. Adams K. F., Schatzkin A., Harris T. B., Kipnis V., Mouw T., Ballard-Barbash R., et al. (2006). Overweight, obesity, and mortality in a large prospective cohort of persons 50 to 71 years old. N. Engl. J. Med. 355, 763–778 10.1056/NEJMoa055643 [DOI] [PubMed] [Google Scholar]
  2. Arner P., Spalding K. L. (2010). Fat cell turnover in humans. Biochem. Biophys. Res. Commun. 396, 101–104 10.1016/j.bbrc.2010.02.165 [DOI] [PubMed] [Google Scholar]
  3. Blumberg J. M., Tzameli I., Astapova I., Lam F. S., Flier J. S., Hollenberg A. N. (2006). Complex role of the vitamin D receptor and its ligand in adipogenesis in 3T3-L1 cells. J. Biol. Chem. 281, 11205–11213 10.1074/jbc.M510343200 [DOI] [PubMed] [Google Scholar]
  4. Carnevalli L. S., Masuda K., Frigerio F., Le Bacquer O., Um S. H., Gandin V., et al. (2010). S6K1 plays a critical role in early adipocyte differentiation. Dev. Cell. 18, 763–774 10.1016/j.devcel.2010.02.018 [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Chowdhury R., Kunutsor S., Vitezova A., Oliver-Williams C., Chowdhury S., Kiefte-de-Jong J. C., et al. (2014). Vitamin D and risk of cause specific death: systematic review and meta-analysis of observational cohort and randomised intervention studies. BMJ 348:g1903 10.1136/bmj.g1903. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cianferotti L., Demay M. B. (2007). VDR-mediated inhibition of DKK1 and SFRP2 suppresses adipogenic differentiation of murine bone marrow stromal cells. J. Cell. Biochem. 101, 80–88 10.1002/jcb.21151 [DOI] [PubMed] [Google Scholar]
  7. Despres J. P., Lemieux I. (2006). Abdominal obesity and metabolic syndrome. Nature 444, 881–887 10.1038/nature05488 [DOI] [PubMed] [Google Scholar]
  8. Ding C., Gao D., Wilding J., Trayhurn P., Bing C. (2012). Vitamin D signalling in adipose tissue. Br. J. Nutr. 108, 1915–1923 10.1017/S0007114512003285 [DOI] [PubMed] [Google Scholar]
  9. Ding C., Wilding J. P., Bing C. (2013a). 1,25-dihydroxyvitamin D3 protects against macrophage-induced activation of NFkappaB and MAPK signalling and chemokine release in human adipocytes. PLoS ONE 8:e61707 10.1371/journal.pone.0061707 [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Ding N., Yu R. T., Subramaniam N., Sherman M. H., Wilson C., Rao R., et al. (2013b). A vitamin D receptor/SMAD genomic circuit gates hepatic fibrotic response. Cell 153, 601–613 10.1016/j.cell.2013.03.028 [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Frankenfield D. C., Rowe W. A., Cooney R. N., Smith J. S., Becker D. (2001). Limits of body mass index to detect obesity and predict body composition. Nutrition 17, 26–30 10.1016/S0899-9007(00)00471-8 [DOI] [PubMed] [Google Scholar]
  12. Fujiwara K., Hasegawa K., Ohkumo T., Miyoshi H., Tseng Y. H., Yoshikawa K. (2012). Necdin controls proliferation of white adipocyte progenitor cells. PLoS ONE 7:e30948 10.1371/journal.pone.0030948 [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Gao D., Trayhurn P., Bing C. (2013). 1,25-Dihydroxyvitamin D3 inhibits the cytokine-induced secretion of MCP-1 and reduces monocyte recruitment by human preadipocytes. Int. J. Obes. (Lond) 37, 357–365 10.1038/ijo.2012.53 [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Goossens G. H. (2008). The role of adipose tissue dysfunction in the pathogenesis of obesity-related insulin resistance. Physiol. Behav. 94, 206–218 10.1016/j.physbeh.2007.10.010 [DOI] [PubMed] [Google Scholar]
