Skip to main content
Jornal Brasileiro de Pneumologia logoLink to Jornal Brasileiro de Pneumologia
. 2013 Nov-Dec;39(6):692–700. doi: 10.1590/S1806-37132013000600008
View full-text in Portuguese

Immunohistochemical and morphometric evaluation of COX-1 and COX-2 in the remodeled lung in idiopathic pulmonary fibrosis and systemic sclerosis* ,**

Edwin Roger Parra 1, Flavia Lin 2, Vanessa Martins 3, Maristela Peres Rangel 4, Vera Luiza Capelozzi 5,
PMCID: PMC4075907  PMID: 24473763

Abstract

OBJECTIVE:

To study the expression of COX-1 and COX-2 in the remodeled lung in systemic sclerosis (SSc) and idiopathic pulmonary fibrosis (IPF) patients, correlating that expression with patient survival.

METHODS:

We examined open lung biopsy specimens from 24 SSc patients and 30 IPF patients, using normal lung tissue as a control. The histological patterns included fibrotic nonspecific interstitial pneumonia (NSIP) in SSc patients and usual interstitial pneumonia (UIP) in IPF patients. We used immunohistochemistry and histomorphometry to evaluate the expression of COX-1 and COX-2 in alveolar septa, vessels, and bronchioles. We then correlated that expression with pulmonary function test results and evaluated its impact on patient survival.

RESULTS:

The expression of COX-1 and COX-2 in alveolar septa was significantly higher in IPF-UIP and SSc-NSIP lung tissue than in the control tissue. No difference was found between IPF-UIP and SSc-NSIP tissue regarding COX-1 and COX-2 expression. Multivariate analysis based on the Cox regression model showed that the factors associated with a low risk of death were younger age, high DLCO/alveolar volume, IPF, and high COX-1 expression in alveolar septa, whereas those associated with a high risk of death were advanced age, low DLCO/alveolar volume, SSc (with NSIP), and low COX-1 expression in alveolar septa.

CONCLUSIONS:

Our findings suggest that strategies aimed at preventing low COX-1 synthesis will have a greater impact on SSc, whereas those aimed at preventing high COX-2 synthesis will have a greater impact on IPF. However, prospective randomized clinical trials are needed in order to confirm that.

Keywords: Scleroderma, systemic; Idiopathic pulmonary fibrosis; Inflammation; Survival rate

Introduction

Lung remodeling is a common end-stage sequela of idiopathic pulmonary fibrosis (IPF) and systemic sclerosis (SSc), resulting in disruption of lung architecture, leading to progressive respiratory failure.(1-4) Histologically, the remodeling process is characterized by diffuse chronic interstitial inflammation and increased fibroblast proliferation, as well as by increased extracellular matrix synthesis and collagen deposition.(2,5,6) Therefore, modulation of inflammation, fibroblast proliferation, and collagen synthesis by effector mediators in IPF and SSc is very important. Despite the characterization of a variety of key participants, the mediators and mechanisms involved in the pathogenesis of IPF and SSc have yet to be fully defined, which might explain the limited number of therapeutic approaches, with little impact on long-term survival.(7,8)

It is known that COX is the key enzyme in the conversion of arachidonic acid to prostaglandin E2 (PGE2), the precursor of a diverse family of bioactive lipid mediators including prostaglandins, thromboxane, and prostacyclin. It exists in two isoforms, namely COX-1 and COX-2. The former is constitutively expressed in most tissues and acts as a housekeeping enzyme regulating vascular homeostasis, protecting the gastric mucosa, and maintaining renal integrity,(9,10) whereas the latter has lower levels of expression in most tissues but is inducible in response to growth factors, cytokines, and other proinflammatory molecules.(11-13)

Regarding the proinflammatory and anti-inflammatory roles of COX-1 and COX-2, immunohistochemistry can be a useful tool to detect COX-1 and COX-2 in the remodeled lung in patients with SSc and IPF. Data on the assessment of COX-1 and COX-2 in the remodeled lung have previously been reported in serum(14,15) and bronchoalveolar lavage fluid(16) from patients with SSc, as well as in fibroblast cultures(4) and biopsies(17,18) from patients with IPF. However, the roles of COX-1 and COX-2 in the mechanisms involved in the remodeled lung in IPF and SSc patients are still unclear, and there has been uncertainty regarding the best way to detect COX-2. The aim of the present study was to study the expression of COX-1 and COX-2 in lung biopsy specimens (COX-1 and COX-2 expression being separately evaluated in alveolar septa, bronchioles, and vessels) and correlate it with patient survival.

Methods

Between January of 2002 and July of 2008, 24 consecutive patients with SSc and interstitial lung disease and 30 patients suspected of having IPF on the basis of HRCT findings were submitted to open lung biopsy at the University of São Paulo School of Medicine Hospital das Clínicas, located in the city of São Paulo, Brazil. All patients fulfilled the diagnostic criteria for SSc(19) and IPF(1) Open lung biopsy was performed by formal thoracotomy, areas of honeycombing being avoided. All patients gave written informed consent, and the study was approved by the local research ethics committee (Protocol no. 0960/08).

We analyzed the clinical records of all patients. Disease duration was determined on the basis of the onset of the first symptom. Pulmonary function testing and HRCT were performed within up to 3 months before the biopsy. Pulmonary function testing included VC, FEV1, FVC, FEV1/FVC, TLC, RV, and DLCO. Physiological assessment was performed before open lung biopsy and before the initiation of treatment. All pulmonary function tests, including spirometry, determination of lung volumes, and measurement of DLCO, were performed on the same day. All spirometric tests were performed with a calibrated pneumotachograph (Medical Graphics Co., St. Paul, MN, USA), all values being expressed as a percentage of their respective predicted value, the reference values having been established by Pereira et al.(20) Lung volumes were measured with a whole-body plethysmograph (Medical Graphics Co.), all values being expressed as a percentage of the predicted values.(21) Diffusing capacity was expressed as a percentage of the predicted values.(22) Diffusing capacity was expressed as a percentage of the predicted values.(23) All patients were followed regularly after treatment until death, blood and lung function tests being regularly performed. The primary endpoint was to evaluate the impact of COX-1 and COX-2 changes on survival and analyze differences between SSc and IPF. Table 1 shows the demographic data. As a control, normal lung tissue was obtained from 10 individuals (6 males and 4 females) whose median age was 46.6 ± 5.8 years and who had died suddenly of nonpulmonary causes.

Table 1. Clinical data of the patients with systemic sclerosis and of those with idiopathic pulmonary fibrosis.a.

graphic file with name 1806-3713-jbpneu-39-06-0692-gt01.jpg

Regarding open lung biopsy findings, usual interstitial pneumonia (UIP), the histological pattern of IPF, was characterized by patchy subpleural and paraseptal distribution of parenchymal injury. Temporal heterogeneity was seen at low magnification, areas of normal lung parenchyma alternating with alveolar collapse, interstitial mononuclear infiltrates, septal fibromyxoid tissue (fibroblastic foci), and honeycomb lung.(2) All of the patients with SSc had histological patterns consistent with fibrotic nonspecific interstitial pneumonia (NSIP), as defined by temporally homogeneous septal thickening and interstitial fibrosis.(19)

For immunohistochemistry analysis, a standard peroxidase technique was used (Harris's hematoxylin being used as the counterstain) in order to identify COX-1 and COX-2 expression in alveolar septa, bronchiolar walls, and vascular walls in normal lung tissue (the control tissue), in lung tissue showing the UIP pattern (the UIP tissue), and in lung tissue showing the NSIP pattern (the NSIP tissue). All antibodies used were biotinylated goat polyclonal antibodies. Anti-COX-1 and anti-COX-2 antibodies (Santa Cruz Biotechnology, Inc., Santa Cruz, CA, USA) were incubated with tissue sections at dilutions of 1:50 and 1:100, respectively. The Novolink Max Polymer amplification kit (Leica Biosystems Newcastle Ltd, Newcastle upon Tyne, UK) was used for signal amplification, and 3,3'-diaminobenzidine tetrahydrochloride (0.25 mg dissolved in 1 mL of 0.02% hydrogen peroxide) was used as a precipitating substrate for signal detection. The specificity of primary antibodies was confirmed by appropriate reagent controls (the primary antibody being omitted or nonimmune serum being substituted for the primary antibody in the staining protocol), which revealed no staining.

