Skip to main content
Jornal Brasileiro de Pneumologia logoLink to Jornal Brasileiro de Pneumologia
. 2013 Nov-Dec;39(6):701–710. doi: 10.1590/S1806-37132013000600009
View full-text in Portuguese

CT densitovolumetry in children with obliterative bronchiolitis: correlation with clinical scores and pulmonary function test results*,**

Helena Mocelin 1, Gilberto Bueno 2, Klaus Irion 3, Edson Marchiori 4, Edgar Sarria 5, Guilherme Watte 6, Bruno Hochhegger 7,
PMCID: PMC4075902  PMID: 24473764

Abstract

OBJECTIVE:

To determine whether air trapping (expressed as the percentage of air trapping relative to total lung volume [AT%]) correlates with clinical and functional parameters in children with obliterative bronchiolitis (OB).

METHODS:

CT scans of 19 children with OB were post-processed for AT% quantification with the use of a fixed threshold of −950 HU (AT%950) and of thresholds selected with the aid of density masks (AT%DM). Patients were divided into three groups by AT% severity. We examined AT% correlations with oxygen saturation (SO2) at rest, six-minute walk distance (6MWD), minimum SO2 during the six-minute walk test (6MWT_SO2), FVC, FEV1, FEV1/FVC, and clinical parameters.

RESULTS:

The 6MWD was longer in the patients with larger normal lung volumes (r = 0.53). We found that AT%950 showed significant correlations (before and after the exclusion of outliers, respectively) with the clinical score (r = 0.72; 0.80), FVC (r = 0.24; 0.59), FEV1 (r = −0.58; −0.67), and FEV1/FVC (r = −0.53; r = −0.62), as did AT%DM with the clinical score (r = 0.58; r = 0.63), SO2 at rest (r = −0.40; r = −0.61), 6MWT_SO2 (r = −0.24; r = −0.55), FVC (r = −0.44; r = −0.80), FEV1 (r = −0.65; r = −0.71), and FEV1/FVC (r = −0.41; r = −0.52).

CONCLUSIONS:

Our results show that AT% correlates significantly with clinical scores and pulmonary function test results in children with OB.

Keywords: Multidetector computed tomography, Respiratory function tests, Bronchiolitis obliterans

Introduction

Postinfectious obliterative bronchiolitis (OB) is an uncommon and severe form of chronic obstructive lung disease that occurs in children after lower respiratory tract injury.(1) In terms of diagnosis, there are no specific signs or symptoms of postinfectious OB. Clinical and imaging findings are used in combination with laboratory test results in order to identify the cause and rule out other forms of chronic lung disease. The diagnostic criteria for postinfectious OB are as follows: severe acute bronchiolitis/viral pneumonia during the first 3 years of life in previously healthy children; evidence of persistent airway obstruction after the acute event, identified by physical examination, pulmonary function testing, or both; chest X-ray findings of obstructive lung disease; a mosaic pattern and air trapping (AT) on chest CT scans; and exclusion of other chronic lung diseases progressing to permanent respiratory symptoms.(2,3)

Histologically, OB is characterized by the presence of granulation tissue plugs in the small airway lumen, complete small airway destruction, or both.(4) Mauad et al.(5) showed that OB is histologically characterized by a constrictive pattern with varying degrees of inflammation and airway obliteration, ranging from minimal bronchiolar inflammation to complete obliteration of the bronchioles and bronchi by fibrotic tissue. Indirect signs of obstruction, such as macrophage accumulation, bronchiectasis, mucus accumulation, and hyperinflation, are always present.

Although there have been several reviews of studies examining long-term sequelae of adenovirus pneumonia,(5,6) few studies have examined CT findings in children with OB.(6,7) Some of these studies have reported that abnormal CT findings in such children can predict abnormal lung function later in life.(7)

It has been reported that HRCT is an important diagnostic tool for the evaluation of pulmonary damage in patients with OB.(2) The volume of an organ (or the volume of abnormal parts of an organ) can be determined by the use of helical CT images and attenuation coefficient values or densities on the Hounsfield scale, expressed in Hounsfield units (HU). This method is known as volumetric CT densitometry or CT densitovolumetry,(8,9) and it can be used in order to measure the volume of areas of lung with low attenuation (i.e., AT), as well as total lung volume (TLV), in children with OB. In addition, it can be used in order to measure the percentage of AT relative to TLV (AT%) with the use of thresholds to differentiate normal lung areas from OB areas. It has been shown that AT% is a major contributing factor to chronic persistent airflow obstruction in asthma.(10)

Pulmonary function remains abnormal for long periods after an episode of OB.(11,12) The clinical course following the onset of OB is variable and depends on the volume of affected lung tissue.(1) Measures of clinical status and of the ability to perform physically demanding activities-such as the number of hospital admissions or missed school days, walk test distance, nutritional status, and oxygen saturation (SO2) at rest or during exercise-facilitate the selection of appropriate clinical interventions.(2,3) Because the prognosis of OB patients depends not only on patient behavior but also on functional impairment and the extent of anatomical damage, clinicians should gather information regarding the extent and type of anatomical abnormalities. Bronchiectasis, atelectasis, lobar collapse, and areas of low density are known consequences of postinfectious OB, and HRCT is the best method of examining such lesions,(4,6,7) all of which can influence the clinical status of patients and their pulmonary function test results.(4,6,7) Previous studies have shown that low attenuation areas correlate well with pulmonary function test results in patients with AT of various causes.(13-15) However, to our knowledge, no studies have shown a correlation of CT densitovolumetry findings with pulmonary function in children with OB.(4,6,7)

Our objective was to describe the correlation between the volume of areas of AT and pulmonary function test results in children with OB. In addition, we compared AT% values with SO2 values, pulmonary function test results, and clinical scores in those children in an attempt to obtain objective measurement criteria for OB.

Methods

This was a prospective study including all of the children treated at our postinfectious OB clinic for more than 5 years and having clinically stable OB and symptom onset before the age of 2 years. The study protocol was approved by the local research ethics committee, and the parents or legal guardians of all participants gave written informed consent.

The diagnosis of OB was based on the identification of chronic obstructive respiratory symptoms appearing after an episode of lower respiratory tract infection before the age of 2 years in previously healthy children.(2,3) All clinical diagnoses were confirmed by characteristic findings on contemporary HRCT scans. Differential diagnoses were excluded.

The inclusion criteria were as follows(3): acute bronchiolitis/viral pneumonia before the age of 2 years in previously healthy children; evidence of persistent airway obstruction after the acute event, identified by physical examination, pulmonary function testing, or both, the obstruction being unresponsive to at least 2 weeks of treatment with systemic corticosteroids and bronchodilators; radiological findings of obstructive lung disease, including hyperinflation, atelectasis, bronchial wall thickening, and bronchiectasis, as well as a mosaic perfusion pattern and AT on CT scans; and absence of other chronic lung diseases progressing to persistent respiratory symptoms, including tuberculosis, cystic fibrosis, bronchopulmonary dysplasia, immunodeficiency, asthma, and severe alpha-1 antitrypsin deficiency. The exclusion criteria were as follows: being unable to undergo pulmonary function testing or CT without sedation; being unable to hold breath for the duration of CT scanning; Having disease exacerbation < 30 days before CT or pulmonary function testing; having other lung diseases; and requiring continuous oxygen therapy.