  15. Handel A. E., Sandve G. K., Disanto G., Berlanga-Taylor A. J., Gallone G., Hanwell H., et al. (2013). Vitamin D receptor ChIP-seq in primary CD4+ cells: relationship to serum 25-hydroxyvitamin D levels and autoimmune disease. BMC Med. 11:163 10.1186/1741-7015-11-163 [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Heikkinen S., Vaisanen S., Pehkonen P., Seuter S., Benes V., Carlberg C. (2011). Nuclear hormone 1alpha,25-dihydroxyvitamin D3 elicits a genome-wide shift in the locations of VDR chromatin occupancy. Nucleic Acids Res. 39, 9181–9193 10.1093/nar/gkr654 [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Holick M. F., Matsuoka L. Y., Wortsman J. (1989). Age, vitamin D, and solar ultraviolet. Lancet 2, 1104–1105 10.1016/S0140-6736(89)91124-0 [DOI] [PubMed] [Google Scholar]
  18. Hotamisligil G. S. (2006). Inflammation and metabolic disorders. Nature 444, 860–867 10.1038/nature05485 [DOI] [PubMed] [Google Scholar]
  19. Huotari A., Herzig K. H. (2008). Vitamin D and living in northern latitudes–an endemic risk area for vitamin D deficiency. Int. J. Circumpolar Health 67, 164–178 10.3402/ijch.v67i2-3.18258 [DOI] [PubMed] [Google Scholar]
  20. Jin W., Takagi T., Kanesashi S. N., Kurahashi T., Nomura T., Harada J., et al. (2006). Schnurri-2 controls BMP-dependent adipogenesis via interaction with Smad proteins. Dev. Cell. 10, 461–471 10.1016/j.devcel.2006.02.016 [DOI] [PubMed] [Google Scholar]
  21. Kahn S. E., Hull R. L., Utzschneider K. M. (2006). Mechanisms linking obesity to insulin resistance and type 2 diabetes. Nature 444, 840–846 10.1038/nature05482 [DOI] [PubMed] [Google Scholar]
  22. Keisala T., Minasyan A., Lou Y. R., Zou J., Kalueff A. V., Pyykkö I., et al. (2009). Premature aging in vitamin D receptor mutant mice. J. Steroid Biochem. Mol. Biol. 115, 91–97 10.1016/j.jsbmb.2009.03.007 [DOI] [PubMed] [Google Scholar]
  23. Kong J., Li Y. C. (2006). Molecular mechanism of 1,25-dihydroxyvitamin D3 inhibition of adipogenesis in 3T3-L1 cells. Am. J. Physiol. Endocrinol. Metab. 290, E916–E924 10.1152/ajpendo.00410.2005 [DOI] [PubMed] [Google Scholar]
  24. Lee H., Bae S., Yoon Y. (2012). Anti-adipogenic effects of 1,25-dihydroxyvitamin D3 are mediated by the maintenance of the wingless-type MMTV integration site/beta-catenin pathway. Int. J. Mol. Med. 30, 1219–1224 10.3892/ijmm.2012.1101 [DOI] [PubMed] [Google Scholar]
  25. Lefterova M. I., Zhang Y., Steger D. J., Schupp M., Schug J., Cristancho A., et al. (2008). PPARgamma and C/EBP factors orchestrate adipocyte biology via adjacent binding on a genome-wide scale. Genes Dev. 22, 2941–2952 10.1101/gad.1709008 [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Lehr S., Hartwig S., Lamers D., Famulla S., Muller S., Hanisch F. G., et al. (2012). Identification and validation of novel adipokines released from primary human adipocytes. Mol. Cell. Proteomics 11:M111.010504 10.1074/mcp.M111.010504 [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Lemire J. (2000). 1,25-Dihydroxyvitamin D3–a hormone with immunomodulatory properties. Z. Rheumatol. 59, 24–27 10.1007/s003930070034 [DOI] [PubMed] [Google Scholar]
  28. Leyssens C., Verlinden L., Verstuyf A. (2014). The future of vitamin D analogs. Front. Physiol. 5:122 10.3389/fphys.2014.00122 [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Lira F. S., Rosa J. C., Cunha C. A., Ribeiro E. B., do Nascimento C. O., Oyama L. M., et al. (2011). Supplementing alpha-tocopherol (vitamin E) and vitamin D3 in high fat diet decrease IL-6 production in murine epididymal adipose tissue and 3T3-L1 adipocytes following LPS stimulation. Lipids Health Dis. 10:37 10.1186/1476-511X-10-37 [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Lorente-Cebrian S., Eriksson A., Dunlop T., Mejhert N., Dahlman I., Astrom G., et al. (2012). Differential effects of 1alpha,25-dihydroxycholecalciferol on MCP-1 and adiponectin production in human white adipocytes. Eur. J. Nutr. 51, 335–342 10.1007/s00394-011-0218-z [DOI] [PubMed] [Google Scholar]
  31. Lowe C. E., O’Rahilly S., Rochford J. J. (2011). Adipogenesis at a glance. J. Cell. Sci. 124, 2681–2686 10.1242/jcs.079699 [DOI] [PubMed] [Google Scholar]