Regarding histomorphometry, COX-1 expression and COX-2 expression were assessed by a point-counting technique in 50 and 30 fields in alveolar septa, bronchiolar walls, and vascular walls in the control tissue, in the UIP tissue, and in the NSIP tissue. The technique was performed with a 100-point grid (area, 187,500 μm(21); magnification, ×400) attached to the microscope eyepiece.(23) At a magnification of ×400, the septal, bronchiolar, and vascular areas in each field were calculated on the basis of the number of points overlying connective tissue, as a proportion of the total grid area. Subsequently, the number of immunostained cells within the septal, bronchiolar, and vascular areas was counted. The areal fraction of immunostained cells represents the percentage ratio of the area of labeled cells in relationship to the total area covered by the grid in the eyepiece.

In order to assess interobserver variability, we compared the results obtained by two observers in 20% of the slides. The coefficient of variation for the interobserver error of the cell count was 5%.

Data are presented as mean ± SD and 95% CI. The Student's t-test for independent samples was used in order to test the relationship between continuous variables, and the residuals were examined to ensure that they were approximately normally distributed. The relationship between cellularity (as determined by immunostaining) and pulmonary function test results was evaluated by Pearson's correlation coefficient. For all cases, measured variable values were arranged in ascending order and divided into two groups on the basis of the median value of each variable. For each variable, the groups were designated low degree and high degree, as follows: alveolar septal COX-1 (low degree, < 2.35%; high degree, 2.35%); vascular COX-1 (low degree, < 2.91%; high degree, 2.91%); bronchiolar COX-1 (low degree, < 2.88%; high degree, 2.88%); total COX-1 (low degree, < 2.77%; high degree, 2.77%); alveolar septal COX-2 (low degree, < 2.04%; high degree, 2.04%); vascular COX-2 (low degree, < 2.34%; high degree, 2.34%); bronchiolar COX-2 (low degree, < 2.34%; high degree, 2.34%); and total COX-2 (low degree, < 2.16%; high degree, 2.16%).

Overall survival analysis was performed in two steps. First, we performed a univariate analysis relating overall follow-up to each of the measured variables by means of the Kaplan-Meier method and then analyzed survival using the log-rank test. The variables that were found to be significant in the univariate analysis were included in the multivariate analysis based on the Cox proportional hazards regression model. A positive event was defined as any death caused by IPF or SSc. Deaths from causes other than IPF or SSc and living patients were included in the models as censored cases.

All statistical procedures were performed with the Statistical Package for the Social Sciences, version 18.0 (SPSS Inc., Chicago, IL, USA). For all tests, the significance level was set at 5%.

Results

Table 1 summarizes the clinical features of the patients with SSc (n = 24) and those of those with IPF (n = 30). Six of 17 SSc patients (35.29%) and 13 of 19 IPF patients (68.42%) had restrictive lung disease. Respiratory function test results were as follows: FVC < 80% in 18 (75%) of the 24 SSc patients and in 19 of 22 IPF patients (86.36%); TLC < 80% in 6 of 17 SSc patients (35.9%) and in 13 of 19 IPF patients (68.42%); DLCO < 80% in 12 of 15 SSc patients (80%) and in 8 of 9 IPF patients (88.88%); and DLCO/alveolar volume < 80% in 11 of 18 SSc patients (61.11%) and in 11 of 14 IPF patients (78.57%). A significant negative correlation was found between COX-2 expression in vessels and FVC (r= −0.28; p = 0.05), as well as between COX-2 expression in alveolar septa and DLCO (r = −0.80; p = 0.009).

Figure 1 shows alveolar septa, vessels, and bronchioles in the control tissue, in the NSIP tissue, and in the UIP tissue immunostained for COX-1 (in A, C, E, G, I, K, M, O, and Q) and COX-2 (in B, D, F, H, J, L, N, P, and R). The NSIP and UIP tissues differed from the control tissue in terms of the immunostaining intensity of epithelial cells, endothelial cells, myofibroblasts, and smooth muscle cells in the alveolar septa, vessels, and bronchioles.

Figure 1. Cellular expression of COX-1 and COX-2 in alveolar septa, intrapulmonary vessels, and bronchioles in normal lung tissue (control tissue); in lung tissue obtained from patients with systemic sclerosis (SSc) and showing fibrotic nonspecific interstitial pneumonia (NSIP); and in lung tissue obtained from patients with idiopathic pulmonary fibrosis (IPF) and showing usual interstitial pneumonia (UIP). The intensity of COX-1 immunostaining of epithelial cells, endothelial cells, myofibroblasts, and smooth muscle cells in SSc-NSIP and IPF-UIP tissue alveolar septa (G and M, respectively), vessels (I and O, respectively), and bronchioles (K and Q, respectively) was higher than was that of COX-1 immunostaining of those cells in control tissue alveolar septa (A), vessels (C), and bronchioles (E). Likewise, the intensity of COX-2 immunostaining of those cells in SSc-NSIP and IPF-UIP tissue alveolar septa (H and N, respectively), vessels (J and P, respectively), and bronchioles (L and R, respectively) was higher than was that of COX-2 immunostaining of those cells in control tissue alveolar septa (B), vessels (D), and bronchioles (F). The bar plots show the quantification of COX-1 and COX-2 immunostaining of cells in alveolar septa (S), total lung parenchyma (T), and bronchioles (W) in the control tissue, in the SSc-NSIP tissue, and in the IPF-UIP tissue (immunohistochemical staining; magnification, ×400).

Figure 1

Table 2 summarizes the morphometric results. The proportion of alveolar septal cells immunostained for COX-1 and COX-2 was significantly higher in the UIP and NSIP tissues than in the control tissue. In other words, high proportions of alveolar septal cells staining for COX-1 and COX-2 were associated with the UIP and NSIP patterns. As can be seen in the bar plots in Figure 1 (S and T) the relationship of COX-1 and COX-2 with IPF (the UIP pattern) was stronger than was that of COX-1 and COX-2 with SSc (the NSIP pattern). Although the proportion of bronchiolar cells immunostained for COX-2 was lower in the NSIP and UIP tissues than in the control tissue (Figure 1W), the difference was not statistically significant. In addition, although the proportion of bronchiolar cells immunostained for COX-1 was higher in the UIP and NSIP tissues than in the control tissue (Figure 1W), the difference was not significant. No differences were found among the tissues in terms of the COX-1 or COX-2 immunostaining, for vessels or for the total parenchyma (Table 2).