A total of 25 patients with OB met the inclusion criteria. Of those 25 patients, 6 were excluded (because they were unable to perform the required respiratory maneuvers). The final sample consisted of 19 children (14 males and 5 females) in the 7-15 year age bracket (mean age, 10 ± 2.5 years).

All patients performed spirometry and six-minute walk tests (6MWTs) in accordance with previous reports.(12,16) Spirometry was performed with a Vitalograph ALPHA spirometer (Vitalograph, Buckingham, UK) before and 10 min after the administration of an inhaled dose of albuterol (300 µg; Aerolin(r); GlaxoSmithKline plc, Ware, UK) with a valve spacer (Fisonair(r); GlaxoSmithKline plc). All children performed a 6MWT with SO2 control. Because the 6MWT was performed after spirometry (and on the same day as the latter), all patients used albuterol before the 6MWT.

Clinical scores included the following: 1) nutritional status(17) (Z score: 0 = good nutritional status; 1 = mild malnutrition; 2 = moderate malnutrition; and 3 = severe malnutrition); 2) cough during remission (0 = absent and 1 = present); 3) cough within 2 weeks before the examination (0 = absent and 1 = present); 4) wheezing during remission (0 = absent and 1 = present); 5) wheezing on most days of the week (0 = absent and 1 = present); 6) wheezing in the last 2 weeks (0 = absent and 1 = present); 7) difficulty breathing in the 2 weeks preceding the examination (0 = absent and 1 = present); 8) frequency of exacerbations in the last 6 months (0 = no exacerbations; 1 = sporadic exacerbations; 2 = exacerbations every 2 months; 3 = exacerbations every month; and 4 = exacerbations every week); 9) increased anteroposterior chest diameter (0 = absent and 1 = present); 10) SO2 at rest (≥ 95% = 0; 90-94% = 1; and < 90% = 2); 11) minimum SO2 during the 6MWT (6MWT_SO2; ≥ 95% = 0; 90-94% = 1; and < 90% = 2), mean desaturation during exercise being measured by calculating the difference between SO2 at rest and 6MWT_SO2; 12) desaturation > 4% during the 6MWT (0 = negative and 1 = positive); 13) the FEV1/FVC ratio; and 14) percent predicted FEV1 (FEV1%; > 80% = 0; 61-80% = 1; 41-60% = 2; < 41% = 3).

All CT images were acquired with the use of the lowest possible radiation dose and a commercially available helical CT scanner (XVision EX; Toshiba Medical Systems Corporation, Otawara, Japan), being post-processed on a workstation (O2(r); SGI, Fremont, CA, USA) running three-dimensional (3D) rendering software (ALATOVIEW; Toshiba Medical Systems Corporation). The CT scanner was calibrated periodically, as recommended by the manufacturer. An initial set of nine axial HRCT scans (with 1-mm collimation at increments of 20 mm) were acquired with the use of a high-frequency algorithm. Those HRCT images were evaluated by two thoracic radiologists with more than 10 years of experience in chest CT. A final decision was reached by consensus.

Two additional sets of images were acquired by the helical CT scanner during single breath-hold maneuvers (during inhalation and exhalation). To minimize respiratory motion artifacts, helical CT scans were taken in the caudocranial direction. On the basis of previous studies,(18-21) the following parameters were used: collimation, 10 mm; table speed, 14 mm/rotation (pitch, 1.4); and low radiation dose (120 kV and 50 mAs). The mean total radiation dose was 5 ± 1.3 mSv. We used helical CT scans of 10 mm, low mAs, and high pitch in order to reduce radiation exposure. A standard reconstruction algorithm was used in order to avoid the effects of edge-enhancing filters on tissue density.(22) All scans were taken without intravenous contrast medium.

The first step of CT densitovolumetry was lung segmentation for measuring TLV. Two segmentation steps were applied to each set of helical CT images before the calculation of TLV. The lungs were isolated by eliminating from the image data any structure with a density exceeding −250 HU. Subsequently, we eliminated the air within the abdomen and outside the patient (nonpulmonary air) by selecting regions of interest with the 3D rendering software. The regions of interest were selected by drawing a line between the lung and the nonpulmonary air on each slice. Different 3D software, unavailable to us during the study period, might include different tools for lung segmentation. In order to minimize operator-dependent variability, we considered the air within the trachea or main bronchi to be pulmonary air rather than excluding it. The operator assessed segmentation accuracy by reviewing the 3D lung image generated by volume rendering (Figure 1). The software then automatically calculated TLV.

Figure 1. In A, coronal reformatted CT image (minimum intensity projection) showing air trapping. In B, three-dimensional CT reconstruction showing low attenuation volumes, which represent air trapping volumes.

Figure 1

For measuring the volume of lung parenchyma with abnormally low attenuation values, areas of extremely low attenuation or density were considered to be abnormal, because of the disproportion between the volume of lung parenchyma (including interstitial tissue, vessels, blood, lymph, interstitial fluid, and airway walls) and the air in those regions. In order to simplify measurement, we defined "AT volume" as the total volume of lung zones showing extremely low density values.

We calculated AT% using a fixed threshold. We first calculated the lung volume affected by AT using a fixed threshold of −950 HU (AT%950). This threshold was first proposed by Gevenois et al.(23) and has been used by many others in order to quantify emphysema.(18) We considered any portion of the lungs with a density below −950 HU to be affected by AT. We calculated AT%950 by dividing the AT volume for that threshold by the TLV. These data were also calculated for expiratory scans.

The next step was to calculate AT% for thresholds selected by using density masks. No validated threshold is available for determining the volume of hyperinflation, AT, or emphysema in children. Because the −950 HU threshold can underestimate the extent of disease in this population, we also calculated AT volume using a threshold selected for each patient with the aid of a density mask. The threshold level was adjusted until the mask corresponded to our subjective visual impression of affected lung portions (Figure 2). That threshold was selected, and TLV was then segmented. Any portions of the lungs with densities below the selected HU were considered abnormal. We then calculated AT% using that density mask (AT%DM). These data were also calculated for expiratory scans.

Figure 2. Post-processing tools. After the use of a threshold, the air inside and outside the lungs is isolated. In A, axial CT scan showing air inside and outside the lungs. In B, three-dimensional (3D) volume rendering of the same data. In C, 3D volume rendering of total lung volume after the exclusion of air outside the lungs.

