To the Editor,
We agree with Pholwat et al. [1] that fast genotypic methods will play an increasingly prominent role in drug-susceptibility testing (DST) for the Mycobacterium tuberculosis complex (MTBC) [2]. They reported on the evaluation of a high-resolution melt assay (HMR) to detect pyrazinamide (PZA) resistance, which has the advantage of speed and simplicity. Two of 96 test isolates were PZA susceptible but contained a synonymous pncA (Rv2043c) tcC/tcT Ser65Ser mutation and were falsely classified as resistant by HMR. The isolates in this study came almost exclusively from two countries (Thailand and Tanzania), and we questioned how disseminated this mutation was in the MTBC population at large. A literature review suggested that this silent mutation is largely specific to the Central Asian (CAS) genotype, although not all CAS strains harbour this polymorphism [3], [4], [5], [6], [7], [8], [9], [10]. We also sought the mutation in a globally representative collection of MTBC genomes (n = 219), which confirmed these findings (Figure 1) [11]. 83% of the isolates of the East African-Indian lineage 3, which encompasses the CAS genotype [12], shared the mutation in question, whereas the 6 most phylogenetically basal lineage 3 isolates lacked the polymorphism. These isolates were not easily identifiable using spoligotyping alone as they included a number of Shared International Types (SITs): SIT1 (pseudo-Beijing [13], [14]), SIT26, SIT486 and SIT1200. In fact, SIT26, the most frequent CAS spoligotype globally [15], was paraphyletic (i.e. it included isolates with and without the synonymous mutation (Supplemental Figure 1)).
Figure 1.
Whole-genome phylogeny of 219 isolates of all major MTBC lineages [11]. Only the more phylogenetically recent lineage 3 isolates shared the pncA tcT variant at Ser65, whereas the 6 remaining lineage 3 isolates and all isolates from other lineages had the tcC variant (including the lineage 4 M. tuberculosis H37Rv laboratory strain that is used as the reference/wild-type sequence for sequence analyses). The spoligotypes for the lineage 3 isolates can be found in Supplemental Figure 1.
The data by Pholwat et al. are in agreement with our findings as they found this synonymous mutation in 7/15 (47%) of Tanzanian isolates, where lineage 3 strains are known to be dominant [12], [16], and in none of the isolates from Thailand or the United States, where lineage 3 strains are rare [12], [17]. As a result, the specificity of their HMR assay depends on the local MTBC population structure (i.e. in countries in which lineage 3 isolates are widespread the number of false-resistant results will likely exceed the number of true-positives). By contrast, the Nipro Corporation avoided this flaw by including an additional probe to compensate for the Ser65Ser polymorphism when designing their pncA line probe assay [18], [19]. This underlines that the MTBC diversity has to be considered when designing and validating genotypic DST assays [19], [20].
Funding
This work was supported by a grant from the Department of Health, Wellcome Trust and the Health Innovation Challenge Fund (HICF-T5-342 and WT098600) and Public Health England (to S.J.P.). C.U.K. is a Junior Research Fellow at Wolfson College, Cambridge. I.C. is supported by the Spanish Government (Ramón y Cajal programme RYC-2012-10627).
Disclaimer
This publication presents independent research supported by the Health Innovation Challenge Fund (HICF-T5-342 and WT098600), a parallel funding partnership between the Department of Health and Wellcome Trust. The views expressed in this publication are those of the authors and not necessarily those of the Department of Health or Wellcome Trust.
Transparency declarations
S.J.P. is a consultant for Pfizer Inc and received funding for travel and accommodation from Illumina Inc.
Footnotes
Supplementary data related to this article can be found at http://dx.doi.org/10.1016/j.tube.2014.04.002.