Table 2. Morphometric results in normal lung tissue (control tissue), in lung tissue showing the usual interstitial pneumonia pattern (from patients with idiopathic pulmonary fibrosis), and in lung tissue showing the nonspecific interstitial pneumonia pattern (from patients with systemic sclerosis).a.

graphic file with name 1806-3713-jbpneu-39-06-0692-gt02.jpg

A preliminary analysis of the Kaplan-Meier survival curves showed that survival was better in the patients with SSc (the fibrotic NSIP pattern) and COX-2 expression > 2.25% (median survival, 70.75 months) than in those with IPF (the UIP pattern) and COX-2 expression < 2.25% (median survival, 46.32 months; Figure 2). Therefore, we coded the fibrotic NSIP pattern as a single dummy variable with a value of 1 and the UIP pattern with a value of 2. The results of the multivariate analysis based on the Cox proportional hazards regression model are shown in Table 3. After controlling for age, pulmonary function test results, the UIP pattern, and the fibrotic NSIP pattern, we found that only two variables were significantly associated with survival time: the fibrotic NSIP pattern and alveolar septal COX-2 (p = 0.02). Once these two variables were accounted for, none of the others were related to survival. The multivariate analysis showed a low risk of death for young patients with low FEV1/FVC, fibrotic NSIP pattern, and high-degree alveolar septal COX-2.

Figure 2. Cox regression plots for risk of death risk versus duration of follow-up (in months) in young patients with low DLCO/alveolar volume, systemic sclerosis (and a histological pattern of cellular nonspecific interstitial pneumonia), high-degree total COX-1, and low-degree alveolar septal COX-2. The top curve represents the group of patients with systemic sclerosis and cellular nonspecific interstitial pneumonia. The bottom curve represents two groups of patients: those with systemic sclerosis and fibrotic nonspecific interstitial pneumonia; and those with idiopathic pulmonary fibrosis and the usual interstitial pneumonia pattern.

Figure 2

Table 3. Cox proportional hazards regression to ascertain the individual contribution of the histological pattern and morphological factors associated with survival and to compare adjusted survival between the two groups.

graphic file with name 1806-3713-jbpneu-39-06-0692-gt03.jpg

Discussion

The limited number of therapeutic approaches that have any impact on long-term survival in patients with IPF-UIP and in those with SSc and fibrotic NSIP is due to the lack of definition regarding the mediators and mechanisms involved in the pathogenesis of IPF and SSc. Therefore, the question of interest is whether additional mediators can provide a better understanding of the pathogenesis of these diseases. The repair process involves two distinct stages: a regenerative, inflammatory phase, in which the microenvironment attempts to replace injured cells; and a fibrotic phase, in which connective tissue replaces normal parenchymal tissue.(24-26) In the repair process, PGE2 production by fibroblasts is increased,(27,28) which constitutes further evidence of the antiproliferative, anti-inflammatory and antifibrotic properties of COX-2/PGE2.(15) Therefore, our finding that immunohistochemistry staining for COX provides important information on the repair processes in pulmonary fibrosis is not surprising, and our results confirm that the expression of COX-2 is increased in IPF and SSc, with improved outcome in a group of patients. We found that the proportion of alveolar septal cells immunostained for COX-1 and COX-2 was significantly higher in lung tissue showing the UIP pattern and the fibrotic NSIP pattern than in normal lung tissue. Increased COX-1 expression was expected because COX-1 is constitutively expressed in most cells and tissues, whereas COX-2 is induced by inflammatory or mitogenic stimuli.(9) These results contrast with those of previous studies investigating IPF.(4,17,18) Those studies showed reduced COX-2 expression in pulmonary fibroblasts secondary to decreased COX-2 production. However, in those studies, COX-2 expression was measured only in fibroblasts, whereas in our study it was measured in the alveolar septa, including epithelial cells and fibroblasts in normal areas, collapsed areas, and fibroblast foci. Other studies, including a study by Lappi-Blanco et al.,(3) found increased expression of COX-2 in metaplastic epithelium and fibroblasts from fibrotic areas in IPF-UIP. These contradictory findings suggest that COX-2 plays a dual role in IPF-UIP. First, reduced COX-2 expression in normal areas, collapsed areas, and fibroblastic foci suggests an anti-inflammatory role for COX-2 in early-stage IPF-UIP. Second, the presence of progressive fibrosis even in the presence of increased COX-2 expression suggests that fibroblasts are unable to respond to stimulation by COX-2 and its main product (PGE2) so as to inhibit fibroblast proliferation, myofibroblastic transformation, and increased production of collagen and other extracellular matrix molecules.

In the present study, the proportion of alveolar septal cells immunostained for COX-1 and COX-2 was found to be lower in fibrotic NSIP tissue (from SSc patients) than in UIP tissue (from IPF patients). This finding contrasts with those of previous studies showing that COX-2 levels are higher in SSc patients.(14-16) In addition, COX-2 production has been shown to be much greater in the inflammatory resolution phase than in the early phase.(29) These contradictory findings suggest that COX-2 has a dual role in a normal inflammatory process, playing a proinflammatory role in the early phase and an anti-inflammatory role in the resolution phase.(29) Therefore, in view of the abovementioned evidence and of the latent inflammation in patients with SSc and lung involvement, our results emphasize the idea that COX-2 does not exert its anti-inflammatory effect properly, because there is inflammation even when COX-2 expression is increased in patients with SSc and fibrotic NSIP. However, further studies are needed in order to clarify the real reason why the COX-2 mechanism is deficient. We hypothesize that this is due to an inability of COX-2 to stimulate the production of PGE2 or other anti-inflammatory mediators in opposition to its own proinflammatory effects or an inability of the cells to respond appropriately to COX-2.

Our study has clinical and functional impact. We sought to establish a correlation between COX-2 and patient survival controlled for age, pulmonary function test results, the UIP pattern (in patients with IPF) and the NSIP pattern (in patients with SSc). Our multivariate analysis showed a low risk of death for younger patients with low DLCO/alveolar volume, SSc (and the NSIP histological pattern), high-degree total COX-2, and high-degree alveolar septal COX-1.

In conclusion, the expression of COX-1 and COX-2 in the lung parenchyma offers us the potential to control repair processes involved in the progression of SSc-NSIP and IPF-UIP, suggesting that strategies aimed at preventing low COX-1 synthesis will have a greater impact on SSc, whereas those aimed at preventing high COX-2 synthesis will have a greater impact on IPF. Prospective randomized trials are required in order to confirm that.

Footnotes

*

Study carried out in the Laboratory of Histomorphometry and Pulmonary Genetics, Department of Pathology, University of São Paulo School of Medicine, São Paulo, Brazil.

**

A versão completa em português deste artigo está disponível em www.jornaldepneumologia.com.br

Financial support: This study received financial support from the Brazilian Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, National Council for Scientific and Technological Development) and the Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP, São Paulo Research Foundation; Grant no. 2008/53022-3).

Contributor Information

Edwin Roger Parra, University of São Paulo School of Medicine, São Paulo, Brazil.

Flavia Lin, University of São Paulo School of Medicine, São Paulo, Brazil.

Vanessa Martins, University of São Paulo School of Medicine, São Paulo, Brazil.

Maristela Peres Rangel, University of São Paulo School of Medicine, São Paulo, Brazil.

Vera Luiza Capelozzi, Department of Pathology, University of São Paulo School of Medicine, São Paulo, Brazil.