Figure 2

The shrink (deflation) volume of the lungs was calculated by subtracting the TLV as measured on images acquired during exhalation from the TLV as measured on images acquired during inhalation. The percentage of shrink volume was considered excellent if it was > 50%, reasonable/good if it was 30-50%, and poor if it was < 30%.

For the statistical analysis, test results were entered into a Microsoft Excel database and processed by means of Excel tools, the analysis being performed with the Statistical Package for the Social Sciences, version 11 (SPSS Inc., Chicago, IL, USA). Statistical significance was set at p < 0.05. We assumed a power of 90% for a sample size of 19 patients and statistical significance of p < 0.05, on the basis of a previous study.(7)

Scatter plots (Figure 3) were used in order to classify patients according to the severity of AT%. For AT%950 and AT%DM, AT% < 1% was considered to indicate normality or minimal disease expression. In addition, AT%950 values of 1-5% were considered to indicate moderate disease expression, and AT%950 values > 5% were considered to indicate severe disease expression. Moreover, AT%DM values of 1-10% were considered to indicate moderate disease expression, and AT%DM values > 10% were considered to indicate severe disease expression. The magnitude of variability in AT%950 and AT%DM guided the selection of values to differentiate between moderate and severe disease expression (Figure 3).

Figure 3. Scatter plot illustrating the distribution of patients according to the percentage of air trapping relative to total lung volume (AT%), which was calculated for a fixed threshold of −950 HU (AT%950) and for thresholds set by subjective analysis based on density masks (AT%DM). Note that AT%DM allows better discrimination among the grades of disease severity (i.e., grade 1, normal/mild; grade 2, moderate; and grade 3, severe), especially for moderate disease (AT% > 1%) and severe disease (AT% > 10%). Note also that the stratification of disease severity changed from normal/mild to moderate in 1 patient (case 10) and from moderate to severe in 1 patient (case 14) depending on the method for selectin g the threshold.

Figure 3

All variables were analyzed by Pearson's product-moment correlation coefficient. Correlations were determined before and after the exclusion of outliers (Figure 4). Values of r and p were calculated separately for censored and uncensored data. Correlations were also calculated for pulmonary function test results and clinical scores.

Figure 4. Distribution of the observations of the percentage of air trapping relative to total lung volume (AT%), calculated for a fixed threshold of −950 HU-AT%950-(red squares) and for thresholds selected with the aid of density masks-AT%DM-(blue squares), including the corresponding linear regression lines. The distribution suggests that patients with FEV1% above 70% had only mild anatomical damage as measured by quantification of areas of air trapping or hyperinflation. Some patients with FEV1% in the range of 50% or less had only mild disease as measured by AT%950, a finding that highlights the limitations of a threshold of −950 HU for the assessment of patients with obliterative bronchiolitis. The correlation between FEV1% and AT%DM was much better, as shown by the regression line.

Figure 4

Results

Of the 19 patients, 2 had normal clinical scores, 7 had clinical scores < 5 (including the two patients with clinical scores = 0), 6 had scores of 5-10, and 6 had scores > 10. In the evaluation of the nutritional status, 8 patients had Z scores < 0.

Regarding 6MWT parameters, mean SO2 at rest was 96 ± 2% (range, 92-99%), and mean 6MWT_SO2 was 92 ± 4% (range, 83-99%). We found no correlation between SO2 at rest and SO2 during exercise (r = 0.00). Mean desaturation during exercise (measured by calculating the difference between SO2 at rest and 6MWT_SO2) was 4 ± 4% (range, −2% to 15%). The mean six-minute walk distance (6MWD) was 552 ± 131 m (range, 90-705 m). The 6MWD correlated significantly with 6MWT_SO2 (r = 0.52; p < 0.05) and desaturation during exercise (r = 0.58; p < 0.05) but not with SO2 at rest (r = 0.26; p > 0.05). Regarding pulmonary function parameters, mean FVC was 75 ± 20% (range, 43-106%), mean FEV1% was 58 ± 20% (range, 36-100%), and mean FEV1/FVC was 72 ± 16% (range, 49-107%).

Regarding CT densitovolumetry parameters, mean TLV was 3,009 ± 1,184 mL (range, 1,252-6,673 mL). The 6MWD was longer in those with larger normal lung volumes (r = 0.53). Mean shrink volume was 1,174 ± 789 mL (range, 182-3,471 mL), and mean percentage of shrink volume was 36 ± 13% (range, 9-63%). Mean AT%DM was 7.28 ± 9% (range, 0.03-24.67%), and mean AT%950 was 2.4 ± 3% (range, 0.03-8.67%). In 9, 5, and 5 of the 19 patients, AT%DM was classified as normal or mild, moderate, and severe, respectively (points above the gray line in Figure 3). In 10, 5, and 4 of the 19 patients, AT%950 was classified as normal or mild, moderate, and severe, respectively (points above the blue line in Figure 3). We found a correlation between AT%DM and AT%950, as evidenced by r = 0.83 (or r = 0.93 after the exclusion of one outlier). No significant correlation was found between the percentage of shrink volume and AT%DM or between the percentage of shrink volume and AT%950.

The correlations of CT densitovolumetry parameters with clinical scores, pulmonary function test results, and 6MWT parameters are summarized in Table 1. Table 1 shows the correlation values for each parameter before and after the exclusion of outliers. Figure 4 illustrates the correlations of AT%DM and AT%950 with nondensitometric parameters.

Table 1. Correlations between CT findings and functional data.

graphic file with name 1806-3713-jbpneu-39-06-0701-gt01.jpg

Discussion

An uncommon and severe form of chronic obstructive lung disease in children and adults, OB results from lower respiratory tract injury.(6) The diagnosis of postinfectious OB in children is based on a history of lower respiratory tract infection (usually an acute viral infection), followed by persistent chronic obstructive lung disease.(2,3) HRCT is an excellent method for the identification of anatomical damage following the onset of the disease, such damage including areas of low attenuation, areas of consolidation/atelectasis, bronchial wall thickening, bronchiectasis, and mosaic perfusion. In addition, expiratory HRCT scans can assist in confirming the presence of AT. However, HRCT allows only a subjective assessment of the extent of the disease and is dependent on the experience and skill of radiologists.(6,9) Our study demonstrated that the 6MWD was longer in patients with larger normal lung (r = 0.53). In addition, we found that AT%950 showed significant correlations (before and after the exclusion of outliers, respectively) with the clinical score (r = 0.72; 0.80), FVC (r = 0.24; 0.59), FEV1 (r = −0.58; −0.67), and FEV1/FVC (r = −0.53; r = −0.62), as did AT%DM with the clinical score (r = 0.58; r = 0.63), SO2 at rest (r = −0.40; r = −0.61), 6MWT_SO2 (r = −0.24; r = −0.55), FVC (r = −0.44; r = −0.80), FEV1 (r = −0.65; r = −0.71), and FEV1/FVC (r = −0.41; r = −0.52). These data suggest that objective CT measurements adequately represent clinical scores and functional impairment in OB.

