Abstract
Since the introduction in the 1950s, warfarin has become the commonly used oral anticoagulant for the prevention of thromboembolism in patients with deep vein thrombosis, atrial fibrillation or prosthetic heart valve replacement. Warfarin is highly efficacious; however, achieving the desired anticoagulation is difficult because of its narrow therapeutic window and highly variable dose response among individuals. Bleeding is often associated with overdose of warfarin. There is overwhelming evidence that an individual's warfarin maintenance is associated with clinical factors and genetic variations, most notably polymorphisms in cytochrome P450 2C9 and vitamin K epoxide reductase subunit 1. Numerous dose-prediction algorithms incorporating both genetic and clinical factors have been developed and tested clinically. However, results from major clinical trials are not available yet. This review aims to provide an overview of the field of warfarin which includes information about the drug, genetics of warfarin dose requirements, dosing algorithms developed and the challenges for the clinical implementation of warfarin pharmacogenetics.
Keywords: CYP2C9, CYP4F2, pharmacogenetics, VKORC1, warfarin
WARFARIN
Warfarin, first introduced in the 1950s, has now become the most commonly prescribed oral anticoagulant for the prevention of thromboembolism in patients with deep vein thrombosis, atrial fibrillation or prosthetic heart valve replacement.1–4 Over 25 million prescriptions5 have been made in the United States with world's total prescriptions reaching 0.5–1.5% of the population.6 Warfarin exists as a racemic mixture of (R) and (S)—enantiomers with the (S) form being more potent than the (R) isomer.7 Warfarin exerts its anticoagulation effect by blocking the vitamin K regeneration cycle. Gamma carboxylation of vitamin K-dependent clotting factors (factor II, VII, IX and X) is essential for blood clotting. Vitamin K and oxygen are required for the gamma carboxylase to add a carbon dioxide molecule to the side chain of glutamic acid in the clotting factors. During carboxylation, the reduced vitamin K is oxidized to vitamin K 2,3-epoxide, from which the reduced vitamin K is regenerated for another cycle of catalysis.8,9 Even though warfarin is highly efficacious, it is plagued by a narrow therapeutic window, and large interindividual variations in the warfarin dosage required for achieving optimal anticoagulation. Variations can range as much as 10–20 fold differences in the dose required to achieve optimal anticoagulation.10 In addition, there are also significant ethnic dose differences, Asian populations usually require lower doses relative to Caucasian or African populations.11,12
Because of the large difference in the dose required for warfarin, the anticoagulation effect must to be monitored regularly. Anticoagulation status is measured as the International Normalized Ratio (INR), which is a measure of the prothrombin time (PT) consisted of vitamin K-dependent coagulation factors II, VII and X.13 The INR is calculated by dividing a patient's PT with mean normal PT, the geometric mean of the PTs of the healthy adult population. A normal individual usually has an INR of 1, and INR of 2 means that the clotting time has doubled. The target INR for warfarin treatment is dependent upon the indication; the most widely accepted range is 2.0–3.0.14
It can be difficult to maintain an INR in the target range of 2.0–3.0, and therefore, over- and under-anticoagulation are very common during warfarin treatment. Under-anticoagulation can lead to thrombosis and over-anticoagulation is often associated with bleeding. The most common adverse effect of warfarin is bleeding.15–17 In the United States between 2007 and 2009, warfarin-associated adverse events accounted for 33% of drug-related hospitalizations,18 and warfarin has become one of the top 10 drugs for drug-related hospitalization in the United States. Incidence of adverse bleeding is associated with elevated INR. Studies have shown that risk of bleeding is increased when the INR exceeds 4, and the risk rises sharply with values >5.19 Vitamin K is the antagonist of warfarin and is used to reverse the effect of warfarin in the event of high INR or bleeding. These challenges led to a significant underuse of warfarin, especially in Asian countries where physicians often fear of bleeding because of lower doses required in the region. One study in Taiwan showed that only 24.7% of the atrial fibrillation patients received appropriate treatment.20
NONGENETIC FACTORS INFLUENCING WARFARIN RESPONSE
Vitamin K is required for the coagulation cascade and is also the antagonist for warfarin. It has been shown that vitamin K intake positively correlates with warfarin dose.21 Thus, dark green vegetables such as broccoli and spinach rich in Vitamin K could potentially influence warfarin response. The National Institutes of Health has recommended consistent vitamin K intake to minimize variations in warfarin response for patients on warfarin treatment.22 In addition to dietary interactions, excessive alcohol use can also affect warfarin metabolism and elevate INR.23
Several drugs are known to influence warfarin-treatment response. One of the most common concomitant drugs for warfarin treatment is amiodarone. It has been shown that amiodarone decrease the clearance of both (R) and (S) warfarin,24 and thus patients should reduce their dose if amiodarone is taken during warfarin treatment. Antibiotics such as metronidazole also reduce the metabolism of warfarin and thus increase the effect of warfarin. Broad-spectrum antibiotics that alter the balance of intestinal flora will enhance the effect of warfarin.25 Non-steroidal anti-inflammatory drugs do not directly inhibit or induce warfarin metabolism. However, risk of a warfarin-induced bleed is increased due to non-steroidal anti-inflammatory drug-induced gastrointestinal ersosions, even for patients with desired range of INR.25 Patients are also at higher risk of hemorrhage if anti-platelets (such as aspirin and clopidogrel) are used.26 Drugs that interfere with the vitamin K cycle (such as acetaminophen whose metabolite inhibits the vitamin K cycle) can also interfere with warfarin response.27
It is well known that there is a positive correlation of age, height and weight with warfarin dose. Recent studies also showed that patients with renal impairments require less warfarin than patients with normal renal function.28
GENETIC FACTORS INFLUENCING WARFARIN RESPONSE
The hunt for genetic determinants influencing warfarin dose began in the 1990s using candidate gene approach. Initial focus was on the warfarin-metabolizing enzyme cytochrome P450 2C9 (CYP2C9), which metabolizes the potent (S) warfarin.29 It was soon identified that polymorphisms in CYP2C9 were associated with reduced warfarin dose requirement.30 The most common allele is CYP2C9*1, which is considered as the wild-type allele. The most common variant in European ancestry are CYP2C9*2 (rs1799853), which has an Arg144Cys substitution, and CYP2C9*3 (rs1057920), which has an Ile359Thr substitution.31–33 The minor allele of these two variants produces a metabolically impaired enzyme with activities reduced by 30% (CYP2C9*2) and 80% (CYP2C9*3).30 The frequency of these variants shows ethnic differences; for example, CYP2C9*2 is almost absent in some Asian populations, including the Han-Chinese and Japanese populations. Because of the reduced function of these variants, individuals who carry CYP2C9*2 or *3 require lower doses of warfarin, especially for those with two copies of the *3 allele. These individuals are also at greater risk of bleeding during warfarin treatment and require longer time to achieve stable target INR.34,35 Additional CYP2C9 variants with reduced metabolic capacity (CYP2C9*5, *6, *8 and *11) are also identified, and these variants contribute to warfarin dose variation in the African Americans.36–38
Metabolizing enzymes for the (R) warfarin, such as CYP1A139 and CYP3A5,40 were also investigated. Because of the minimal effects of (R) warfarin on anticoagulation, they are clinically insignificant. In addition, genes in the warfarin interactive pathways, vitamin K regeneration cycle and vitamin K-dependent clotting factors were also studied. These genes include CYP2C18, CYP2C19, PROC, ABCB1, APOE, EPHX1, CALU, GGCX, ORM1, ORM2, factor II, factor V, factor VII, Factor IX and NR112.38,40–56 Unlike CYP2C9, the associations of these genes to warfarin dose variation were limited to some but not all the populations tested, and the effects were too small to have any significant clinical use.