  32. Madsen M. S., Siersbaek R., Boergesen M., Nielsen R., Mandrup S. (2014). Peroxisome proliferator-activated receptor gamma and c/ebpalpha synergistically activate key metabolic adipocyte genes by assisted loading. Mol. Cell. Biol. 34, 939–954 10.1128/MCB.01344-13 [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Mahajan A., Stahl C. H. (2009). Dihydroxy-cholecalciferol stimulates adipocytic differentiation of porcine mesenchymal stem cells. J. Nutr. Biochem. 20, 512–520 10.1016/j.jnutbio.2008.05.010 [DOI] [PubMed] [Google Scholar]
  34. Marcotorchino J., Gouranton E., Romier B., Tourniaire F., Astier J., Malezet C., et al. (2012). Vitamin D reduces the inflammatory response and restores glucose uptake in adipocytes. Mol. Nutr. Food Res. 56, 1771–1782 10.1002/mnfr.201200383 [DOI] [PubMed] [Google Scholar]
  35. Maury E., Brichard S. M. (2010). Adipokine dysregulation, adipose tissue inflammation and metabolic syndrome. Mol. Cell. Endocrinol. 314, 1–16 10.1016/j.mce.2009.07.031 [DOI] [PubMed] [Google Scholar]
  36. Meyer M. B., Goetsch P. D., Pike J. W. (2012). VDR/RXR and TCF4/beta-catenin cistromes in colonic cells of colorectal tumor origin: impact on c-FOS and c-MYC gene expression. Mol. Endocrinol. 26, 37–51 10.1210/me.2011-1109 [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Mutt S. J., Karhu T., Lehtonen S., Lehenkari P., Carlberg C., Saarnio J., et al. (2012). Inhibition of cytokine secretion from adipocytes by 1,25-dihydroxyvitamin D(3) via the NF-kappaB pathway. FASEB J. 26, 4400–4407 10.1096/fj.12-210808 [DOI] [PubMed] [Google Scholar]
  38. Narvaez C. J., Matthews D., Broun E., Chan M., Welsh J. (2009). Lean phenotype and resistance to diet-induced obesity in vitamin D receptor knockout mice correlates with induction of uncoupling protein-1 in white adipose tissue. Endocrinology 150, 651–661 10.1210/en.2008-1118 [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Narvaez C. J., Simmons K. M., Brunton J., Salinero A., Chittur S. V., Welsh J. E. (2013). Induction of STEAP4 correlates with 1,25-dihydroxyvitamin D3 stimulation of adipogenesis in mesenchymal progenitor cells derived from human adipose tissue. J. Cell. Physiol. 228, 2024–2036 10.1002/jcp.24371 [DOI] [PubMed] [Google Scholar]
  40. Nielsen R., Pedersen T. A., Hagenbeek D., Moulos P., Siersbaek R., Megens E., et al. (2008). Genome-wide profiling of PPARgamma: RXR and RNA polymerase II occupancy reveals temporal activation of distinct metabolic pathways and changes in RXR dimer composition during adipogenesis. Genes Dev. 22, 2953–2967 10.1101/gad.501108 [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Nimitphong H., Holick M. F., Fried S. K., Lee M. J. (2012). 25-hydroxyvitamin D(3) and 1,25-dihydroxyvitamin D(3) promote the differentiation of human subcutaneous preadipocytes. PLoS ONE 7:e52171 10.1371/journal.pone.0052171 [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Payne V. A., Au W. S., Lowe C. E., Rahman S. M., Friedman J. E., O’Rahilly S., et al. (2009). C/EBP transcription factors regulate SREBP1c gene expression during adipogenesis. Biochem. J. 425, 215–223 10.1042/BJ20091112 [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Peräkylä M., Malinen M., Herzig K. H., Carlberg C. (2005). Gene regulatory potential of nonsteroidal vitamin D receptor ligands. Mol. Endocrinol. 19, 2060–2073 10.1210/me.2004-0417 [DOI] [PubMed] [Google Scholar]
  44. Phinney K. W., Bedner M., Tai S. S., Vamathevan V. V., Sander L. C., Sharpless K. E., et al. (2012). Development and certification of a standard reference material for vitamin D metabolites in human serum. Anal. Chem. 84, 956–962 10.1021/ac202047n [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Powe C. E., Karumanchi S. A., Thadhani R. (2014). Vitamin D-binding protein and vitamin D in blacks and whites. N. Engl. J. Med. 370, 880–881 10.1056/NEJMoa1306357 [DOI] [PubMed] [Google Scholar]