Appendix A. Supplementary data
The following is the supplementary data related to this article:
References
- 1.Pholwat S., Stroup S., Gratz J., Trangan V., Foongladda S., Kumburu H., Juma S.P., Kibiki G., Houpt E. Pyrazinamide susceptibility testing of Mycobacterium tuberculosis by high resolution melt analysis. Tuberculosis (Edinb) 2014;94:20–25. doi: 10.1016/j.tube.2013.10.006. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 2.Köser C.U., Bryant J.M., Becq J., Török M.E., Ellington M.J., Marti-Renom M.A., Carmichael A.J., Parkhill J., Smith G.P., Peacock S.J. Whole-genome sequencing for rapid susceptibility testing of M. tuberculosis. N Engl J Med. 2013;369:290–292. doi: 10.1056/NEJMc1215305. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 3.Doustdar F., Khosravi A., Farnia P. Mycobacterium tuberculosis genotypic diversity in pyrazinamide-resistant isolates of Iran. Microb Drug Resist. 2009;15:251–256. doi: 10.1089/mdr.2009.0066. [DOI] [PubMed] [Google Scholar]
- 4.Stavrum R., Myneedu V.P., Arora V.K., Ahmed N., Grewal H.M. In-depth molecular characterization of Mycobacterium tuberculosis from New Delhi-predominance of drug resistant isolates of the 'modern' (TbD1) type. PLoS One. 2009;4:e4540. doi: 10.1371/journal.pone.0004540. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 5.Thomas S.K., Iravatham C.C., Moni B.H., Kumar A., Archana B.V., Majid M., Priyadarshini Y., Rani P.S., Valluri V., Hasnain S.E., Ahmed N. Modern and ancestral genotypes of Mycobacterium tuberculosis from Andhra Pradesh, India. PLoS One. 2011;6:e27584. doi: 10.1371/journal.pone.0027584. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 6.Alexander D.C., Ma J.H., Guthrie J.L., Blair J., Chedore P., Jamieson F.B. Gene sequencing for routine verification of pyrazinamide resistance in Mycobacterium tuberculosis: a role for pncA but not rpsA. J Clin Microbiol. 2012;50:3726–3728. doi: 10.1128/JCM.00620-12. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 7.Casali N., Nikolayevskyy V., Balabanova Y., Ignatyeva O., Kontsevaya I., Harris S.R., Bentley S.D., Parkhill J., Nejentsev S., Hoffner S.E., Horstmann R.D., Brown T., Drobniewski F. Microevolution of extensively drug-resistant tuberculosis in Russia. Genome Res. 2012;22:735–745. doi: 10.1101/gr.128678.111. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 8.Stoffels K., Mathys V., Fauville-Dufaux M., Wintjens R., Bifani P. Systematic analysis of pyrazinamide-resistant spontaneous mutants and clinical isolates of Mycobacterium tuberculosis. Antimicrob Agents Chemother. 2012;56:5186–5193. doi: 10.1128/AAC.05385-11. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 9.Feuerriegel S., Köser C.U., Richter E., Niemann S. Mycobacterium canettii is intrinsically resistant to both pyrazinamide and pyrazinoic acid. J Antimicrob Chemother. 2013;68:1439–1440. doi: 10.1093/jac/dkt042. [DOI] [PubMed] [Google Scholar]
- 10.Feuerriegel S., Köser C.U., Niemann S. Phylogenetic polymorphisms in antibiotic resistance genes of the Mycobacterium tuberculosis complex. J Antimicrob Chemother. 2014;69:1205–1210. doi: 10.1093/jac/dkt535. [DOI] [PubMed] [Google Scholar]