The field of warfarin pharmacogenetics significantly advanced when the second major genetic determinant, vitamin K epoxide reductase subunit 1 (VKORC1), was identified.57,58 VKORC1 is responsible for the regeneration of vitamin K epoxide to vitamin K and is the rate-limiting step in the vitamin K regeneration cycle.48 Several single-nucleotide polymorphisms in strong linkage disequilibrium were identified and associated with warfarin dose.59 The most commonly used VKORC1 variant is a noncoding variant (VKORC1 –1639 G>A, rs9923231) which lies in the promoter region of VKORC1. The –1639 G allele destroys a transcription-binding site (E-box) that resulted in increased promoter activity,60 and thus, individuals that carry the G allele require higher warfarin doses than those with the A allele. This association was soon confirmed in three major populations (African, Asian and Caucasian),12,61 and numerous populations around the world.62–65 In addition, several rare nonsynonymous mutations in VKORC1 which confer warfarin resistance were also identified.66
To identify additional genes that contribute to variations in warfarin dosing, one study using Affymetrix's DMET (Drug Metabolizing Enzymes and Transporters) gene chip and several genome-wide association studies were conducted.67–70 In addition to confirming the previously known associations of CYP2C9 and VKORC1 as the major genetic determinants for warfarin dosing variation, these studies also identified CYP4F2 as the additional genetic factor. It was demonstrated that CYP4F2 contributes to vitamin K1 oxidation and the nonsynonymous polymorphism, resulting in decreased activity.71 The association of the CFP4F2 variant (rs2108622) and warfarin dose was subsequently confirmed in a meta-analysis involving more than 9000 participants from 30 studies.72 Even though the association of CYP4F2 is significant, the effect size is much lower than those contributed by VKORC1 and CYP2C9, and its clinical use remains to be further studied.
DOSING ALGORITHMS
Because of the difficulties and the potential lethal side effects of warfarin therapy, efforts were made early on trying to reduce the adverse events. Most of the efforts focused on developing dosing algorithms or computerized programs using clinical variables to guide physicians prescribing warfarin or to predict warfarin dose.73–76 However, there was no wide adoption due to the lack of effectiveness of the programs and the low variability (~20%) explained by the clinical algorithms. With the identifications of the genetic factors associated with warfarin dosing, efforts were refocused on developing dosing algorithms incorporating both clinical and genetic variables aimed to explain a greater variation in dosing as well as to better predict the maintenance dose. The earliest pharmacogenetic dosing algorithms used just CYP2C9 genotypes.76,77 VKORC1 genotypes were quickly added as the second genetic factor soon after its identification. A few recently developed algorithms also included CYP4F2 and other genetic factors.78,79 Over 20 dosing algorithms for various ethnic groups have been developed.12,80–82 In general, most of these algorithms showed that demographic factors (age, gender, weight and height) and the use of concomitant drugs account for approximately 25% of the variability in dosage. Genetic factors (CYP2C9 and VKORC1) account for additional 35–50% of the variability. However, the problem for most of these algorithms is that they were developed using a relatively small sample size usually from a single ethnic group. An international group, International Warfarin Pharmacogenetics Consortium (IWPC), was formed to tackle this issue. Clinical and genetic data were collected from over 5000 patients around the world. Two dosing algorithms were developed, one with clinical variables only and the other with both genetic and clinical factors, using information from 4042 individuals, and were then tested and replicated on additional 1009 patients.12 The phamacogenetics dosing algorithm outperformed the nongenetic clinical algorithm and fixed dose. The same study also showed that the greatest benefit for pharmacokinetics dosing were patients requiring <21 mg per week or >49 mg per week of warfarin; these patients account for >40% of the total patients. However, these algorithms, including the IWPC, were developed using mostly adult populations and might not be suitable for children. Several new algorithms using pediatric patients were developed to address this issue.83,84 In addition to developing a global dosing algorithm, researchers of IWPC also used the collected information to show that one VKORC1 single-nucleotide polymorphism (–1639 G>A) is sufficient, and adding other common VKORC1 single-nucleotide polymorphisms or the uses of haplotypes in dosing algorithms does not further improve warfarin dose prediction.61
All the algorithms published to date, at best, explain about 80% of the variations in warfarin dosing.85 Novel variants yet to be identified could explain some of the missing variations. It is more likely that the remaining variations cannot be explained by any algorithms. As discussed above, diet is an important factor influencing warfarin. However, it is extremely difficult to account for these variations. Even within the same country/ethnic group, food preference can differ. In addition, interactions between warfarin and herbal medicine are not well documented. All these contribute to the missing variations in the current dosing algorithms.