  46. Ramagopalan S. V., Heger A., Berlanga A. J., Maugeri N. J., Lincoln M. R., Burrell A., et al. (2010). A ChIP-seq defined genome-wide map of vitamin D receptor binding: associations with disease and evolution. Genome Res. 20, 1352–1360 10.1101/gr.107920.110 [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Ross A., Taylor C., Yaktine A., Del Valle H. (2011). Dietary Reference Intakes for Calcium and Vitamin D. Institute of Medicine Report. Washington, DC: The National Academies Press; [PubMed] [Google Scholar]
  48. Ross S. E., Hemati N., Longo K. A., Bennett C. N., Lucas P. C., Erickson R. L., et al. (2000). Inhibition of adipogenesis by Wnt signaling. Science 289, 950–953 10.1126/science.289.5481.950 [DOI] [PubMed] [Google Scholar]
  49. Scime A., Grenier G., Huh M. S., Gillespie M. A., Bevilacqua L., Harper M. E., et al. (2005). Rb and p107 regulate preadipocyte differentiation into white versus brown fat through repression of PGC-1alpha. Cell. Metab. 2, 283–295 10.1016/j.cmet.2005.10.002 [DOI] [PubMed] [Google Scholar]
  50. Smas C. M., Sul H. S. (1993). Pref-1, a protein containing EGF-like repeats, inhibits adipocyte differentiation. Cell 73, 725–734 10.1016/0092-8674(93)90252-L [DOI] [PubMed] [Google Scholar]
  51. Stumpf W. E. (1995). Vitamin D sites and mechanisms of action: a histochemical perspective. reflections on the utility of autoradiography and cytopharmacology for drug targeting. Histochem. Cell Biol. 104, 417–427 10.1007/BF01464331 [DOI] [PubMed] [Google Scholar]
  52. Sun X., Morris K. L., Zemel M. B. (2008). Role of calcitriol and cortisol on human adipocyte proliferation and oxidative and inflammatory stress: a microarray study. J. Nutrigenet. Nutrigenomics 1, 30–48 10.1159/000109873 [DOI] [PubMed] [Google Scholar]
  53. Sun X., Zemel M. B. (2007). Calcium and 1,25-dihydroxyvitamin D3 regulation of adipokine expression. Obesity (Silver Spring) 15, 340–348 10.1038/oby.2007.540 [DOI] [PubMed] [Google Scholar]
  54. Sun X., Zemel M. B. (2008). Calcitriol and calcium regulate cytokine production and adipocyte-macrophage cross-talk. J. Nutr. Biochem. 19, 392–399 10.1016/j.jnutbio.2007.05.013 [DOI] [PubMed] [Google Scholar]
  55. Tourniaire F., Romier-Crouzet B., Lee J. H., Marcotorchino J., Gouranton E., Salles J., et al. (2013). Chemokine expression in inflamed adipose tissue is mainly mediated by NF-kappaB. PLoS ONE 8:e66515 10.1371/journal.pone.0066515 [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Trayhurn P., O’Hara A., Bing C. (2011). Interrogation of microarray datasets indicates that macrophage-secreted factors stimulate the expression of genes associated with vitamin D metabolism (VDR and CYP27B1) in human adipocytes. Adipobiology 3, 29–34 [Google Scholar]
  57. Trayhurn P. (2013). Hypoxia and adipose tissue function and dysfunction in obesity. Physiol. Rev. 93, 1–21 10.1152/physrev.00017.2012 [DOI] [PubMed] [Google Scholar]
  58. Tuohimaa P. (2009). Vitamin D and aging. J. Steroid Biochem. Mol. Biol. 114, 78–84 10.1016/j.jsbmb.2008.12.020 [DOI] [PubMed] [Google Scholar]
  59. Tuoresmäki P., Väisänen S., Neme A., Heikkinen S., Carlberg C. (2014). Patterns of genome-wide VDR locations. PLoS ONE 9:e96105 10.1371/journal.pone.0096105 [DOI] [PMC free article] [PubMed] [Google Scholar]
  60. Van Gaal L. F., Mertens I. L., De Block C. E. (2006). Mechanisms linking obesity with cardiovascular disease. Nature 444, 875–880 10.1038/nature05487 [DOI] [PubMed] [Google Scholar]