CT densitovolumetry has been proven to overcome this limitation and is a standard recommendation for the quantification of other lung diseases in which the proportion between pulmonary air and the lung parenchyma is increased, therefore decreasing lung density.(20,21) Areas of decreased attenuation can also result from decreased perfusion of hypoventilated alveoli distal to obstructed bronchioles. The main finding on expiratory CT scans is a geographic heterogeneity of lung attenuation (mosaic attenuation pattern), which is seen in 40-80% of patients.(6,19) The abnormalities can be subtle on inspiratory CT scans, being usually easier to detect on expiratory CT scans.(24) In a previous study of the correlation between pulmonary function abnormalities and the extent of HRCT features of OB, significant relationships were found only between FEV1 and the number of bronchopulmonary segments affected by bronchiectasis.(14) Hansell et al.(15) confirmed that the extent of decreased attenuation was independently associated with a reduction in FEV1. In contrast, bronchial wall thickening was independently associated with the presence of AT (as measured by RV/TLC). In patients with Sauropus androgynus-associated OB, pulmonary function test results were more closely correlated with AT than with any other CT parameter.(16) To our knowledge, the present study is the first to demonstrate significant correlations of AT% with clinical scores and pulmonary function test results. The quantification of areas of abnormally low attenuation is an important diagnostic tool for OB, and the technique has substantial advantages over the traditional subjective assessment of HRCT images.(19-21) The quantification of anatomical damage is important in patients with OB; CT densitovolumetry can measure lung volumes directly and therefore aid clinicians in making decisions regarding patient quarantining and the aggressiveness of treatment.

In the present study, clinical scores were moderately correlated with FVC and FEV1/FVC (r ~ 0.5). Although there was a stronger correlation between clinical scores and FEV1 (r = 0.8), these findings are possibly biased because pulmonary function test results were included in the clinical score parameters. Additionally, both measures of AT% were significantly correlated with clinical scores (r ≥ 0.6); the strength of those correlations increased when outliers were eliminated (censored AT%950, r = 0.8), which suggests that it might increase further in larger series. We found that inspiratory CT scans were much more informative than expiratory CT scans regarding the presence of AT. The extent of AT areas might have been underestimated on the expiratory CT scans because of the higher expiratory lung density. This is important because atelectasis is more common in children.(24)

Our study has some limitations. In order to calculate AT%, we used a threshold that has yet to be validated. The −950 HU threshold was validated for emphysema quantification in adult patients, and we used it in the present study despite our conviction that segmentation at this level would result in an underestimation of areas of low attenuation in children, especially in the absence of hyperinflation/emphysema.(23) Although histopathological findings were unavailable for our patients, previous studies(2,3) have examined correlations between imaging findings and histopathological findings in patients with OB. In addition, our clinical score has yet to be validated, its clinical application requiring further investigation.

In conclusion, anatomical damage to the lungs as measured by CT (i.e., AT%) correlated significantly with clinical scores and pulmonary function test results. After our censoring of extreme values, AT%DM showed stronger correlations than did AT%950.

Footnotes

*

Study carried out at the Santa Casa Sisters of Mercy Hospital Complex in Porto Alegre and at the Federal University of Health Sciences of Porto Alegre Medical Imaging Research Laboratory, Porto Alegre, Brazil.

**

A versão completa em português deste artigo está disponível em www.jornaldepneumologia.com.br

Financial support: None.

Contributor Information

Helena Mocelin, Santa Casa Sisters of Mercy Hospital Complex in Porto Alegre, Porto Alegre, Brazil.

Gilberto Bueno, Federal University of Health Sciences of Porto Alegre, Porto Alegre, Brazil.

Klaus Irion, Liverpool Heart and Chest Hospital, Liverpool, United Kingdom.

Edson Marchiori, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.

Edgar Sarria, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil.

Guilherme Watte, Federal University of Rio Grande do Sul, Porto Alegre, Brazil.

Bruno Hochhegger, Federal University of Health Sciences of Porto Alegre; and Radiologist, Santa Casa Sisters of Mercy Hospital Complex in Porto Alegre, Porto Alegre, Brazil.

References

J Bras Pneumol. 2013 Nov-Dec;39(6):701–710. [Article in Portuguese]

Densitovolumetria pulmonar por TC em crianças com bronquiolite obliterante: correlação com escores clínicos e testes de função pulmonar*

Helena Mocelin 1, Gilberto Bueno 2, Klaus Irion 3, Edson Marchiori 4, Edgar Sarria 5, Guilherme Watte 6, Bruno Hochhegger 7,

Abstract

OBJETIVO:

Determinar as correlações entre o volume de aprisionamento aéreo em relação ao volume pulmonar total (AA%) e parâmetros clínicos e funcionais em crianças com bronquiolite obliterante (BO).

MÉTODOS:

Técnicas de pós-processamento de imagem foram usadas em imagens de TC de 19 crianças com BO para quantificar AA% por meio de um limiar fixo de −950 UH (AA%950) e de limiares selecionados por meio de máscaras de densidade (AA%MD). Os pacientes foram divididos em três grupos, de acordo com a gravidade de AA%. Foram examinadas as correlações entre AA% e a saturação de oxigênio (SO2) em repouso, a distância percorrida no teste de caminhada de seis minutos (DTC6), a SO2 mínima durante o teste de caminhada de seis minutos (SO2_TC6), a CVF, o VEF1, a relação VEF1/CVF e parâmetros clínicos.

RESULTADOS:

A DTC6 foi maior nos pacientes com maiores volumes pulmonares normais (r = 0,53). Na amostra como um todo, encontramos (antes e depois da exclusão de valores extremos, respectivamente), correlações estatisticamente significativas entre AA%950 e o escore clínico (r = 0,72; 0,80), a CVF (r = 0,24; 0,59), o VEF1 (r = −0,58; −0,67) e a relação VEF1/CVF (r = −0,53; r = −0,62), bem como entre AA%MD e o escore clínico (r = 0,58; r = 0,63), a SO2 em repouso (r = −0,40; r = −0,61), a SO2_TC6 (r = −0,24; r = −0,55), a CVF (r = −0,44; r = −0,80), o VEF1 (r = −0,65; r = −0,71) e a relação VEF1/CVF (r = −0,41; r = −0,52).

CONCLUSÕES:

Os resultados deste estudo mostram que AA% correlaciona-se significativamente com escores clínicos e testes de função pulmonar em crianças com BO.