CLINICAL IMPLEMENTATION OF WARFARIN PHARMACOGENETICS
Given the enormous evidence supporting the associations of genetic factors with warfarin dose and the regulatory mandate for drug safety, the US Food and Drug Administration (FDA) updated the drug label for warfarin to include information on the impact of genetic variation. However, this update caused controversy and concerns from many physicians, as it did not provide any specific dosing recommendation using genetics. The label was updated again by the FDA to include a genotype-stratified dosing table in 2010. A study was conducted to compare the accuracy of the dosing table and some of the developed genetic dosing algorithms. The study found that the genetic dosing table predicted warfarin dose better than empirical dosing, and the pharmacogenetics dosing algorithms were the most accurate.86
The Clinical Pharmacogenetics Implementation Consortium, a partnership of the National Institutes of Health PharmGKB (www.pharmgkb.org) and the Pharmacogenomics Research Network (www.pgrn.org), has developed a guideline to provide recommendation to physicians on the interpretation and use of the CYP2C9 and VKORC1 genotype data should the genotype results be available to the physicians.6 This guideline recommends that if genetic information is available, warfarin dosing should be estimated using a pharmacogenetic dosing algorithm. If the use of algorithms is not possible, a genotype dosing table should still be used. As it can be difficult to calculate the warfarin dose using developed algorithms, websites have been setup to assist this. Warfarindosing.org (http://www.warfarindosing.org) is a free website that includes the IWPC and the Gage algorithms. The PharmGKB database also generated a tool to help estimate warfarin dose using the IWPC algorithm (http://www.pharmgkb.org/drug/PA451906).
Even though no one disputes the influence of genetics on warfarin dosing, the benefit of clinical use of warfarin pharmacogenetics, such as percent time in therapeutic range, fewer out of range INRs, fewer dose adjustments and reduced incidents of adverse bleeding, is still debated. Several studies of various study design, including randomized trials, have been performed to address these issues.81,87–95 Some of the studies showed a real therapeutic advantage by including the genetic information. The Medco–Mayo Warfarin Effectiveness study90 showed that 31% of the patients were less likely to be hospitalized for any cause and 28% less likely to be hospitalized for a bleeding episode or thromboembolism if the treating physicians were given the VKORC1 and CYP2C9 genotype information. However, the serious limitation of this study is that the genotype data were provided on average, 32 days after the start of treatment. In addition, the sample sizes of these studies were too small to have adequate power to detect the genetic effects.
The first break-through in the clinical pharmacogenetic study of warfarin is the CoumaGen-II study.96 It is the first randomized trial with adequate power (504 cases with pharmacogenetic-guided dosing and 1911 controls with standard dosing) to show that patients in the pharmacogenetic-guided dosing arm have higher percentage of patients stayed in the therapeutic INR range, fewer INR≥4 and ≤1.5, and less serious adverse events. In addition to CoumaGen-II, several large randomize trials are ongoing to test the benefits of pharmacogenetic-guided dosing.6
FUTURE PERSPECTIVE
The Clinical Pharmacogenetics Implementation Consortium guideline and the clinical trials were designed to remove roadblocks for the clinical implementation of warfarin pharmacogenetics. The clinical trials will provide the evidence required for the clinical use of genetics, and the Clinical Pharmacogenetics Implementation Consortium guideline provides recommended actions on the available genotype data. The last remaining hurdle is in the infrastructure required for fast, reliable and economical genotyping platform. There are currently four genotyping platforms approved by the US FDA: eQ-PCR LC Warfarin Genotyping Kit (TrimGen, Sparks, MD, USA), eSensoe Warfarin Sensitivity test (GenMark Diagnostics, Inc, Carlsbad, CA, USA), Infinity Warfarin Assay (Autogenomics, Inc, Vista, CA, USA) and Verigene Warfarin Metabolism Nucleic Acid Test (Nanosphere, Northbrook, IL, USA). A number of none-FDA-approved tests are also available (http://www.pharmgkb.org/drug/PA451906#tabview=tab0&subtab=34). However, these platforms are still not widely available outside of the major medical center setting. It can sometimes take weeks before the results are made available to patients or their physicians. As the use of pharmacogenetic-guided dosing is most likely to benefit the patients during the initiation stage, it is vital that the patients get the genotype data before treatment.
Because of the difficulties associated with warfarin use and the importance of anticoagulation treatment, pharmaceutical companies have been developing a new generation of oral anticoagulants, and several new anticoagulants have emerged from the horizon. Both direct thrombin inhibitor (dabigatran)97 and factor Xa inhibitor (rivoxaban)98 have recently obtained FDA approval. Studies have shown that these new anticoagulants are non-inferior, and in some cases superior, to warfarin. However, the time in treatment range is low, raising some doubt on the performance on the new drugs. These new anticoagulants still have several issues preventing them for wide adoption. First, these new drugs can still cause adverse bleeding, but there is currently no monitoring tests available similar to INR for warfarin that can monitor the anticoagulation status. Thus, there is no way to identify patients who are at high risk for bleeding. Second, the cost associated with these new anticoagulants is much higher. One study using patients with atrial fibrillation concluded that it is cost-effective to use dabigatran in patients with poor INR control, whereas warfarin is more cost-effective in patients with good INR control.99 Lastly, patients on the new anticoagulants are at greater risk when adverse bleeding occurs, as there is no antidote to reverse the effect.
With over 60 years of use, there is enormous data on the safety, clinical use and genetics for warfarin. Thus, at least in the short term, warfarin still will be the most prescribed oral anticoagulants. The results of the ongoing clinical trials may decide the future of warfarin. If the trials show conclusively the benefit of using pharmacogenetics in guiding warfarin use, with the rapid decrease in the cost of genotyping, warfarin may still be a competent oral anticoagulant.
ACKNOWLEDGEMENTS
Supported by grants from the NIH/NIGMS R24 GM61374 (TEK).