References

  • 1.Sociedade Brasileira de Pneumologia e Tisiologia Diretrizes de Doenças Pulmonares Intersticiais da Sociedade Brasileira de Pneumologia e Tisiologia. J Bras Pneumol. 2012;38(Suppl 2):S1–S133. [Google Scholar]
  • 2.American Thoracic Society/European Respiratory Society International Multidisciplinary Consensus Classification of the Idiopathic Interstitial Pneumonias This joint statement of the American Thoracic Society (ATS), and the European Respiratory Society (ERS) was adopted by the ATS board of directors, June 2001 and by the ERS Executive Committee, June 2001. American Thoracic Society; European Respiratory Society . Am J Respir Crit Care Med. 2002;165(2):277–304. doi: 10.1164/ajrccm.165.2.ats01. http://dx.doi.org/10.1164/ajrccm.165.2.ats01 Erratum in: Am J Respir Crit Care Med. 2002;166(3):426. [DOI] [PubMed] [Google Scholar]
  • 3.Lappi-Blanco E, Kaarteenaho-Wiik R, Maasilta PK, Anttila S, Pääkkö P, Wolff HJ. COX-2 is widely expressed in metaplastic epithelium in pulmonary fibrous disorders. Am J Clin Pathol. 2006;126(5):717–724. doi: 10.1309/PFGX-CLNG-2N17-PJX9. http://dx.doi.org/10.1309/PFGXCLNG2N17PJX9 [DOI] [PubMed] [Google Scholar]
  • 4.Wilborn J, Crofford LJ, Burdick MD, Kunkel SL, Strieter RM, Peters-Golden M. Cultured lung fibroblasts isolated from patients with idiopathic pulmonary fibrosis have a diminished capacity to synthesize prostaglandin E2 and to express cyclooxygenase-2. J Clin Invest. 1995;95(4):1861–1868. doi: 10.1172/JCI117866. http://dx.doi.org/10.1172/JCI117866 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5.Gabbiani G. The myofibroblast: a key cell for wound healing and fibrocontractive diseases. Prog Clin Biol Res. 1981;54:183–194. [PubMed] [Google Scholar]
  • 6.Gross TJ, Hunninghake GW. Idiopathic pulmonary fibrosis. N Engl J Med. 2001;345(7):517–525. doi: 10.1056/NEJMra003200. http://dx.doi.org/10.1056/NEJMra003200 [DOI] [PubMed] [Google Scholar]
  • 7.Dempsey OJ. Clinical review: idiopathic pulmonary fibrosis--past, present and future. Respir Med. 2006;100(11):1871–1885. doi: 10.1016/j.rmed.2006.08.017. http://dx.doi.org/10.1016/j.rmed.2006.08.017 [DOI] [PubMed] [Google Scholar]
  • 8.Downey DG, Brockbank S, Martin SL, Ennis M, Elborn JS. The effect of treatment of cystic fibrosis pulmonary exacerbations on airways and systemic inflammation. Pediatr Pulmonol. 2007;42(8):729–735. doi: 10.1002/ppul.20646. http://dx.doi.org/10.1002/ppul.20646 [DOI] [PubMed] [Google Scholar]
  • 9.Dubois RN, Abramson SB, Crofford L, Gupta RA, Simon LS, Van De Putte LB, et al. Cyclooxygenase in biology and disease. FASEB J. 1998;12(12):1063–1073. [PubMed] [Google Scholar]
  • 10.Vane JR, Bakhle YS, Botting RM. Cyclooxygenases 1 and 2. Annu Rev Pharmacol Toxicol. 1998;38:97–120. doi: 10.1146/annurev.pharmtox.38.1.97. http://dx.doi.org/10.1146/annurev.pharmtox.38.1.97 [DOI] [PubMed] [Google Scholar]
  • 11.Xie WL, Chipman JG, Robertson DL, Erikson RL, Simmons DL. Expression of a mitogen-responsive gene encoding prostaglandin synthase is regulated by mRNA splicing. Proc Natl Acad Sci U S A. 1991;88(7):2692–2696. doi: 10.1073/pnas.88.7.2692. http://dx.doi.org/10.1073/pnas.88.7.2692 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12.O'Banion MK, Sadowski HB, Winn V, Young DA. A serum- and glucocorticoid-regulated 4-kilobase mRNA encodes a cyclooxygenase-related protein. J Biol Chem. 1991;266(34):23261–23267. [PubMed] [Google Scholar]
  • 13.Hla T, Neilson K. Human cyclooxygenase-2 cDNA. Proc Natl Acad Sci U S A. 1992;89(16):7384–7388. doi: 10.1073/pnas.89.16.7384. http://dx.doi.org/10.1073/pnas.89.16.7384 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14.Bassyouni IH, Talaat RM, Salem TA. Serum concentrations of cyclooxygenase-2 in patients with systemic sclerosis: association with lower frequency of pulmonary fibrosis. J Clin Immunol. 2012;32(1):124–130. doi: 10.1007/s10875-011-9601-z. http://dx.doi.org/10.1007/s10875-011-9601-z [DOI] [PubMed] [Google Scholar]
  • 15.Xiao R, Kanekura T, Yoshida N, Higashi Y, Yan KL, Fukushige T, et al. 9-Cis-retinoic acid exhibits antifibrotic activity via the induction of cyclooxygenase-2 expression and prostaglandin E2 production in scleroderma fibroblasts. Clin Exp Dermatol. 2008;33(4):484–490. doi: 10.1111/j.1365-2230.2008.02727.x. http://dx.doi.org/10.1111/j.1365-2230.2008.02727.x [DOI] [PubMed] [Google Scholar]
  • 16.Kowal-Bielecka O, Kowal K, Distler O, Rojewska J, Bodzenta-Lukaszyk A, Michel BA, et al. Cyclooxygenase- and lipoxygenase-derived eicosanoids in bronchoalveolar lavage fluid from patients with scleroderma lung disease: an imbalance between proinflammatory and antiinflammatory lipid mediators. Arthritis Rheum. 2005;52(12):3783–3791. doi: 10.1002/art.21432. http://dx.doi.org/10.1002/art.21432 [DOI] [PubMed] [Google Scholar]
  • 17.Xaubet A, Roca-Ferrer J, Pujols L, Ramírez J, Mullol J, Marin-Arguedas A, et al. Cyclooxygenase-2 is up-regulated in lung parenchyma of chronic obstructive pulmonary disease and down-regulated in idiopathic pulmonary fibrosis. Sarcoidosis Vasc Diffuse Lung Dis. 2004;21(1):35–42. [PubMed] [Google Scholar]
  • 18.Petkova DK, Clelland CA, Ronan JE, Lewis S, Knox AJ. Reduced expression of cyclooxygenase (COX) in idiopathic pulmonary fibrosis and sarcoidosis. Histopathology. 2003;43(4):381–386. doi: 10.1046/j.1365-2559.2003.01718.x. http://dx.doi.org/10.1046/j.1365-2559.2003.01718.x [DOI] [PubMed] [Google Scholar]
  • 19.LeRoy EC, Black C, Fleischmajer R, Jablonska S, Krieg T, Medsger TA, Jr, et al. Scleroderma (systemic sclerosis): classification, subsets and pathogenesis. J Rheumatol. 1988;15(2):202–205. [PubMed] [Google Scholar]
  • 20.Pereira CA, Sato T, Rodrigues SC. New reference values for forced spirometry in white adults in Brazil. J Bras Pneumol. 2007;33(4):397–406. doi: 10.1590/s1806-37132007000400008. http://dx.doi.org/10.1590/S1806-37132007000400008 [DOI] [PubMed] [Google Scholar]
  • 21.Neder JA, Andreoni S, Castelo-Filho A, Nery LE. Reference values for lung function tests. I. Static volumes . Braz J Med Biol Res. 1999;32(6):703–717. doi: 10.1590/s0100-879x1999000600006. [DOI] [PubMed] [Google Scholar]
  • 22.Andreoni S, Lerario MC, Nery LE. Reference values for lung function tests. II. Maximal respiratory pressures and voluntary ventilation . Braz J Med Biol Res. 1999;32(6):719–727. doi: 10.1590/s0100-879x1999000600007. [DOI] [PubMed] [Google Scholar]
  • 23.Hsia CC, Hyde DM, Ochs M, Weibel ER, ATS/ERS Joint Task Force on Quantitative Assessment of Lung Structure An official research policy statement of the American Thoracic Society/European Respiratory Society: standards for quantitative assessment of lung structure. Am J Respir Crit Care Med. 2010;181(4):394–418. doi: 10.1164/rccm.200809-1522ST. http://dx.doi.org/10.1164/rccm.200809-1522ST [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24.Meneghin A, Hogaboam CM. Infectious disease, the innate immune response, and fibrosis. J Clin Invest. 2007;117(3):530–538. doi: 10.1172/JCI30595. http://dx.doi.org/10.1172/JCI30595 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 25.Oikonomou N, Harokopos V, Zalevsky J, Valavanis C, Kotanidou A, Szymkowski DE, et al. Soluble TNF mediates the transition from pulmonary inflammation to fibrosis. PLoS One. 2006;1: doi: 10.1371/journal.pone.0000108. http://dx.doi.org/10.1371/journal.pone.0000108 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26.Pardo A, Selman M. Molecular mechanisms of pulmonary fibrosis. Front Biosci. 2002;7:d1743–d1761. doi: 10.2741/pardo. [DOI] [PubMed] [Google Scholar]
  • 27.Kobayashi T, Narumiya S. Function of prostanoid receptors: studies on knockout mice. Prostaglandins Other Lipid Mediat. 2002;68-69:557–573. doi: 10.1016/s0090-6980(02)00055-2. http://dx.doi.org/10.1016/S0090-6980(02)00055-2 [DOI] [PubMed] [Google Scholar]
  • 28.McCann MR, Monemdjou R, Ghassemi-Kakroodi P, Fahmi H, Perez G, Liu S, et al. mPGES-1 null mice are resistant to bleomycin-induced skin fibrosis. Arthritis Res Ther. 2011;13(1):R6–R6. doi: 10.1186/ar3226. http://dx.doi.org/10.1186/ar3226 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29.Gilroy DW, Colville-Nash PR, Willis D, Chivers J, Paul-Clark MJ, Willoughby DA. Inducible cyclooxygenase may have anti-inflammatory properties. Nat Med. 1999;5(6):698–701. doi: 10.1038/9550. http://dx.doi.org/10.1038/9550 [DOI] [PubMed] [Google Scholar]
J Bras Pneumol. 2013 Nov-Dec;39(6):692–700. [Article in Portuguese]