- 11.Comas I., Coscolla M., Luo T., Borrell S., Holt K.E., Kato-Maeda M., Parkhill J., Malla B., Berg S., Thwaites G., Yeboah-Manu D., Bothamley G., Mei J., Wei L., Bentley S., Harris S.R., Niemann S., Diel R., Aseffa A., Gao Q., Young D., Gagneux S. Out-of-Africa migration and neolithic coexpansion of Mycobacterium tuberculosis with modern humans. Nat Genet. 2013;45:1176–1182. doi: 10.1038/ng.2744. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 12.Gagneux S., Small P.M. Global phylogeography of Mycobacterium tuberculosis and implications for tuberculosis product development. Lancet Infect Dis. 2007;7:328–337. doi: 10.1016/S1473-3099(07)70108–1. S1473-3099(07)70108-1. [DOI] [PubMed] [Google Scholar]
- 13.Fenner L., Malla B., Ninet B., Dubuis O., Stucki D., Borrell S., Huna T., Bodmer T., Egger M., Gagneux S. “Pseudo-Beijing”: evidence for convergent evolution in the direct repeat region of Mycobacterium tuberculosis. PLoS One. 2011;6:e24737. doi: 10.1371/journal.pone.0024737. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 14.Firdessa R., Berg S., Hailu E., Schelling E., Gumi B., Erenso G., Gadisa E., Kiros T., Habtamu M., Hussein J., Zinsstag J., Robertson B.D., Ameni G., Lohan A.J., Loftus B., Comas I., Gagneux S., Tschopp R., Yamuah L., Hewinson G., Gordon S.V., Young D.B., Aseffa A. Mycobacterial lineages causing pulmonary and extrapulmonary tuberculosis, Ethiopia. Emerg Infect Dis. 2013;19:460–463. doi: 10.3201/eid1903.120256. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 15.Demay C., Liens B., Burguiere T., Hill V., Couvin D., Millet J., Mokrousov I., Sola C., Zozio T., Rastogi N. SITVITWEB – a publicly available international multimarker database for studying Mycobacterium tuberculosis genetic diversity and molecular epidemiology. Infect Genet Evol. 2012;12:755–766. doi: 10.1016/j.meegid.2012.02.004. [DOI] [PubMed] [Google Scholar]
- 16.Kibiki G.S., Mulder B., Dolmans W.M., de Beer J.L., Boeree M., Sam N., van Soolingen D., Sola C., van der Zanden A.G. M. tuberculosis genotypic diversity and drug susceptibility pattern in HIV-infected and non-HIV-infected patients in northern Tanzania. BMC Microbiol. 2007;7:51. doi: 10.1186/1471-2180-7-51. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 17.Faksri K., Drobniewski F., Nikolayevskyy V., Brown T., Prammananan T., Palittapongarnpim P., Prayoonwiwat N., Chaiprasert A. Epidemiological trends and clinical comparisons of Mycobacterium tuberculosis lineages in Thai TB meningitis. Tuberculosis (Edinb) 2011;91:594–600. doi: 10.1016/j.tube.2011.08.005. [DOI] [PubMed] [Google Scholar]
- 18.Sekiguchi J., Nakamura T., Miyoshi-Akiyama T., Kirikae F., Kobayashi I., Augustynowicz-Kopec E., Zwolska Z., Morita K., Suetake T., Yoshida H., Kato S., Mori T., Kirikae T. Development and evaluation of a line probe assay for rapid identification of pncA mutations in pyrazinamide-resistant Mycobacterium tuberculosis strains. J Clin Microbiol. 2007;45:2802–2807. doi: 10.1128/JCM.00352-07. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 19.Köser C.U., Feuerriegel S., Summers D.K., Archer J.A., Niemann S. Importance of the genetic diversity within the Mycobacterium tuberculosis complex for the development of novel antibiotics and diagnostic tests of drug resistance. Antimicrob Agents Chemother. 2012;56:6080–6087. doi: 10.1128/AAC.01641-12. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 20.Köser C.U., Bryant J.M., Parkhill J., Peacock S.J. Consequences of whiB7 (Rv3197A) mutations in Beijing genotype isolates of the Mycobacterium tuberculosis complex. Antimicrob Agents Chemother. 2013;57:3461. doi: 10.1128/AAC.00626-13. [DOI] [PMC free article] [PubMed] [Google Scholar]
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.