References
- 1.Hirsh J. Antithrombotic therapy in deep vein thrombosis and pulmonary embolism. Am. Heart J. 1992;123:1115–1122. doi: 10.1016/0002-8703(92)91070-h. [DOI] [PubMed] [Google Scholar]
- 2.Hirsh J, Dalen J, Anderson DR, Poller L, Bussey H, Ansell J, et al. Oral anticoagulants: mechanism of action, clinical effectiveness, and optimal therapeutic range. Chest. 2001;119:8S–21S. doi: 10.1378/chest.119.1_suppl.8s. [DOI] [PubMed] [Google Scholar]
- 3.Laupacis A, Albers G, Dalen J, Dunn M, Feinberg W, Jacobson A. Antithrombotic therapy in atrial fibrillation. Chest. 1995;108:352S–359S. doi: 10.1378/chest.108.4_supplement.352s. [DOI] [PubMed] [Google Scholar]
- 4.Stein PD, Alpert JS, Copeland J, Dalen JE, Goldman S, Turpie AG. Antithrombotic therapy in patients with mechanical and biological prosthetic heart valves. Chest. 1995;108:371S–379S. doi: 10.1378/chest.108.4_supplement.371s. [DOI] [PubMed] [Google Scholar]
- 5.FDA Drug Safety Communication Safety review of post-market reports of serious bleeding events with the anticoagulant Pradaxa (dabigatran etexilate mesylate) (e-pub ahead of print 7 December 2011; http://www.fda.gov/drugs/drugsafety/ucm282724.htm)
- 6.Johnson JA, Gong L, Whirl-Carrillo M, Gage BF, Scott SA, Stein CM, et al. Clinical Pharmacogenetics Implementation Consortium Guidelines for CYP2C9 and VKORC1 genotypes and warfarin dosing. Clin. Pharmacol. Ther. 2011;90:625–629. doi: 10.1038/clpt.2011.185. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 7.Wittkowsky AK. Warfarin and other coumarin derivatives: pharmacokinetics, pharmacodynamics, and drug interactions. Semin. Vasc. Med. 2003;3:221–230. doi: 10.1055/s-2003-44457. [DOI] [PubMed] [Google Scholar]
- 8.Bell RG, Matschiner JT. Warfarin and the inhibition of vitamin K activity by an oxide metabolite. Nature. 1972;237:32–33. doi: 10.1038/237032a0. [DOI] [PubMed] [Google Scholar]
- 9.Wallin R, Martin LF. Vitamin K-dependent carboxylation and vitamin K metabolism in liver. Effects of warfarin. J. Clin. Invest. 1985;76:1879–1884. doi: 10.1172/JCI112182. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 10.Loebstein R, Yonath H, Peleg D, Almog S, Rotenberg M, Lubetsky A, et al. Interindividual variability in sensitivity to warfarin–nature or nurture? Clin. Pharmacol. Ther. 2001;70:159–164. doi: 10.1067/mcp.2001.117444. [DOI] [PubMed] [Google Scholar]
- 11.Takahashi H, Wilkinson GR, Caraco Y, Muszkat M, Kim RB, Kashima T, et al. Population differences in S-warfarin metabolism between CYP2C9 genotype-matched Caucasian and Japanese patients. Clin. Pharmacol. Ther. 2003;73:253–263. doi: 10.1067/mcp.2003.26a. [DOI] [PubMed] [Google Scholar]
- 12.Klein TE, Altman RB, Eriksson N, Gage BF, Kimmel SE, Lee MT, et al. Estimation of the warfarin dose with clinical and pharmacogenetic data. N. Engl. J. Med. 2009;360:753–764. doi: 10.1056/NEJMoa0809329. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 13.van den Besselaar AM, Poller L, Tripodi A. Definition of the International Normalized Ratio (INR) and its consequences for the calibration procedure of thromboplastin preparations: a rebuttal. J. Thromb. Haemost. 2004;2:1490–1491. doi: 10.1111/j.1538-7836.2004.00793.x. reply 1492–1494. [DOI] [PubMed] [Google Scholar]
- 14.Keeling D, Baglin T, Tait C, Watson H, Perry D, Baglin C, et al. Guidelines on oral anticoagulation with warfarin—fourth edition. Br. J. Haematol. 2011;154:311–324. doi: 10.1111/j.1365-2141.2011.08753.x. [DOI] [PubMed] [Google Scholar]
- 15.Bogousslavsky J, Regli F. Anticoagulant-induced intracerebral bleeding in brain ischemia. Evaluation in 200 patients with TIAs, emboli from the heart, and progressing stroke. Acta Neurol. Scand. 1985;71:464–471. [PubMed] [Google Scholar]
- 16.Gullov AL, Koefoed BG, Petersen P. Bleeding complications to long-term oral anticoagulant therapy. J. Thromb. Thrombolysis. 1994;1:17–25. doi: 10.1007/BF01061991. [DOI] [PubMed] [Google Scholar]
- 17.Landefeld CS, Beyth RJ. Anticoagulant-related bleeding: clinical epidemiology, prediction, and prevention. Am. J. Med. 1993;95:315–328. doi: 10.1016/0002-9343(93)90285-w. [DOI] [PubMed] [Google Scholar]
- 18.Budnitz DS, Lovegrove MC, Shehab N, Richards CL. Emergency hospitalizations for adverse drug events in older Americans. N. Engl. J. Med. 2011;365:2002–2012. doi: 10.1056/NEJMsa1103053. [DOI] [PubMed] [Google Scholar]
- 19.Hirsh J, Fuster V, Ansell J, Halperin JL. American Heart Association/American College of Cardiology F. American Heart Association/American College of Cardiology Foundation guide to warfarin therapy. J. Am. Coll. Cardiol. 2003;41:1633–1652. doi: 10.1016/s0735-1097(03)00416-9. [DOI] [PubMed] [Google Scholar]
- 20.Lin LJ, Cheng MH, Lee CH, Wung DC, Cheng CL, Kao Yang YH. Compliance with antithrombotic prescribing guidelines for patients with atrial fibrillation–a nationwide descriptive study in Taiwan. Clin. Ther. 2008;30:1726–1736. doi: 10.1016/j.clinthera.2008.09.010. [DOI] [PubMed] [Google Scholar]
- 21.Rasmussen MA, Skov J, Bladbjerg EM, Sidelmann JJ, Vamosi M, Jespersen J. Multivariate analysis of the relation between diet and warfarin dose. Eur. J. Clin. Pharmacol. 2012;68:321–328. doi: 10.1007/s00228-011-1123-3. [DOI] [PubMed] [Google Scholar]