Avaliação imuno-histoquímica e morfométrica de COX-1 e COX-2 no remodelamento pulmonar na fibrose pulmonar idiopática e na esclerose sistêmica*

Edwin Roger Parra 1, Flavia Lin 2, Vanessa Martins 3, Maristela Peres Rangel 4, Vera Luiza Capelozzi 5,

Abstract

OBJETIVO:

Estudar a expressão de COX-1 e COX-2 em áreas pulmonares remodeladas em pacientes com esclerose sistêmica (ES) ou fibrose pulmonar idiopática (FPI) e correlacioná-la com a sobrevida desses pacientes.

MÉTODOS:

Examinamos espécimes de biópsia pulmonar a céu aberto de 24 pacientes com ES e de 30 pacientes com FPI, utilizando-se tecido pulmonar normal como controle. Os padrões histológicos incluíram pneumonia intersticial não específica (PINE) fibrótica em pacientes com ES e pneumonia intersticial usual (PIU) nos pacientes com FPI. Imuno-histoquímica e histomorfometria foram usadas para avaliar a expressão celular de COX-1 e COX-2 em septos alveolares, vasos e bronquíolos, sua correlação com provas de função pulmonar e seu impacto na sobrevida.

RESULTADOS:

A expressão de COX-1 e COX-2 em septos alveolares foi significativamente maior em FPI-PIU e ES-PINE do que no tecido controle. Não houve diferença entre FPI-PIU e ES-PINE quanto à expressão de COX-1 e COX-2. A análise multivariada baseada no modelo de regressão de Cox mostrou que os fatores associados a baixo risco de morte foram ter idade menor, valores elevados de DLCO/volume alveolar, FPI, e alta expressão de COX-1 em septos alveolares, ao passo que os fatores associados a alto risco de morte foram ter idade maior, valores baixos de DLCO/volume alveolar, ES (com PINE) e baixa expressão de COX-1 em septos alveolares.

CONCLUSÕES:

Nossos resultados sugerem que estratégias de prevenção de baixa síntese de COX-1 terão maior impacto sobre a ES, ao passo que as de prevenção de alta síntese de COX-2 terão maior impacto sobre a FPI. Porém, são necessários ensaios clínicos randomizados prospectivos para confirmar essa hipótese.

Keywords: Escleroderma sistêmico, Fibrose pulmonar idiopática, Inflamação, Taxa de sobrevida

Introdução

O remodelamento pulmonar é uma sequela terminal comum da fibrose pulmonar idiopática (FPI) e da esclerose sistêmica (ES); resulta em desorganização da arquitetura pulmonar e, consequentemente, insuficiência respiratória progressiva.(1-4) Histologicamente, o processo de remodelamento é caracterizado por inflamação intersticial crônica difusa e aumento da proliferação de fibroblastos, da síntese de matriz extracelular e da deposição de colágeno.(2,5,6) Portanto, a modulação da inflamação, da proliferação de fibroblastos e da síntese de colágeno por mediadores efetores na FPI e na ES é muito importante. Não obstante a caracterização de vários participantes cruciais, os mediadores e mecanismos envolvidos na patogênese da FPI e da ES ainda não foram totalmente definidos, o que pode explicar o número limitado de opções terapêuticas, com pouco impacto na sobrevida em longo prazo.(7,8)

Sabe-se que a COX é a enzima essencial para a conversão de ácido araquidônico em prostaglandina E2 (PGE2), que é o precursor de uma família de mediadores lipídicos bioativos diversos, como as prostaglandinas, o tromboxano e a prostaciclina. A COX existe em duas isoformas: COX-1 e COX-2. A COX-1 é expressa constitutivamente na maioria dos tecidos e atua como uma enzima "que mantém a casa em ordem", isto é, que regula a homeostase vascular, protege a mucosa gástrica e mantém a integridade renal,(9,10) ao passo que a COX-2 tem níveis mais baixos de expressão na maioria dos tecidos, embora possa ser induzida em resposta a fatores de crescimento, citocinas e outras moléculas pró-inflamatórias.(11-13)

No tocante ao papel pró-inflamatório e anti-inflamatório da COX-1 e da COX-2, a imuno-histoquímica pode ser útil para detectar essas enzimas no pulmão remodelado de pacientes com ES e FPI. Dados relativos à avaliação de COX-1 e COX-2 no pulmão remodelado foram anteriormente relatados no soro(14,15) e lavado broncoalveolar(16) de pacientes com ES, bem como em culturas de fibroblastos(4) e biópsias(17,18) de pacientes com FPI. No entanto, o papel da COX-1 e da COX-2 nos mecanismos envolvidos no remodelamento pulmonar em pacientes com FPI e ES ainda não está claro, e há incerteza sobre a melhor maneira de detectar a COX-2. O objetivo do presente estudo foi estudar a expressão de COX-1 e COX-2 (avaliada separadamente em septos alveolares, bronquíolos e vasos) em espécimes obtidos por meio de biópsia pulmonar e correlacioná-la com a sobrevida dos pacientes.