Keywords: Tomografia computadorizada multidetectores, Testes de função respiratória, Bronquiolite obliterante

Introdução

A bronquiolite obliterante (BO) pós-infecciosa é uma forma incomum e grave de doença pulmonar obstrutiva crônica que ocorre em crianças após uma agressão ao trato respiratório inferior.(1) No tocante ao diagnóstico, não há sinais ou sintomas específicos de BO pós-infecciosa. Achados clínicos e de imagem são usados em conjunto com resultados de testes laboratoriais para identificar a causa e descartar outras formas de doença pulmonar crônica. Os critérios diagnósticos para BO pós-infecciosa são os seguintes: bronquiolite aguda grave/pneumonia viral durante os 3 primeiros anos de vida em crianças previamente saudáveis; evidência de obstrução persistente das vias aéreas após o evento agudo, identificada por meio de exame físico, teste de função pulmonar ou ambos; achados de doença pulmonar obstrutiva na radiografia de tórax; padrão em mosaico e aprisionamento aéreo (AA) na TC de tórax e exclusão de outras doenças pulmonares crônicas que progridem para sintomas respiratórios permanentes.(2,3)

Histologicamente, a BO é caracterizada pela presença de tampões de tecido de granulação no lúmen das pequenas vias aéreas, destruição completa das pequenas vias aéreas ou ambas. (4) Mauad et al.(5) mostraram que a BO é histologicamente caracterizada por um padrão constritivo com diversos graus de inflamação e obliteração das vias aéreas, desde inflamação bronquiolar mínima até obliteração completa dos bronquíolos e brônquios por tecido fibrótico. Sinais indiretos de obstrução, tais como acúmulo de macrófagos, bronquiectasia, acúmulo de muco e hiperinsuflação, estão sempre presentes.

Embora várias revisões tenham examinado as sequelas em longo prazo da pneumonia por adenovírus,(5,6) poucos estudos examinaram os achados tomográficos em crianças com BO.(6,7) Alguns desses estudos relataram que achados tomográficos anormais nessas crianças podem predizer a presença de função pulmonar anormal anos mais tarde.(7)

Relatou-se que a TCAR é uma importante ferramenta diagnóstica para avaliar o dano pulmonar em pacientes com BO.(2) O volume de um órgão (ou o volume de partes anormais de um órgão) pode ser determinado por meio de imagens de TC helicoidal e valores do coeficiente de atenuação ou densidades na escala de Hounsfield, em unidades Hounsfield (UH). Esse método é conhecido como densitometria e análise volumétrica pulmonar por TC ou densitovolumetria pulmonar por TC(8,9) e pode ser usado para medir o volume de áreas pulmonares com baixa atenuação (ou seja, AA) e o volume pulmonar total (VPT) em crianças com BO. Além disso, pode ser usado para medir a porcentagem de AA em relação ao VPT (AA%) por meio de limiares para diferenciar áreas pulmonares normais de áreas de BO. Demonstrou-se que AA% contribui sobremaneira para a obstrução ao fluxo aéreo persistente e crônica na asma.(10)

A função pulmonar permanece anormal durante longos períodos após um episódio de BO.(11,12) O curso clínico após o aparecimento de BO é variável e depende do volume do tecido pulmonar afetado. (1) Medidas do estado clínico e da capacidade de realizar atividades físicas intensas - medidas como o número de internações hospitalares ou de dias de aula perdidos, a distância percorrida em testes de caminhada, o estado nutricional e a saturação de oxigênio (SO2) em repouso ou durante o exercício - facilitam a seleção de intervenções clínicas apropriadas.(2,3) Como o prognóstico dos pacientes com BO depende não só de seu comportamento, mas também do comprometimento funcional e da extensão do dano anatômico, os clínicos devem reunir informações sobre o tipo de anormalidade anatômica e sua extensão. Bronquiectasia, atelectasia, colapso lobar e áreas de baixa densidade são conhecidas consequências da BO pós-infecciosa, e a TCAR é o melhor método para examinar tais lesões,(4,6,7) as quais podem influenciar o estado clínico dos pacientes e seu desempenho nos testes de função pulmonar.(4,6,7) Estudos anteriores demonstraram que áreas de baixa atenuação correlacionam-se bem com os resultados de testes de função pulmonar em pacientes com AA de causas variadas. (13-15) No entanto, até onde sabemos, nenhum estudo mostrou uma correlação entre achados de densitovolumetria pulmonar por TC e função pulmonar em crianças com BO.(4,6,7)

Nosso objetivo foi descrever a correlação entre o volume de áreas de AA e os resultados de testes de função pulmonar em crianças com BO. Além disso, comparamos os valores de AA% aos valores de SO2, aos resultados dos testes de função pulmonar, e aos escores clínicos observados nessas crianças, na tentativa de obter critérios objetivos de medição de BO.

Métodos

Trata-se de um estudo prospectivo incluindo todas as crianças que foram atendidas em nossa clínica de BO pós-infecciosa durante mais de 5 anos e que apresentavam BO clinicamente estável e início dos sintomas antes da idade de 2 anos. O protocolo do estudo foi aprovado pelo comitê de ética em pesquisa da instituição, e todos os pais ou responsáveis assinaram um termo de consentimento livre e esclarecido.

O diagnóstico de BO baseou-se na identificação de sintomas respiratórios obstrutivos crônicos após um episódio de infecção do trato respiratório inferior antes da idade de 2 anos em crianças anteriormente saudáveis.(2,3) Todos os diagnósticos clínicos foram confirmados por achados característicos em TCAR contemporânea. Diagnósticos diferenciais foram excluídos.

Os critérios de inclusão foram os seguintes(3): bronquiolite aguda/pneumonia viral antes dos 2 anos de idade em crianças previamente saudáveis; evidência de obstrução persistente das vias aéreas após o evento agudo, identificada por meio de exame físico, teste de função pulmonar ou ambos e sem resposta a pelo menos 2 semanas de tratamento com corticosteroides sistêmicos e broncodilatadores; achados radiológicos de doença pulmonar obstrutiva, incluindo hiperinsuflação, atelectasia, espessamento das paredes brônquicas e bronquiectasia, além de padrão de perfusão em mosaico e AA na TC; ausência de outras doenças pulmonares crônicas que progridem para sintomas respiratórios persistentes, incluindo tuberculose, fibrose cística, displasia broncopulmonar, imunodeficiências, asma e deficiência grave de alfa-1 antitripsina. Os critérios de exclusão foram os seguintes: incapacidade de se submeter aos testes de função pulmonar ou à TC sem sedação; incapacidade de segurar a respiração durante todo o exame de TC; exacerbação da doença < 30 dias antes da TC ou dos testes de função pulmonar; presença de outras doenças pulmonares e necessidade de oxigenoterapia contínua.

Um total de 25 pacientes com BO preencheram os critérios de inclusão. Desses 25 pacientes, 6 foram excluídos (porque não foram capazes de realizar as manobras respiratórias necessárias). A amostra final foi composta por 19 crianças (14 do sexo masculino e 5 do feminino) de 7-15 anos de idade (média: 10 ± 2,5 anos).