- 22.Important information to know when you are taking: warfarin (coumadin) and vitamin k. (e-pub ahead of print 5 September 2012; http://www.cc.nih.gov/ccc/patient_education/drug_nutrient/coumadin1.pdf)
- 23.Weathermon R, Crabb DW. Alcohol and medication interactions. Alcohol Res. Health. 1999;23:40–54. [PMC free article] [PubMed] [Google Scholar]
- 24.Heimark LD, Wienkers L, Kunze K, Gibaldi M, Eddy AC, Trager WF, et al. The mechanism of the interaction between amiodarone and warfarin in humans. Clin. Pharmacol. Ther. 1992;51:398–407. doi: 10.1038/clpt.1992.39. [DOI] [PubMed] [Google Scholar]
- 25.Juurlink DN. Drug interactions with warfarin: what clinicians need to know. CMAJ. 2007;177:369–371. doi: 10.1503/cmaj.070946. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 26.Suh DC, Nelson WW, Choi JC, Choi I. Risk of hemorrhage and treatment costs associated with warfarin drug interactions in patients with atrial fibrillation. Clin. Ther. 2012;34:1569–1582. doi: 10.1016/j.clinthera.2012.05.008. [DOI] [PubMed] [Google Scholar]
- 27.Thijssen HH, Soute BA, Vervoort LM, Claessens JG. Paracetamol (acetaminophen) warfarin interaction: NAPQI, the toxic metabolite of paracetamol, is an inhibitor of enzymes in the vitamin K cycle. Thromb. Haemost. 2004;92:797–802. doi: 10.1160/TH04-02-0109. [DOI] [PubMed] [Google Scholar]
- 28.Limdi NA, Limdi MA, Cavallari L, Anderson AM, Crowley MR, Baird MF, et al. Warfarin dosing in patients with impaired kidney function. Am. J. Kidney Dis. 2010;56:823–831. doi: 10.1053/j.ajkd.2010.05.023. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 29.Rettie AE, Korzekwa KR, Kunze KL, Lawrence RF, Eddy AC, Aoyama T, et al. Hydroxylation of warfarin by human cDNA-expressed cytochrome P-450: a role for P-4502C9 in the etiology of (S)-warfarin-drug interactions. Chem. Res. Toxicol. 1992;5:54–59. doi: 10.1021/tx00025a009. [DOI] [PubMed] [Google Scholar]
- 30.Furuya H, Fernandez-Salguero P, Gregory W, Taber H, Steward A, Gonzalez FJ, et al. Genetic polymorphism of CYP2C9 and its effect on warfarin maintenance dose requirement in patients undergoing anticoagulation therapy. Pharmacogenetics. 1995;5:389–392. doi: 10.1097/00008571-199512000-00008. [DOI] [PubMed] [Google Scholar]
- 31.Takahashi H, Echizen H. Pharmacogenetics of CYP2C9 and interindividual variability in anticoagulant response to warfarin. Pharmacogenomics J. 2003;3:202–214. doi: 10.1038/sj.tpj.6500182. [DOI] [PubMed] [Google Scholar]
- 32.Bhasker CR, Miners JO, Coulter S, Birkett DJ. Allelic and functional variability of cytochrome P4502C9. Pharmacogenetics. 1997;7:51–58. doi: 10.1097/00008571-199702000-00007. [DOI] [PubMed] [Google Scholar]
- 33.Sullivan-Klose TH, Ghanayem BI, Bell DA, Zhang ZY, Kaminsky LS, Shenfield GM, et al. The role of the CYP2C9-Leu359 allelic variant in the tolbutamide polymorphism. Pharmacogenetics. 1996;6:341–349. doi: 10.1097/00008571-199608000-00007. [DOI] [PubMed] [Google Scholar]
- 34.Aithal GP, Day CP, Kesteven PJ, Daly AK. Association of polymorphisms in the cytochrome P450 CYP2C9 with warfarin dose requirement and risk of bleeding complications. Lancet. 1999;353:717–719. doi: 10.1016/S0140-6736(98)04474-2. [DOI] [PubMed] [Google Scholar]
- 35.Lindh JD, Holm L, Andersson ML, Rane A. Influence of CYP2C9 genotype on warfarin dose requirements–a systematic review and meta-analysis. Eur. J. Clin. Pharmacol. 2009;65:365–375. doi: 10.1007/s00228-008-0584-5. [DOI] [PubMed] [Google Scholar]
- 36.Scott SA, Jaremko M, Lubitz SA, Kornreich R, Halperin JL, Desnick RJ. CYP2C9*8 is prevalent among African-Americans: implications for pharmacogenetic dosing. Pharmacogenomics. 2009;10:1243–1255. doi: 10.2217/pgs.09.71. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 37.Limdi N, Goldstein J, Blaisdell J, Beasley T, Rivers C, Acton R. Influence of CYP2C9 Genotype on warfarin dose among African American and European Americans. Personalized Med. 2007;4:157–169. doi: 10.2217/17410541.4.2.157. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 38.Cavallari LH, Langaee TY, Momary KM, Shapiro NL, Nutescu EA, Coty WA, et al. Genetic and clinical predictors of warfarin dose requirements in African Americans. Clin. Pharmacol. Ther. 2010;87:459–464. doi: 10.1038/clpt.2009.223. [DOI] [PubMed] [Google Scholar]
- 39.Kaminsky LS, Zhang ZY. Human P450 metabolism of warfarin. Pharmacol. Ther. 1997;73:67–74. doi: 10.1016/s0163-7258(96)00140-4. [DOI] [PubMed] [Google Scholar]
- 40.Wadelius M, Sorlin K, Wallerman O, Karlsson J, Yue QY, Magnusson PK, et al. Warfarin sensitivity related to CYP2C9, CYP3A5, ABCB1 (MDR1) and other factors. Pharmacogenomics J. 2004;4:40–48. doi: 10.1038/sj.tpj.6500220. [DOI] [PubMed] [Google Scholar]
- 41.Wadelius M, Chen LY, Downes K, Ghori J, Hunt S, Eriksson N, et al. Common VKORC1 and GGCX polymorphisms associated with warfarin dose. Pharmacogenomics J. 2005;5:262–270. doi: 10.1038/sj.tpj.6500313. [DOI] [PubMed] [Google Scholar]
- 42.Cha PC, Mushiroda T, Takahashi A, Saito S, Shimomura H, Suzuki T, et al. High-resolution SNP and haplotype maps of the human gamma-glutamyl carboxylase gene (GGCX) and association study between polymorphisms in GGCX and the warfarin maintenance dose requirement of the Japanese population. J. Hum. Genet. 2007;52:856–864. doi: 10.1007/s10038-007-0183-9. [DOI] [PubMed] [Google Scholar]