Métodos

Entre janeiro de 2002 e julho de 2008, 24 pacientes consecutivos com ES e doença pulmonar intersticial e 30 pacientes com suspeita de FPI baseada em achados de TCAR foram submetidos a biópsia pulmonar a céu aberto no Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, na cidade de São Paulo (SP). Todos os pacientes preencheram os critérios para o diagnóstico de ES(19) e FPI.(1) A biópsia pulmonar a céu aberto foi realizada por meio de toracotomia formal, evitando-se áreas de faveolamento. Todos os pacientes assinaram um termo de consentimento livre e esclarecido, e o estudo foi aprovado pelo comitê de ética em pesquisa da instituição (Protocolo nº 0960/08).

Foram analisados os prontuários clínicos de todos os pacientes. A duração da doença foi determinada com base no início do primeiro sintoma. Os testes de função pulmonar e a TCAR foram realizados em um prazo de até 3 meses antes da biópsia. Os testes de função pulmonar incluíram CV, VEF1, CVF, VEF1/CVF, CPT, VR e DLCO. A avaliação fisiológica foi realizada antes da biópsia pulmonar a céu aberto e antes do início do tratamento. Todos os testes de função pulmonar, incluindo espirometria, determinação dos volumes pulmonares e medição da DLCO, foram realizados no mesmo dia. Todos os testes espirométricos foram realizados com um pneumotacógrafo calibrado (Medical Graphics Co., St. Paul, MN, EUA); todos os valores foram expressos em porcentagem de seus respectivos valores previstos, os valores de referência tendo sido estabelecidos por Pereira et al.(20) Os volumes pulmonares foram medidos com um pletismógrafo de corpo inteiro (Medical Graphics Co.); todos os valores foram expressos em porcentagem dos valores previstos. (21) A capacidade de difusão foi expressa em porcentagem dos valores previstos. (22) Todos os pacientes foram acompanhados regularmente após o tratamento até o óbito; exames de sangue e testes de função pulmonar foram realizados regularmente. O desfecho primário foi avaliar o impacto de alterações em COX-1 e COX-2 na sobrevida e analisar as diferenças entre ES e FPI. A Tabela 1 mostra os dados demográficos. Como controle, obtivemos tecido pulmonar normal de 10 indivíduos (6 homens e 4 mulheres) cuja mediana de idade foi de 46,6 ± 5,8 anos e que morreram subitamente de causas não pulmonares.

Tabela 1. Dados clínicos dos pacientes com esclerose sistêmica e daqueles com fibrose pulmonar idiopática.a.

graphic file with name 1806-3713-jbpneu-39-06-0692-gt01-pt.jpg

Quanto aos achados da biópsia pulmonar a céu aberto, a pneumonia intersticial usual (PIU), o padrão histológico da FPI, foi caracterizada por distribuição subpleural e parasseptal segmentada de lesões parenquimatosas. Com um aumento pequeno, observou-se heterogeneidade temporal, com áreas de parênquima pulmonar normal se alternando com colapso alveolar, infiltrado mononuclear intersticial, tecido fibromixoide septal (focos fibroblásticos) e faveolamento.(2) Todos os pacientes com ES apresentavam padrões histológicos consistentes com pneumonia intersticial não específica (PINE) fibrótica, definida por espessamento septal temporalmente homogêneo e fibrose intersticial.(19)

Para a análise imuno-histoquímica, foi usada uma técnica-padrão de peroxidase - com a hematoxilina de Harris como contracorante - a fim de identificar a expressão de COX-1 e COX-2 em septos alveolares, paredes bronquiolares e paredes vasculares em tecido pulmonar normal (o tecido controle), em tecido pulmonar com padrão histológico de PIU (o tecido PIU) e em tecido pulmonar com padrão histológico de PINE (o tecido PINE). Todos os anticorpos usados foram anticorpos policlonais de cabra biotinilados. Anticorpos anti-COX-1 e anti-COX-2 (Santa Cruz Biotechnology, Inc., Santa Cruz, CA, EUA) foram incubados com cortes histológicos em diluições de 1:50 e 1:100, respectivamente. O kit de amplificação Novolink Max Polymer (Leica Biosystems Newcastle Ltd, Newcastle upon Tyne, Reino Unido) foi usado para a amplificação do sinal, e 3,3'-diaminobenzidina tetra-hidrocloreto (0,25 mg dissolvidos em 1 mL de peróxido de hidrogênio a 0,02%) foi usado como substrato precipitante para a detecção do sinal. A especificidade dos anticorpos primários foi confirmada por controles de reagentes apropriados - o anticorpo primário sendo omitido ou soro não imune sendo usado em vez do anticorpo primário no protocolo de coloração - os quais não revelaram nenhuma coloração.

Quanto à histomorfometria, avaliamos a expressão de COX-1 e COX-2 por meio de uma técnica de contagem de pontos em 50 e 30 campos em septos alveolares, paredes bronquiolares, e paredes vasculares no tecido controle, no tecido PIU e no tecido PINE. A técnica foi executada com um retículo de 100 pontos (área: 187.500 μm(21); aumento: 400×) ligado à ocular do microscópio.(23) Com um aumento de 400×, as áreas septais, bronquiolares e vasculares em cada campo foram calculadas com base no número de pontos sobrepostos ao tecido conjuntivo, na forma de porcentagem da área total do retículo. Posteriormente, contou-se o número de células imunomarcadas nas áreas septais, bronquiolares e vasculares. A fração de área de células imunomarcadas representa a relação percentual entre a área de células marcadas e a área total coberta pelo retículo na ocular.

Para avaliar a variabilidade interobservador, comparamos os resultados obtidos por dois observadores em 20% das lâminas. O coeficiente de variação para o erro interobservador da contagem de células foi de 5%.

Os dados são apresentados na forma de média ± dp e IC95%. O teste t de Student para amostras independentes foi usado a fim de testar a relação entre variáveis contínuas, e os resíduos foram examinados para certificar que sua distribuição era aproximadamente normal. A relação entre celularidade (determinada pela imunomarcação) e os resultados dos testes de função pulmonar foi avaliada pelo coeficiente de correlação de Pearson. Para todos os casos, os valores das variáveis medidas foram dispostos em ordem crescente e divididos em dois grupos com base na mediana de cada variável. Para cada variável, os grupos foram denominados baixo grau e alto grau, a saber: COX-1 em septos alveolares (baixo grau: < 2,35%; alto grau: 2,35%); COX-1 em vasos (baixo grau: < 2,91%; alto grau: 2,91%); COX-1 em bronquíolos (baixo grau: < 2,88%; alto grau: 2,88%); COX-1 total (baixo grau: < 2,77%; alto grau: 2,77%); COX-2 em septos alveolares (baixo grau: < 2,04%; alto grau: 2,04%); COX-2 em vasos (baixo grau: < 2,34%; alto grau: 2,34%); COX-2 em bronquíolos (baixo grau: < 2,34%; alto grau: 2,34%) e COX-2 total (baixo grau: < 2,16%; alto grau: 2,16%).