Todos os pacientes realizaram espirometria e teste de caminhada de seis minutos (TC6) em conformidade com relatos anteriores.(12,16) A espirometria foi realizada com um espirômetro Vitalograph ALPHA (Vitalograph, Buckingham, Reino Unido) antes e 10 min depois da administração de 300 µg de salbutamol inalatório (Aerolin(r); GlaxoSmithKline plc, Ware, Reino Unido) com um espaçador valvulado (Fisonair(r); GlaxoSmithKline plc). Todas as crianças realizaram TC6 com controle de SO2. Como o TC6 foi realizado após a espirometria (e no mesmo dia que esta), todos os pacientes usaram salbutamol antes do TC6.

O escore clínico incluiu os seguintes itens: 1) estado nutricional(17) (escore Z: 0 = bom estado nutricional; 1 = desnutrição leve; 2 = desnutrição moderada e 3 = desnutrição grave); 2) tosse durante a remissão (0 = ausente e 1 = presente ); 3) tosse 2 semanas antes do exame (0 = ausente e 1 = presente); 4) sibilância durante a remissão (0 = ausente e 1 = presente); 5) sibilância na maioria dos dias da semana (0 = ausente e 1 = presente); 6) sibilância nas últimas 2 semanas (0 = ausente e 1 = presente); 7) dificuldade para respirar nas 2 semanas anteriores ao exame (0 = ausente e 1 = presente); 8) frequência de exacerbações nos últimos 6 meses (0 = sem exacerbações; 1 = exacerbações esporádicas; 2 = exacerbações a cada 2 meses; 3 = exacerbações todos os meses e 4 = exacerbações todas as semanas); 9) aumento do diâmetro anteroposterior do tórax (0 = ausente e 1 = presente); 10) SO2 em repouso (> 95% = 0; 90-94% = 1 e < 90% = 2); 11) SO2 mínima durante o TC6 (SO2_TC6; > 95% = 0; 90-94% = 1 e < 90% = 2), a dessaturação média durante o exercício sendo medida por meio do cálculo da diferença entre SO2 em repouso e SO2_TC6; 12) dessaturação > 4% durante o TC6 (0 = negativo e 1 = positivo); 13) relação VEF1/CVF e 14) VEF1 em porcentagem do previsto (VEF1%; > 80% = 0; 61-80% = 1; 41-60% = 2; < 41% = 3).

Todos as imagens de TC foram adquiridas com a dose de radiação mais baixa possível e um tomógrafo helicoidal disponível comercialmente (XVision EX; Toshiba Medical Systems Corporation, Otawara, Japão) e foram pós-processadas em uma estação de trabalho (O2(r); SGI, Fremont, CA, EUA) com software para reconstrução tridimensional (ALATOVIEW; Toshiba Medical Systems Corporation). O tomógrafo foi calibrado periodicamente, conforme recomendado pelo fabricante. Um conjunto inicial de nove imagens de TCAR axial (com 1 mm de colimação em incrementos de 20 mm) foi adquirido por meio de um algoritmo de alta frequência. Essas imagens de TCAR foram avaliadas por dois radiologistas torácicos com mais de 10 anos de experiência em TC de tórax. A decisão final foi tomada por consenso.

Dois conjuntos adicionais de imagens foram adquiridos pelo tomógrafo helicoidal durante manobras de pausa respiratória única (durante a inspiração e a expiração). Para reduzir o número de artefatos causados pelo movimento respiratório, a TC helicoidal foi realizada no sentido caudocranial. Com base em estudos anteriores,(18-21) foram usados os seguintes parâmetros: colimação = 10 mm; velocidade da mesa = 14 mm/rotação (pitch = 1.4) e baixa dose de radiação (120 kV e 50 mAs). A média da dose total de radiação foi de 5 ± 1,3 mSv. Usamos cortes tomográficos helicoidais de 10 mm, mAs baixa e pitch elevado para reduzir a exposição à radiação. Um algoritmo de reconstrução convencional foi usado para evitar os efeitos de filtros de realce de bordas sobre a densidade do tecido.(22) Todos os exames foram realizados sem contraste intravenoso.

O primeiro passo da densitovolumetria pulmonar por TC foi a segmentação pulmonar para medir o VPT. Dois passos de segmentação foram aplicados a cada conjunto de imagens tomográficas helicoidais antes do cálculo do VPT. Os pulmões foram isolados por meio da eliminação de qualquer estrutura com densidade superior a −250 UH dos dados de imagem. Posteriormente, eliminamos o ar dentro do abdome e fora do paciente (ar não pulmonar) selecionando regiões de interesse com o software de reconstrução tridimensional. As regiões de interesse foram selecionadas por meio de uma linha desenhada entre o pulmão e o ar não pulmonar em cada corte. Diferentes programas de reconstrução tridimensional, indisponíveis para nós durante o período de estudo, podem incluir ferramentas diferentes para a segmentação pulmonar. A fim de reduzir a variabilidade atribuída ao operador, o ar dentro da traqueia ou dos brônquios principais foi considerado ar pulmonar em vez de ser excluído. O operador avaliou a precisão da segmentação por meio da revisão da imagem tridimensional do pulmão gerada pela reconstrução volumétrica (Figura 1). O software então calculou o VPT automaticamente.

Figura 1. Em A, imagem tomográfica coronal reformatada (projeção de intensidade mínima) mostrando aprisionamento aéreo. Em B, TC com reconstrução tridimensional mostrando volumes de baixa atenuação, que representam volumes de aprisionamento aéreo.

Figura 1

Para medir o volume do parênquima pulmonar com valores de atenuação anormalmente baixos, áreas de atenuação ou densidade extremamente baixa foram consideradas anormais, em virtude da desproporção entre o volume do parênquima pulmonar (incluindo o tecido intersticial, vasos, sangue, linfa, líquido intersticial e paredes das vias aéreas) e o ar nessas regiões. A fim de simplificar a medição, consideramos "volume de AA" o volume total de zonas pulmonares com valores de densidade extremamente baixos.

Calculamos AA% usando um limiar fixo. Primeiro calculamos o volume pulmonar afetado por AA usando um limiar fixo de −950 UH (AA%950). Esse limiar foi proposto pela primeira vez por Gevenois et al.(23) e tem sido usado por muitos outros para quantificar o enfisema.(18) Qualquer porção dos pulmões com densidade inferior a −950 UH foi considerada afetada por AA. Para calcular AA%950, o volume de AA calculado com esse limiar foi dividido pelo VPT. Esses dados foram também calculados para as imagens de TC expiratória.

O próximo passo foi calcular AA% com limiares selecionados por meio de máscaras de densidade. Não há limiares validados para a determinação do volume de hiperinsuflação, AA ou enfisema em crianças. Como o limiar de −950 UH pode subestimar a extensão da doença nessa população, também calculamos o volume de AA com um limiar selecionado para cada paciente com o auxílio de uma máscara de densidade. O limiar foi ajustado até que a máscara correspondesse a nossa impressão visual subjetiva a respeito de porções pulmonares afetadas (Figura 2). Esse limiar foi selecionado, e o VPT foi então segmentado. Qualquer porção do pulmão com densidade abaixo da UH selecionada foi considerada anormal. Em seguida, calculamos AA% usando essa máscara de densidade (AA%MD). Esses dados foram também calculados para as imagens de TC expiratória.