- 43.Lee MT, Chen CH, Chou CH, Lu LS, Chuang HP, Chen YT, et al. Genetic determinants of warfarin dosing in the Han-Chinese population. Pharmacogenomics. 2009;10:1905–1913. doi: 10.2217/pgs.09.106. [DOI] [PubMed] [Google Scholar]
- 44.Shikata E, Ieiri I, Ishiguro S, Aono H, Inoue K, Koide T, et al. Association of pharmacokinetic (CYP2C9) and pharmacodynamic (factors II, VII, IX, and X; proteins S and C; and gamma-glutamyl carboxylase) gene variants with warfarin sensitivity. Blood. 2004;103:2630–2635. doi: 10.1182/blood-2003-09-3043. [DOI] [PubMed] [Google Scholar]
- 45.Chen LY, Eriksson N, Gwilliam R, Bentley D, Deloukas P, Wadelius M. Gamma-glutamyl carboxylase (GGCX) microsatellite and warfarin dosing. Blood. 2005;106:3673–3674. doi: 10.1182/blood-2005-04-1711. [DOI] [PubMed] [Google Scholar]
- 46.Cain D, Hutson SM, Wallin R. Assembly of the warfarin-sensitive vitamin K 2,3-epoxide reductase enzyme complex in the endoplasmic reticulum membrane. J. Biol. Chem. 1997;272:29068–29075. doi: 10.1074/jbc.272.46.29068. [DOI] [PubMed] [Google Scholar]
- 47.Loebstein R, Vecsler M, Kurnik D, Austerweil N, Gak E, Halkin H, et al. Common genetic variants of microsomal epoxide hydrolase affect warfarin dose requirements beyond the effect of cytochrome P450 2C9. Clin. Pharmacol. Ther. 2005;77:365–372. doi: 10.1016/j.clpt.2005.01.010. [DOI] [PubMed] [Google Scholar]
- 48.Wajih N, Sane DC, Hutson SM, Wallin R. The inhibitory effect of calumenin on the vitamin K-dependent gamma-carboxylation system. Characterization of the system in normal and warfarin-resistant rats. J. Biol. Chem. 2004;279:25276–25283. doi: 10.1074/jbc.M401645200. [DOI] [PubMed] [Google Scholar]
- 49.Kimura R, Miyashita K, Kokubo Y, Akaiwa Y, Otsubo R, Nagatsuka K, et al. Genotypes of vitamin K epoxide reductase, gamma-glutamyl carboxylase, and cyto-chrome P450 2C9 as determinants of daily warfarin dose in Japanese patients. Thromb. Res. 2007;120:181–186. doi: 10.1016/j.thromres.2006.09.007. [DOI] [PubMed] [Google Scholar]
- 50.Lin PJ, Jin DY, Tie JK, Presnell SR, Straight DL, Stafford DW. The putative vitamin K-dependent gamma-glutamyl carboxylase internal propeptide appears to be the propeptide binding site. J. Biol. Chem. 2002;277:28584–28591. doi: 10.1074/jbc.M202292200. [DOI] [PubMed] [Google Scholar]
- 51.Presnell SR, Tripathy A, Lentz BR, Jin DY, Stafford DW. A novel fluorescence assay to study propeptide interaction with gamma-glutamyl carboxylase. Biochemistry. 2001;40:11723–11733. doi: 10.1021/bi010332w. [DOI] [PubMed] [Google Scholar]
- 52.Rieder MJ, Reiner AP, Rettie AE. Gamma-glutamyl carboxylase (GGCX) tagSNPs have limited utility for predicting warfarin maintenance dose. J. Thromb. Haemost. 2007;5:2227–2234. doi: 10.1111/j.1538-7836.2007.02744.x. [DOI] [PubMed] [Google Scholar]
- 53.Saupe J, Shearer MJ, Kohlmeier M. Phylloquinone transport and its influence on gamma-carboxyglutamate residues of osteocalcin in patients on maintenance hemo-dialysis. Am. J. Clin. Nutr. 1993;58:204–208. doi: 10.1093/ajcn/58.2.204. [DOI] [PubMed] [Google Scholar]
- 54.Berkner KL, Runge KW. The physiology of vitamin K nutriture and vitamin K-dependent protein function in atherosclerosis. J. Thromb. Haemost. 2004;2:2118–2132. doi: 10.1111/j.1538-7836.2004.00968.x. [DOI] [PubMed] [Google Scholar]
- 55.Lal S, Sandanaraj E, Jada SR, Kong MC, Lee LH, Goh BC, et al. Influence of APOE genotypes and VKORC1 haplotypes on warfarin dose requirements in Asian patients. Br. J. Clin. Pharmacol. 2008;65:260–264. doi: 10.1111/j.1365-2125.2007.03053.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 56.Otagiri M, Maruyama T, Imai T, Suenaga A, Imamura Y. A comparative study of the interaction of warfarin with human alpha 1-acid glycoprotein and human albumin. J. Pharm. Pharmacol. 1987;39:416–420. doi: 10.1111/j.2042-7158.1987.tb03412.x. [DOI] [PubMed] [Google Scholar]
- 57.Li T, Chang CY, Jin DY, Lin PJ, Khvorova A, Stafford DW. Identification of the gene for vitamin K epoxide reductase. Nature. 2004;427:541–544. doi: 10.1038/nature02254. [DOI] [PubMed] [Google Scholar]
- 58.Rost S, Fregin A, Ivaskevicius V, Conzelmann E, Hortnagel K, Pelz HJ, et al. Mutations in VKORC1 cause warfarin resistance and multiple coagulation factor deficiency type 2. Nature. 2004;427:537–541. doi: 10.1038/nature02214. [DOI] [PubMed] [Google Scholar]
- 59.Rieder MJ, Reiner AP, Gage BF, Nickerson DA, Eby CS, McLeod HL, et al. Effect of VKORC1 haplotypes on transcriptional regulation and warfarin dose. N. Engl. J. Med. 2005;352:2285–2293. doi: 10.1056/NEJMoa044503. [DOI] [PubMed] [Google Scholar]
- 60.Yuan HY, Chen JJ, Lee MT, Wung JC, Chen YF, Charng MJ, et al. A novel functional VKORC1 promoter polymorphism is associated with inter-individual and inter-ethnic differences in warfarin sensitivity. Hum. Mol. Genet. 2005;14:1745–1751. doi: 10.1093/hmg/ddi180. [DOI] [PubMed] [Google Scholar]
- 61.Limdi NA, Wadelius M, Cavallari L, Eriksson N, Crawford DC, Lee MT, et al. Warfarin pharmacogenetics: a single VKORC1 polymorphism is predictive of dose across 3 racial groups. Blood. 2010;115:3827–3834. doi: 10.1182/blood-2009-12-255992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 62.Perini JA, Struchiner CJ, Silva-Assuncao E, Santana IS, Rangel F, Ojopi EB, et al. Pharmacogenetics of warfarin: development of a dosing algorithm for brazilian patients. Clin. Pharmacol. Ther. 2008;84:722–728. doi: 10.1038/clpt.2008.166. [DOI] [PubMed] [Google Scholar]