A análise da sobrevida global foi realizada em dois passos. Primeiro, realizamos uma análise univariada relacionando o acompanhamento global com cada uma das variáveis medidas por meio do método de Kaplan-Meier e então analisamos a sobrevida por meio do teste de log-rank. As variáveis que se mostraram significantes na análise univariada foram incluídas na análise multivariada baseada no modelo de regressão de riscos proporcionais de Cox. Qualquer morte causada por FPI ou ES foi considerada um evento positivo. Mortes cujas causas foram outras que não FPI ou ES e pacientes vivos foram incluídos nos modelos como casos censurados.

Todos os procedimentos estatísticos foram realizados com o programa Statistical Package for the Social Sciences, versão 18.0 (SPSS Inc., Chicago, IL, EUA). Para todos os testes, o nível de significância adotado foi de 5%.

Resultados

A Tabela 1 resume as características clínicas dos pacientes com ES (n = 24) e dos pacientes com FPI (n = 30). Seis de 17 pacientes com ES (35,29%) e 13 de 19 pacientes com FPI (68,42%) apresentaram distúrbio ventilatório restritivo. Os resultados dos testes de função respiratória foram os seguintes: CVF < 80% em 18 (75%) dos 24 pacientes com ES e em 19 de 22 pacientes com FPI (86,36%); CPT < 80% em 6 de 17 pacientes com ES (35,9%) e em 13 de 19 pacientes com FPI (68,42%); DLCO < 80% em 12 de 15 pacientes com ES (80%) e em 8 de 9 pacientes com FPI (88,88%); DLCO/volume alveolar < 80% em 11 de 18 pacientes com ES (61,11%) e em 11 de 14 pacientes com FPI (78,57%). Houve correlação negativa significativa entre a expressão de COX-2 em vasos e a CVF (r = −0,28; p = 0,05) e entre a expressão de COX-2 em septos alveolares e a DLCO (r = −0,80; p = 0,009).

A Figura 1 mostra septos alveolares, vasos e bronquíolos no tecido controle, no tecido PINE e no tecido PIU com imunomarcação positiva para COX-1 (em A, C, E, G, I, K, M, O e Q) e COX-2 (em B, D, F, H, J, L, N, P e R). Os tecidos PINE e PIU diferiram do tecido controle quanto à intensidade da imunomarcação de células epiteliais, células endoteliais, miofibroblastos e células musculares lisas nos septos alveolares, vasos, e bronquíolos.

Figura 1. Expressão celular de COX-1 e COX-2 em septos alveolares, vasos intrapulmonares e bronquíolos em tecido pulmonar normal (tecido controle); em tecido pulmonar de pacientes com esclerose sistêmica (ES) e pneumonia intersticial não específica (PINE) fibrótica; e em tecido pulmonar de pacientes com fibrose pulmonar idiopática (FPI) e pneumonia intersticial usual (PIU). A intensidade da imunomarcação positiva para COX-1 em células epiteliais, células endoteliais, miofibroblastos e células musculares lisas em septos alveolares de tecido ES-PINE e FPI-PIU (G e M, respectivamente), em vasos de tecido ES-PINE e FPI-PIU (I e O, respectivamente) e em bronquíolos de tecido ES-PINE e FPI-PIU (K e Q, respectivamente) foi maior que a da imunomarcação positiva para COX-1 nessas células em septos alveolares do tecido controle (A), em vasos do tecido controle (C) e em bronquíolos do tecido controle (E). Do mesmo modo, a intensidade da imunomarcação positiva para COX-2 nessas células em septos alveolares de tecido ES-PINE e FPI-PIU (H e N, respectivamente), em vasos de tecido ES-PINE e FPI-PIU (J e P, respectivamente) e em bronquíolos de tecido ES-PINE e FPI-PIU (L e R, respectivamente) foi maior que a da imunomarcação positiva para COX-2 nessas células em septos alveolares do tecido controle (B), em vasos do tecido controle (D) e em bronquíolos do tecido controle (F). Os gráficos de barras mostram a quantificação da imunomarcação positiva para COX-1 e COX-2 em células em septos alveolares (S), parênquima pulmonar total (T) e bronquíolos (W) no tecido controle, no tecido ES-PINE e no tecido FPI-PIU (marcação imuno-histoquímica; aumento: 400×).

Figura 1

A Tabela 2 resume os resultados morfométricos. A proporção de células em septos alveolares com imunomarcação positiva para COX-1 e COX-2 foi significativamente maior nos tecidos PIU e PINE do que no tecido controle. Em outras palavras, elevadas proporções de células em septos alveolares marcadas positivamente para COX-1 e COX-2 associaram-se aos padrões histológicos de PIU e PINE. Como se pode observar nos gráficos de barras na Figura 1 (S e T), a relação de COX-1 e COX-2 com a FPI (o padrão histológico de PIU) foi mais forte do que a de COX-1 e COX-2 com a ES (o padrão histológico de PINE). Embora a proporção de células bronquiolares com imunomarcação positiva para COX-2 tenha sido menor nos tecidos PINE e PIU do que no tecido controle (Figura 1W), a diferença não foi estatisticamente significante. Além disso, embora a proporção de células bronquiolares com imunomarcação positiva para COX-1 tenha sido maior nos tecidos PIU e PINE do que no tecido controle (Figura 1W), a diferença não foi significante. Não foram encontradas diferenças entre os tecidos no tocante à imunomarcação de COX-1 e COX-2 em vasos e no parênquima total (Tabela 2).

Tabela 2. Resultados morfométricos em tecido pulmonar normal (tecido controle), em tecido pulmonar com o padrão histológico de pneumonia intersticial usual (proveniente de pacientes com fibrose pulmonar idiopática) e em tecido pulmonar com o padrão histológico de pneumonia intersticial não específica (proveniente de pacientes com esclerose sistêmica).a.

graphic file with name 1806-3713-jbpneu-39-06-0692-gt02-pt.jpg

Uma análise preliminar das curvas de sobrevida de Kaplan-Meier mostrou que a sobrevida foi melhor nos pacientes com ES (o padrão histológico de PINE fibrótica) e expressão de COX-2 > 2,25% (mediana da sobrevida: 70,75 meses) do que naqueles com FPI (o padrão histológico de PIU) e expressão de COX-2 < 2,25% (mediana da sobrevida: 46,32 meses; Figura 2). Portanto, codificamos o padrão histológico de PINE fibrótica como uma única variável dummy com valor = 1 e o padrão histológico de PIU com valor = 2. Os resultados da análise multivariada baseada no modelo de regressão de riscos proporcionais de Cox são apresentados na Tabela 3. Após termos controlado a idade, os resultados dos testes de função pulmonar, o padrão histológico de PIU e o padrão histológico de PINE fibrótica, constatamos que apenas duas variáveis se associaram de maneira significativa ao tempo de sobrevida: o padrão histológico de PINE fibrótica e COX-2 em septos alveolares (p = 0,02). Uma vez que essas duas variáveis foram contabilizadas, nenhuma das demais se relacionou à sobrevida. A análise multivariada revelou baixo risco de morte para pacientes jovens com VEF1/CVF baixa, padrão histológico de PINE fibrótica e COX-2 de alto grau em septos alveolares.