Figura 2. Ferramentas de pós-processamento. Após o uso de um limiar, o ar dentro e fora dos pulmões é isolado. Em A, imagem de TC axial mostrando o ar dentro e fora dos pulmões. Em B, reconstrução tridimensional dos mesmos dados. Em C, reconstrução tridimensional do volume pulmonar total após a exclusão do ar fora dos pulmões.

Figura 2

Para calcular o volume de encolhimento (desinsuflação) pulmonar, o VPT medido em imagens adquiridas durante a expiração foi subtraído do VPT medido em imagens adquiridas durante a inspiração. A porcentagem de volume de encolhimento era considerada excelente se > 50%, razoável/boa se = 30-50% e ruim se < 30%.

Para a análise estatística, os resultados dos testes foram inseridos em um banco de dados do Microsoft Excel e processados por meio de ferramentas do Excel. A análise foi feita com o programa Statistical Package for the Social Sciences, versão 11 (SPSS Inc., Chicago, IL, USA). O nível de significância estatística adotado foi de p < 0,05. Assumiu-se um poder de 90% para uma amostra de 19 pacientes e significância estatística de p < 0,05, com base em um estudo anterior.(7)

Gráficos de dispersão (Figura 3) foram usados para classificar os pacientes de acordo com a gravidade de AA%. Para AA%950 e AA%MD, AA% < 1% foi considerada indicativa de normalidade ou mínima expressão da doença. Valores de AA%950 de 1-5% foram considerados indicativos de moderada expressão da doença, e valores > 5% foram considerados indicativos de grave expressão da doença. Além disso, valores de AA%MD de 1-10 % foram considerados indicativos de moderada expressão da doença, e valores > 10% foram considerados indicativos de grave expressão da doença. A magnitude da variabilidade de AA%950 e AA%MD orientou a seleção de valores para distinguir doença moderada de doença grave (Figura 3).

Figura 3. Gráfico de dispersão ilustrando a distribuição dos pacientes de acordo com a porcentagem de aprisionamento aéreo em relação ao volume pulmonar total (AA%), calculada com um limiar fixo de −950 UH (AA%950) e com limiares estabelecidos por análise subjetiva baseada em máscaras de densidade (AA%MD). Nota-se que AA%MD permite melhor discriminação dos graus de gravidade da doença (ou seja, grau 1, normal/leve; grau 2, moderada e grau 3, grave), especialmente doença moderada (AA% > 1%) e grave (AA% > 10%). Nota-se também que a classificação da gravidade da doença mudou de normal/leve para moderada em 1 paciente (caso 10) e de moderada para grave em 1 paciente (caso 14) dependendo do método usado para selecionar o limiar.

Figura 3

Todas as variáveis foram analisadas por meio do coeficiente de correlação produto-momento de Pearson. As correlações foram determinadas antes e depois da exclusão de valores extremos (Figura 4). Os valores de r e p foram calculados separadamente para dados censurados e não censurados. Foram também calculadas as correlações com os resultados dos testes de função pulmonar e escores clínicos.

Figura 4. Distribuição das observações da porcentagem de aprisionamento aéreo em relação ao volume pulmonar total (AA%), calculada com um limiar fixo de −950 UH - AT%950 - (quadrados vermelhos) e com limiares selecionados com o auxílio de máscaras de densidade - AA%MD - (quadrados azuis), incluindo as linhas de regressão linear correspondentes. A distribuição sugere que os pacientes com VEF1% acima de 70% apresentavam dano anatômico leve conforme medido pela quantificação das áreas de aprisionamento aéreo ou hiperinsuflação. Alguns pacientes com VEF1% na faixa de 50% ou menos tinham doença leve conforme medida por AA%950, um achado que evidencia as limitações do limiar de −950 UH para avaliar pacientes com bronquiolite obliterante. A correlação entre VEF1% e AA%MD foi muito melhor, como mostra a linha de regressão.

Figura 4

Resultados

Dos 19 pacientes, 2 apresentaram escores clínicos normais, 7 apresentaram escores clínicos < 5 (incluindo os dois pacientes com escore clínico = 0), 6 apresentaram escores de 5-10 e 6 apresentaram escores > 10. Na avaliação do estado nutricional, 8 pacientes apresentaram escore Z < 0.

No tocante aos parâmetros do TC6, a média da SO2 em repouso foi de 96 ± 2% (variação: 92-99%), e a média da SO2_TC6 foi de 92 ± 4% (variação: 83-99%). Não encontramos nenhuma correlação entre SO2 em repouso e SO2 durante o exercício (r = 0,00). A dessaturação média durante o exercício (medida por meio do cálculo da diferença entre SO2 em repouso e SO2_TC6) foi de 4 ± 4% (variação: −2% a 15%). A média da distância percorrida no TC6 (DTC6) foi de 552 ± 131 m (variação: 90-705 m). A DTC6 correlacionou-se significativamente com SO2_TC6 (r = 0,52; p < 0,05) e dessaturação durante o exercício (r = 0,58; p < 0,05), mas não com SO2 em repouso (r = 0,26; p > 0,05). No tocante aos parâmetros de função pulmonar, a média da CVF foi de 75 ± 20% (variação: 43-106%), a média do VEF1% foi de 58 ± 20% (variação: 36-100%) e a média da relação VEF1/CVF foi de 72 ± 16% (variação: 49-107%).

No tocante aos parâmetros da densitovolumetria pulmonar por TC, a média do VPT foi de 3.009 ± 1.184 mL (variação: 1.252-6.673 mL). A DTC6 foi maior nos pacientes com maiores volumes pulmonares normais (r = 0,53). A média do volume de encolhimento foi de 1.174 ± 789 mL (variação: 182-3.471 mL), e a média da porcentagem do volume de encolhimento foi de 36 ± 13% (variação: 9-63%). A média de AA%MD foi de 7,28 ± 9% (variação: 0,03-24,67%), e a média de AA%950 foi de 2,4 ± 3% (variação: 0,03-8,67%). Em 9, 5 e 5 dos 19 pacientes, AA%MD foi classificada em normal ou leve, moderada e grave, respectivamente (pontos acima da linha cinza na Figura 3). Em 10, 5 e 4 dos 19 pacientes, AA%950 foi classificada em normal ou leve, moderada e grave, respectivamente (pontos acima da linha azul na Figura 3). Encontramos uma correlação entre AA%MD e AA%950, evidenciada por r = 0,83 (ou r = 0,93, após a exclusão de um valor extremo). Não encontramos correlação significativa entre a porcentagem do volume de encolhimento e AA%MD ou entre a porcentagem do volume de encolhimento e AA%950.