- 63.Djaffar-Jureidini I, Chamseddine N, Keleshian S, Naoufal R, Zahed L, Hakime N. Pharmacogenetics of coumarin dosing: prevalence of CYP2C9 and VKORC1 polymorphisms in the Lebanese population. Genet. Test. Mol Biomarkers. 2011;15:827–830. doi: 10.1089/gtmb.2010.0248. [DOI] [PubMed] [Google Scholar]
- 64.Pathare A, Al Khabori M, Alkindi S, Al Zadjali S, Misquith R, Khan H, et al. Warfarin pharmacogenetics: development of a dosing algorithm for Omani patients. J. Hum. Genet. 2012;57:665–669. doi: 10.1038/jhg.2012.94. [DOI] [PubMed] [Google Scholar]
- 65.Suriapranata IM, Tjong WY, Wang T, Utama A, Raharjo SB, Yuniadi Y, et al. Genetic factors associated with patient-specific warfarin dose in ethnic Indonesians. BMC Med. Genet. 2011;12:80. doi: 10.1186/1471-2350-12-80. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 66.Scott SA, Edelmann L, Kornreich R, Desnick RJ. Warfarin pharmacogenetics: CYP2C9 and VKORC1 genotypes predict different sensitivity and resistance frequencies in the Ashkenazi and Sephardi Jewish populations. Am. J. Hum. Genet. 2008;82:495–500. doi: 10.1016/j.ajhg.2007.10.002. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 67.Cooper GM, Johnson JA, Langaee TY, Feng H, Stanaway IB, Schwarz UI, et al. A genome-wide scan for common genetic variants with a large influence on warfarin maintenance dose. Blood. 2008;112:1022–1027. doi: 10.1182/blood-2008-01-134247. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 68.Takeuchi F, McGinnis R, Bourgeois S, Barnes C, Eriksson N, Soranzo N, et al. A genome-wide association study confirms VKORC1, CYP2C9, and CYP4F2 as principal genetic determinants of warfarin dose. PLoS Genet. 2009;5:e1000433. doi: 10.1371/journal.pgen.1000433. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 69.Cha PC, Mushiroda T, Takahashi A, Kubo M, Minami S, Kamatani N, et al. Genome-wide association study identifies genetic determinants of warfarin responsiveness for Japanese. Hum. Mol. Genet. 2010;19:4735–4744. doi: 10.1093/hmg/ddq389. [DOI] [PubMed] [Google Scholar]
- 70.Caldwell MD, Awad T, Johnson JA, Gage BF, Falkowski M, Gardina P, et al. CYP4F2 genetic variant alters required warfarin dose. Blood. 2008;111:4106–4112. doi: 10.1182/blood-2007-11-122010. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 71.McDonald MG, Rieder MJ, Nakano M, Hsia CK, Rettie AE. CYP4F2 is a vitamin K1 oxidase: An explanation for altered warfarin dose in carriers of the V433M variant. Mol. Pharmacol. 2009;75:1337–1346. doi: 10.1124/mol.109.054833. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 72.Danese E, Montagnana M, Johnson JA, Rettie AE, Zambon CF, Lubitz SA, et al. Impact of the CYP4F2 p.V433M polymorphism on coumarin dose requirement: systematic review and meta-analysis. Clin. Pharmacol. Ther. 2012;92:746–756. doi: 10.1038/clpt.2012.184. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 73.Poller L, Wright D, Rowlands M. Prospective comparative study of computer programs used for management of warfarin. J. Clin. Pathol. 1993;46:299–303. doi: 10.1136/jcp.46.4.299. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 74.Vadher BD, Patterson DL, Leaning MS. Validation of an algorithm for oral anticoagulant dosing and appointment scheduling. Clin. Lab. Haematol. 1995;17:339–345. [PubMed] [Google Scholar]
- 75.Ageno W, Johnson J, Nowacki B, Turpie AG. A computer generated induction system for hospitalized patients starting on oral anticoagulant therapy. Thromb. Haemost. 2000;83:849–852. [PubMed] [Google Scholar]
- 76.Gage BF, Eby C, Milligan PE, Banet GA, Duncan JR, McLeod HL. Use of pharmacogenetics and clinical factors to predict the maintenance dose of warfarin. Thromb. Haemost. 2004;91:87–94. doi: 10.1160/TH03-06-0379. [DOI] [PubMed] [Google Scholar]
- 77.Kamali F, Khan TI, King BP, Frearson R, Kesteven P, Wood P, et al. Contribution of age, body size, and CYP2C9 genotype to anticoagulant response to warfarin. Clin. Pharmacol. Ther. 2004;75:204–212. doi: 10.1016/j.clpt.2003.10.001. [DOI] [PubMed] [Google Scholar]
- 78.Wei M, Ye F, Xie D, Zhu Y, Zhu J, Tao Y, et al. A new algorithm to predict warfarin dose from polymorphisms of CYP4F2, CYP2C9 and VKORC1 and clinical variables: derivation in Han Chinese patients with non valvular atrial fibrillation. Thromb. Haemost. 2012;107:1083–1091. doi: 10.1160/TH11-12-0848. [DOI] [PubMed] [Google Scholar]
- 79.Carcas AJ, Borobia AM, Velasco M, Abad-Santos F, Diaz MQ, Fernandez-Capitan C, et al. Efficiency and effectiveness of the use of an acenocoumarol pharmacogenetic dosing algorithm versus usual care in patients with venous thromboembolic disease initiating oral anticoagulation: study protocol for a randomized controlled trial. Trials. 2012;13:239. doi: 10.1186/1745-6215-13-239. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 80.Lubitz SA, Scott SA, Rothlauf EB, Agarwal A, Peter I, Doheny D, et al. Comparative performance of gene-based warfarin dosing algorithms in a multiethnic population. J. Thromb. Haemost. 2010;8:1018–1026. doi: 10.1111/j.1538-7836.2010.03792.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 81.Wen MS, Lee M, Chen JJ, Chuang HP, Lu LS, Chen CH, et al. Prospective study of warfarin dosage requirements based on CYP2C9 and VKORC1 genotypes. Clin. Pharmacol. Ther. 2008;84:83–89. doi: 10.1038/sj.clpt.6100453. [DOI] [PubMed] [Google Scholar]