  61. Vigilanza P., Aquilano K., Baldelli S., Rotilio G., Ciriolo M. R. (2011). Modulation of intracellular glutathione affects adipogenesis in 3T3-L1 cells. J. Cell. Physiol. 226, 2016–2024 10.1002/jcp.22542 [DOI] [PubMed] [Google Scholar]
  62. Vimaleswaran K. S., Berry D. J., Lu C., Tikkanen E., Pilz S., Hiraki L. T., et al. (2013). Causal relationship between obesity and vitamin D status: bi-directional mendelian randomization analysis of multiple cohorts. PLoS Med. 10:e1001383 10.1371/journal.pmed.1001383 [DOI] [PMC free article] [PubMed] [Google Scholar]
  63. Vlasova M., Purhonen A. K., Jarvelin M. R., Rodilla E., Pascual J., Herzig K. H. (2010). Role of adipokines in obesity-associated hypertension. Acta Physiol. (Oxf). 200, 107–127 10.1111/j.1748-1716.2010.02171.x [DOI] [PubMed] [Google Scholar]
  64. Wamberg L., Cullberg K. B., Rejnmark L., Richelsen B., Pedersen S. B. (2013). Investigations of the anti-inflammatory effects of vitamin D in adipose tissue: results from an in vitro study and a randomized controlled trial. Horm. Metab. Res. 45, 456–462 10.1055/s-0032-1331746 [DOI] [PubMed] [Google Scholar]
  65. Wang T. J., Zhang F., Richards J. B., Kestenbaum B., van Meurs J. B., Berry D., et al. (2010). Common genetic determinants of vitamin D insufficiency: a genome-wide association study. Lancet 376, 180–188 10.1016/S0140-6736(10)60588-0 [DOI] [PMC free article] [PubMed] [Google Scholar]
  66. Weber K., Erben R. G. (2013). Differences in triglyceride and cholesterol metabolism and resistance to obesity in male and female vitamin D receptor knockout mice. J. Anim. Physiol. Anim. Nutr. (Berl.) 97, 675–683 10.1111/j.1439-0396.2012.01308.x [DOI] [PubMed] [Google Scholar]
  67. Wellen K. E., Hotamisligil G. S. (2003). Obesity-induced inflammatory changes in adipose tissue. J. Clin. Invest. 112, 1785–1788 10.1172/JCI20514 [DOI] [PMC free article] [PubMed] [Google Scholar]
  68. Welsh J., Zinser L. N., Mianecki-Morton L., Martin J., Waltz S. E., James H., et al. (2011). Age-related changes in the epithelial and stromal compartments of the mammary gland in normocalcemic mice lacking the vitamin D3 receptor. PLoS ONE 6:e16479 10.1371/journal.pone.0016479 [DOI] [PMC free article] [PubMed] [Google Scholar]
  69. White U. A., Stephens J. M. (2010). Transcriptional factors that promote formation of white adipose tissue. Mol. Cell. Endocrinol. 318, 10–14 10.1016/j.mce.2009.08.023 [DOI] [PMC free article] [PubMed] [Google Scholar]
  70. Wong K. E., Kong J., Zhang W., Szeto F. L., Ye H., Deb D. K., et al. (2011). Targeted expression of human vitamin D receptor in adipocytes decreases energy expenditure and induces obesity in mice. J. Biol. Chem. 286, 33804–33810 10.1074/jbc.M111.257568 [DOI] [PMC free article] [PubMed] [Google Scholar]
  71. Wong K. E., Szeto F. L., Zhang W., Ye H., Kong J., Zhang Z., et al. (2009). Involvement of the vitamin D receptor in energy metabolism: regulation of uncoupling proteins. Am. J. Physiol. Endocrinol. Metab. 296, E820–E828 10.1152/ajpendo.90763.2008 [DOI] [PMC free article] [PubMed] [Google Scholar]
  72. Wortsman J., Matsuoka L. Y., Chen T. C., Lu Z., Holick M. F. (2000). Decreased bioavailability of vitamin D in obesity. Am. J. Clin. Nutr. 72, 690–693 [DOI] [PubMed] [Google Scholar]
  73. Zhang K., Guo W., Yang Y., Wu J. (2011). JAK2/STAT3 pathway is involved in the early stage of adipogenesis through regulating C/EBPbeta transcription. J. Cell. Biochem. 112, 488–497 10.1002/jcb.22936 [DOI] [PubMed] [Google Scholar]
  74. Zhuang H., Lin Y., Yang G. (2007). Effects of 1,25-dihydroxyvitamin D3 on proliferation and differentiation of porcine preadipocyte in vitro. Chem. Biol. Interact. 170, 114–123 10.1016/j.cbi.2007.07.012 [DOI] [PubMed] [Google Scholar]

Articles from Frontiers in Physiology are provided here courtesy of Frontiers Media SA

RESOURCES