Figura 2. Curvas de regressão de Cox para risco de óbito versus tempo de acompanhamento (em meses) em pacientes jovens com DLCO/volume alveolar baixa, esclerose sistêmica (e padrão histológico de pneumonia intersticial não específica celular), COX-1 total de alto grau e COX-2 de baixo grau em septos alveolares. A curva superior representa o grupo de pacientes com esclerose sistêmica e pneumonia intersticial não específica celular. A curva inferior representa dois grupos de pacientes: aqueles com esclerose sistêmica e pneumonia intersticial não específica fibrótica e aqueles com fibrose pulmonar idiopática e padrão histológico de pneumonia intersticial usual.

Figura 2

Tabela 3. Regressão de riscos proporcionais de Cox para verificar a contribuição individual do padrão histológico e fatores morfológicos associados à sobrevida e comparar os dois grupos quanto à sobrevida ajustada.

graphic file with name 1806-3713-jbpneu-39-06-0692-gt03-pt.jpg

Discussão

O número limitado de abordagens terapêuticas que tenham qualquer impacto na sobrevida em longo prazo em pacientes com FPI-PIU e naqueles com ES e PINE fibrótica deve-se à falta de definição a respeito dos mediadores e mecanismos envolvidos na patogênese da FPI e da ES. Portanto, a questão de interesse é se mediadores adicionais podem ajudar a compreender melhor a patogênese dessas doenças. O processo de reparo envolve duas fases distintas: uma fase inflamatória regenerativa, em que o microambiente tenta substituir as células lesadas, e uma fase fibrótica, em que o tecido conjuntivo substitui o tecido parenquimatoso normal.(24-26) No processo de reparo, aumenta a produção de PGE2 por fibroblastos,(27,28) o que constitui evidência adicional das propriedades antiproliferativas, anti-inflamatórias e antifibróticas da COX-2/PGE2.(15) Portanto, nosso achado de que a marcação imuno-histoquímica para COX fornece informações importantes sobre os processos de reparo na fibrose pulmonar não é surpreendente, e nossos resultados confirmam que a expressão de COX-2 é maior na FPI e na ES, com desfecho melhor em um grupo de pacientes. Constatamos que a proporção de células em septos alveolares com imunomarcação positiva para COX-1 e COX-2 foi significativamente maior em tecido pulmonar com padrão histológico de PIU e PINE fibrótica do que em tecido pulmonar normal. A maior expressão de COX-1 era esperada, pois a COX-1 é expressa constitutivamente na maioria das células e tecidos, ao passo que a COX-2 é induzida por estímulos inflamatórios ou mitogênicos.(9) Esses resultados contrastam com os de estudos anteriores nos quais se investigou a FPI.(4,17, 18) Esses estudos mostraram uma redução da expressão de COX-2 em fibroblastos pulmonares em consequência de uma diminuição da produção de COX-2. No entanto, nesses estudos, a expressão de COX-2 foi medida apenas em fibroblastos, ao passo que em nosso estudo ela foi medida nos septos alveolares, incluindo células epiteliais e fibroblastos em áreas normais, áreas em colapso, e focos de fibroblastos. Outros estudos, inclusive um estudo realizado por Lappi-Blanco et al.,(3) encontraram um aumento da expressão de COX-2 em epitélio metaplásico e fibroblastos provenientes de áreas fibróticas em FPI-PIU. Esses resultados divergentes sugerem que a COX-2 desempenha um papel duplo na FPI-PIU. Primeiro, a redução da expressão da COX-2 em áreas normais, áreas em colapso e focos fibroblásticos sugere que a COX-2 desempenha um papel anti-inflamatório na FPI-PIU em fase inicial. Segundo, a presença de fibrose progressiva mesmo na presença de aumento da expressão de COX-2 sugere que os fibroblastos são incapazes de responder ao estímulo da COX-2 e seu produto principal (PGE2) de modo a inibir a proliferação de fibroblastos, a transformação miofibroblástica e o aumento da produção de colágeno e outras moléculas da matriz extracelular.

No presente estudo, a proporção de células em septos alveolares com imunomarcação positiva para COX-1 e COX-2 foi menor em tecido fibrótico PINE (proveniente de pacientes com ES) do que em tecido PIU (de pacientes com FPI). Esse achado contrasta com os de estudos anteriores em que se mostrou que os níveis de COX-2 são mais elevados em pacientes com ES.(14-16) Além disso, relatou-se que a produção de COX-2 é muito maior na fase de resolução inflamatória do que na fase inicial.(29) Esses achados divergentes sugerem que a COX-2 tem um papel duplo em um processo inflamatório normal, desempenhando um papel pró-inflamatório na fase inicial e um papel anti-inflamatório na fase de resolução.(29) Portanto, diante das evidências mencionadas acima e da inflamação latente em pacientes com ES e envolvimento pulmonar, nossos resultados reforçam a ideia de que a COX-2 não exerce seu efeito anti-inflamatório de maneira apropriada, pois há inflamação mesmo quando a expressão de COX-2 está aumentada em pacientes com ES e PINE fibrótica. No entanto, mais estudos são necessários para esclarecer o verdadeiro motivo pelo qual o mecanismo da COX-2 é deficiente. Supomos que isso se deva à incapacidade da COX-2 de estimular a produção de PGE2 ou de outros mediadores anti-inflamatórios em oposição a seus próprios efeitos pró-inflamatórios ou à incapacidade das células de reagir apropriadamente à COX-2.

Nosso estudo tem impacto clínico e funcional. Procuramos estabelecer uma correlação entre a COX-2 e a sobrevida dos pacientes controlada quanto à idade, aos resultados dos testes de função pulmonar, ao padrão histológico de PIU (em pacientes com FPI) e ao padrão histológico de PINE (em pacientes com ES). Nossa análise multivariada revelou baixo risco de morte para pacientes mais jovens com DLCO/volume alveolar baixa, ES (e o padrão histológico de PINE) COX-2 total de alto grau e COX-1 de alto grau em septos alveolares.

Em suma, a expressão de COX-1 e COX-2 no parênquima pulmonar nos oferece o potencial de controlar processos de reparo envolvidos na progressão da ES-PINE e da FPI-PIU, sugerindo que estratégias destinadas a prevenir a baixa síntese de COX-1 terão maior impacto na ES, ao passo que as destinadas a prevenir a elevada síntese de COX-2 terão maior impacto na FPI. Ensaios randomizados prospectivos são necessários para confirmar isso.

Footnotes

*

Trabalho realizado no Laboratório de Histomorfometria e Genética Pulmonar, Departamento de Patologia, Faculdade de Medicina da Universidade de São Paulo, São Paulo (SP) Brasil.

Apoio financeiro: Este estudo recebeu apoio financeiro do Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) e da Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP; Processo nº 2008/53022-3).


Articles from Jornal Brasileiro de Pneumologia : Publicaça̋o Oficial da Sociedade Brasileira de Pneumologia e Tisilogia are provided here courtesy of Sociedade Brasileira de Pneumologia e Tisiologia (Brazilian Thoracic Society)

RESOURCES