- 82.Choi JR, Kim JO, Kang DR, Yoon SA, Shin JY, Zhang X, et al. Proposal of pharmacogenetics-based warfarin dosing algorithm in Korean patients. J. Hum. Genet. 2011;56:290–295. doi: 10.1038/jhg.2011.4. [DOI] [PubMed] [Google Scholar]
- 83.Biss TT, Avery PJ, Brandao LR, Chalmers EA, Williams MD, Grainger JD, et al. VKORC1 and CYP2C9 genotype and patient characteristics explain a large proportion of the variability in warfarin dose requirement among children. Blood. 2012;119:868–873. doi: 10.1182/blood-2011-08-372722. [DOI] [PubMed] [Google Scholar]
- 84.Moreau C, Bajolle F, Siguret V, Lasne D, Golmard JL, Elie C, et al. Vitamin K antagonists in children with heart disease: height and VKORC1 genotype are the main determinants of the warfarin dose requirement. Blood. 2012;119:861–867. doi: 10.1182/blood-2011-07-365502. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 85.Millican E, Jacobsen-Lenzini PA, Milligan PE, Grosso L, Eby C, Deych E, et al. Genetic-based dosing in orthopaedic patients beginning warfarin therapy. Blood. 2007;110:1511–1515. doi: 10.1182/blood-2007-01-069609. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 86.Finkelman BS, Gage BF, Johnson JA, Brensinger CM, Kimmel SE. Genetic warfarin dosing: tables versus algorithms. J. Am. Coll. Cardiol. 2011;57:612–618. doi: 10.1016/j.jacc.2010.08.643. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 87.Anderson JL, Horne BD, Stevens SM, Grove AS, Barton S, Nicholas ZP, et al. Randomized trial of genotype-guided versus standard warfarin dosing in patients initiating oral anticoagulation. Circulation. 2007;116:2563–2570. doi: 10.1161/CIRCULATIONAHA.107.737312. [DOI] [PubMed] [Google Scholar]
- 88.Burmester JK, Berg RL, Yale SH, Rottscheit CM, Glurich IE, Schmelzer JR, et al. A randomized controlled trial of genotype-based coumadin initiation. Genet. Med. 2011;13:509–518. doi: 10.1097/GIM.0b013e31820ad77d. [DOI] [PubMed] [Google Scholar]
- 89.Caraco Y, Blotnick S, Muszkat M. CYP2C9 genotype-guided warfarin prescribing enhances the efficacy and safety of anticoagulation: a prospective randomized controlled study. Clin. Pharmacol. Ther. 2008;83:460–470. doi: 10.1038/sj.clpt.6100316. [DOI] [PubMed] [Google Scholar]
- 90.Epstein RS, Moyer TP, Aubert RE, O Kane DJ, Xia F, Verbrugge RR, et al. Warfarin genotyping reduces hospitalization rates results from the MM-WES (Medco-Mayo Warfarin Effectiveness study). J. Am. Coll. Cardiol. 2010;55:2804–2812. doi: 10.1016/j.jacc.2010.03.009. [DOI] [PubMed] [Google Scholar]
- 91.Gong IY, Tirona RG, Schwarz UI, Crown N, Dresser GK, Larue S, et al. Prospective evaluation of a pharmacogenetics-guided warfarin loading and maintenance dose regimen for initiation of therapy. Blood. 2011;118:3163–3171. doi: 10.1182/blood-2011-03-345173. [DOI] [PubMed] [Google Scholar]
- 92.McMillin GA, Melis R, Wilson A, Strong MB, Wanner NA, Vinik RG, et al. Gene-based warfarin dosing compared with standard of care practices in an orthopedic surgery population: a prospective, parallel cohort study. Ther. Drug. Monit. 2010;32:338–345. doi: 10.1097/FTD.0b013e3181d925bb. [DOI] [PubMed] [Google Scholar]
- 93.Carlquist JF, Horne BD, Muhlestein JB, Lappe DL, Whiting BM, Kolek MJ, et al. Genotypes of the cytochrome p450 isoform, CYP2C9, and the vitamin K epoxide reductase complex subunit 1 conjointly determine stable warfarin dose: a prospective study. J. Thromb. Thrombolysis. 2006;22:191–197. doi: 10.1007/s11239-006-9030-7. [DOI] [PubMed] [Google Scholar]
- 94.Lenzini PA, Grice GR, Milligan PE, Dowd MB, Subherwal S, Deych E, et al. Laboratory and clinical outcomes of pharmacogenetic vs. clinical protocols for warfarin initiation in orthopedic patients. J. Thromb. Haemost. 2008;6:1655–1662. doi: 10.1111/j.1538-7836.2008.03095.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 95.Voora D, Eby C, Linder MW, Milligan PE, Bukaveckas BL, McLeod HL, et al. Prospective dosing of warfarin based on cytochrome P-450 2C9 genotype. Thromb. Haemost. 2005;93:700–705. doi: 10.1160/TH04-08-0542. [DOI] [PubMed] [Google Scholar]
- 96.Anderson JL, Horne BD, Stevens SM, Woller SC, Samuelson KM, Mansfield JW, et al. A randomized and clinical effectiveness trial comparing two pharmacogenetic algorithms and standard care for individualizing warfarin dosing (CoumaGen-II). Circulation. 2012;125:1997–2005. doi: 10.1161/CIRCULATIONAHA.111.070920. [DOI] [PubMed] [Google Scholar]
- 97.Connolly SJ, Ezekowitz MD, Yusuf S, Eikelboom J, Oldgren J, Parekh A, et al. Dabigatran versus warfarin in patients with atrial fibrillation. N. Engl. J. Med. 2009;361:1139–1151. doi: 10.1056/NEJMoa0905561. [DOI] [PubMed] [Google Scholar]
- 98.Patel MR, Mahaffey KW, Garg J, Pan G, Singer DE, Hacke W, et al. Rivaroxaban versus warfarin in nonvalvular atrial fibrillation. N. Engl. J. Med. 2011;365:883–891. doi: 10.1056/NEJMoa1009638. [DOI] [PubMed] [Google Scholar]
- 99.Shah SV, Gage BF. Cost-effectiveness of dabigatran for stroke prophylaxis in atrial fibrillation. Circulation. 2011;123:2562–2570. doi: 10.1161/CIRCULATIONAHA.110.985655. [DOI] [PubMed] [Google Scholar]