As correlações dos parâmetros de densitovolumetria pulmonar por TC com os escores clínicos, resultados dos testes de função pulmonar e parâmetros do TC6 estão resumidas na Tabela 1. A Tabela 1 mostra os valores de correlação para cada parâmetro, antes e depois da exclusão de valores extremos. A Figura 4 ilustra as correlações de AA%MD e AA%950 com os parâmetros não densitométricos.

Tabela 1. Correlações entre achados tomográficos e dados funcionais.

graphic file with name 1806-3713-jbpneu-39-06-0701-gt01-pt.jpg

Discussão

A BO é uma forma incomum e grave de doença pulmonar obstrutiva crônica em crianças e adultos que resulta de uma agressão ao trato respiratório inferior.(6) O diagnóstico de BO pós-infecciosa em crianças baseia-se em uma história de infecção do trato respiratório inferior (geralmente uma infecção viral aguda) seguida de doença pulmonar obstrutiva crônica persistente.(2,3) A TCAR é um excelente método para a identificação de dano anatômico após o início da doença, incluindo áreas de baixa atenuação, áreas de consolidação/atelectasia, espessamento das paredes brônquicas, bronquiectasia e perfusão em mosaico. Além disso, imagens de TCAR expiratória podem ajudar a confirmar a presença de AA. No entanto, a TCAR permite apenas uma avaliação subjetiva da extensão da doença e depende da experiência e habilidade dos radiologistas.(6,9) Nosso estudo demonstrou que a DTC6 foi maior em pacientes com maior pulmão normal (r = 0,53). Além disso, encontramos correlações significativas (antes e após a exclusão de valores extremos, respectivamente) entre AA%950 e o escore clínico (r = 0,72; 0,80), a CVF (r = 0,24; 0,59), o VEF1 (r = −0.58; −0.67) e a relação VEF1/CVF (r = −0,53; r = −0,62), bem como entre AA%MD e o escore clínico (r = 0,58; r = 0,63), a SO2 em repouso (r = −0,40; r = −0,61), a SO2_TC6 (r = −0,24; r = −0,55), a CVF (r = −0,44; r = −0,80), o VEF1 (r = −0,65; r = −0,71) e a relação VEF1/CVF (r = −0,41; r = −0,52). Esses dados sugerem que medidas tomográficas objetivas representam adequadamente escores clínicos e comprometimento funcional na BO.

Provou-se que a densitovolumetria pulmonar por TC supera essa limitação e é uma recomendação-padrão para a quantificação de outras doenças pulmonares nas quais a proporção entre o ar pulmonar e o parênquima pulmonar é maior, diminuindo, portanto, a densidade pulmonar.(20,21) Áreas de atenuação reduzida também podem resultar da diminuição da perfusão de alvéolos hipoventilados distais aos bronquíolos obstruídos. O principal achado da tomografia expiratória é uma heterogeneidade geográfica da atenuação pulmonar (padrão de atenuação em mosaico), observado em 40-80% dos pacientes.(6,19) As alterações podem ser sutis nas imagens de TC inspiratória; são geralmente mais fáceis de detectar em imagens de TC expiratória.(24) Em um estudo anterior da correlação entre alterações da função pulmonar e a extensão das características de BO na TCAR, foram encontradas relações significativas somente entre VEF1 e o número de segmentos broncopulmonares afetados por bronquiectasia.(14) Hansell et al.(15) confirmaram que a extensão da diminuição da atenuação associou-se independentemente a uma redução do VEF1. Em contraste, o espessamento das paredes brônquicas associou-se independentemente à presença de AA (medida por VR/CPT). Em pacientes com BO associada a Sauropus androgynus, os resultados dos testes de função pulmonar correlacionaram-se mais com AA do que com qualquer outro parâmetro tomográfico.(16) Até onde sabemos, o presente estudo é o primeiro a demonstrar correlações significativas entre AA% e escores clínicos e resultados de testes de função pulmonar. A quantificação das áreas de atenuação anormalmente baixa é uma importante ferramenta para o diagnóstico de BO, e a técnica tem vantagens substanciais sobre a tradicional avaliação subjetiva de imagens de TCAR.(19-21) A quantificação do dano anatômico é importante em pacientes com BO; a densitovolumetria pulmonar por TC é capaz de medir volumes pulmonares diretamente e, portanto, ajudar os clínicos a tomar decisões sobre a quarentena de pacientes e a agressividade do tratamento.

No presente estudo, os escores clínicos correlacionaram-se moderadamente com a CVF e a relação VEF1/CVF (r ~ 0,5). Embora a correlação entre os escores clínicos e o VEF1 tenha sido mais forte (r = 0,8), esses resultados são possivelmente tendenciosos, pois os resultados dos testes de função pulmonar foram incluídos nos parâmetros do escore clínico. Além disso, ambas as medidas de AA% correlacionaram-se significativamente com os escores clínicos (r ≥ 0,6); a força dessas correlações aumentou quando foram eliminados os valores extremos (AA%950 censurada: r = 0,8), o que sugere que pode aumentar ainda mais em séries maiores. As imagens de TC inspiratória foram muito mais informativas que as de TC expiratória no tocante à presença de AA. A extensão das áreas de AA pode ter sido subestimada nas imagens de TC expiratória por causa da densidade pulmonar expiratória maior. Isso é importante porque a atelectasia é mais comum em crianças.(24)

Nosso estudo tem algumas limitações. Para calcular AA%, usamos um limiar que ainda não foi validado. O limiar de −950 UH foi validado para a quantificação do enfisema em pacientes adultos, e nós o usamos no presente estudo não obstante nossa convicção de que a segmentação nesse nível resultaria em subestimação das áreas de baixa atenuação em crianças, especialmente na ausência de hiperinsuflação/enfisema.(23) Embora não tivéssemos os achados histopatológicos em nossos pacientes, estudos anteriores(2,3) examinaram as correlações entre achados de imagem e achados histopatológicos em pacientes com BO. Além disso, nosso escore clínico ainda não foi validado; são necessários mais estudos para sua aplicação clínica.

Em suma, o dano anatômico aos pulmões medido por meio de TC (ou seja, AA%) correlacionou-se significativamente com escores clínicos e resultados de testes de função pulmonar. Após a censura de valores extremos, AA%MD apresentou correlações mais fortes do que AA%950.

Footnotes

*

Trabalho realizado na Santa Casa de Misericórdia de Porto Alegre e no Laboratório de Pós-Processamento de Imagens Médicas da Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Aleg re (RS) Brasil.

Apoio financeiro: Nenhum.


Articles from Jornal Brasileiro de Pneumologia : Publicaça̋o Oficial da Sociedade Brasileira de Pneumologia e Tisilogia are provided here courtesy of Sociedade Brasileira de Pneumologia e Tisiologia (Brazilian Thoracic Society)

RESOURCES