Skip to main content
Bacteriological Reviews logoLink to Bacteriological Reviews
. 1972 Jun;36(2):146–155. doi: 10.1128/br.36.2.146-155.1972

Microbial co-metabolism and the degradation of organic compounds in nature.

R S Horvath
PMCID: PMC408321  PMID: 4557166

Full text

PDF
146

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alexander M. Biodegradation: problems of molecular recalcitrance and microbial fallibility. Adv Appl Microbiol. 1965;7:35–80. doi: 10.1016/s0065-2164(08)70383-6. [DOI] [PubMed] [Google Scholar]
  2. Benarde M. A., Koft B. W., Horvath R., Shaulis L. Microbial Degradation of the Sulfonate of Dodecyl Benzene Sulfonate. Appl Microbiol. 1965 Jan;13(1):103–105. doi: 10.1128/am.13.1.103-105.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Berger J., Tabenkin B., LeMahieu R. A., Kierstead R. W. Microbiological hydroxylation of cinerone to cinerolone. Appl Microbiol. 1969 May;17(5):714–717. doi: 10.1128/am.17.5.714-717.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Burge W. D. Populations of dalapon-decomposing bacteria in soil as influenced by additions of dalapon or other carbon sources. Appl Microbiol. 1969 Apr;17(4):545–550. doi: 10.1128/am.17.4.545-550.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. DAVIS J. B., RAYMOND R. L. Oxidation of alkyl-substituted cyclic hydrocarbons by a Nocardia during growth on n-alkanes. Appl Microbiol. 1961 Sep;9:383–388. doi: 10.1128/am.9.5.383-388.1961. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Douros J. D., Frankenfeld J. W. Oxidation of Alkylbenzenes by a Strain of Micrococcus cerificans Growing on n-Paraffins. Appl Microbiol. 1968 Mar;16(3):532–533. doi: 10.1128/am.16.3.532-533.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. FOSTER J. W. Hydrocarbons as substrates for microorganisms. Antonie Van Leeuwenhoek. 1962;28:241–274. doi: 10.1007/BF02538739. [DOI] [PubMed] [Google Scholar]
  8. Focht D. D., Alexander M. Aerobic cometabolism of DDT analogues by Hydrogenomonas sp. J Agric Food Chem. 1971 Jan-Feb;19(1):20–22. doi: 10.1021/jf60173a042. [DOI] [PubMed] [Google Scholar]
  9. Focht D. D., Alexander M. DDT metabolites and analogs: ring fission by Hydrogenomonas. Science. 1970 Oct 2;170(3953):91–92. doi: 10.1126/science.170.3953.91. [DOI] [PubMed] [Google Scholar]
  10. Gibson D. T., Koch J. R., Kallio R. E. Oxidative degradation of aromatic hydrocarbons by microorganisms. I. Enzymatic formation of catechol from benzene. Biochemistry. 1968 Jul;7(7):2653–2662. doi: 10.1021/bi00847a031. [DOI] [PubMed] [Google Scholar]
  11. Gibson D. T., Koch J. R., Schuld C. L., Kallio R. E. Oxidative degradation of aromatic hydrocarbons by microorganisms. II. Metabolism of halogenated aromatic hydrocarbons. Biochemistry. 1968 Nov;7(11):3795–3802. doi: 10.1021/bi00851a003. [DOI] [PubMed] [Google Scholar]
  12. HUGHES D. E. 6-Hydroxynicotinic acid as an intermediate in the oxidation of nicotinic acid by Pseudomonas fluorescens. Biochem J. 1955 Jun;60(2):303–310. doi: 10.1042/bj0600303. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. HUGHES D. E. THE METABOLISM OF HALOGEN-SUBSTITUTED BENZOIC ACIDS BY PSEUDOMONAS FLUORESCENS. Biochem J. 1965 Jul;96:181–188. doi: 10.1042/bj0960181. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hegeman G. D. Synthesis of the enzymes of the mandelate pathway by Pseudomonas putida. I. Synthesis of enzymes by the wild type. J Bacteriol. 1966 Mar;91(3):1140–1154. doi: 10.1128/jb.91.3.1140-1154.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Horvath R. S., Alexander M. Cometabolism of m-chlorobenzoate by an Arthrobacter. Appl Microbiol. 1970 Aug;20(2):254–258. doi: 10.1128/am.20.2.254-258.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Horvath R. S., Alexander M. Cometabolism: a technique for the accumulation of biochemical products. Can J Microbiol. 1970 Nov;16(11):1131–1132. doi: 10.1139/m70-189. [DOI] [PubMed] [Google Scholar]
  17. Horvath R. S. Co-metabolism of methyl- and chloro-substituted catechols by an Achromobacter sp. possessing a new meta-cleaving oxygenase. Biochem J. 1970 Oct;119(5):871–876. doi: 10.1042/bj1190871. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Horvath R. S. Cometabolism of the herbicide 2,3,6-trichlorobenzoate. J Agric Food Chem. 1971 Mar-Apr;19(2):291–293. doi: 10.1021/jf60174a020. [DOI] [PubMed] [Google Scholar]
  19. Horvath R. S., Koft B. W. Degradation of alkyl benzene sulfonate by Pseudomonas species. Appl Microbiol. 1972 Feb;23(2):407–414. doi: 10.1128/am.23.2.407-414.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. ICHIHARA A., ADACHI K., HOSOKAWA K., TAKEDA Y. The enzymatic hydroxylation of aromatic carboxylic acids; substrate specificities of anthranilate and benzoate oxidases. J Biol Chem. 1962 Jul;237:2296–2302. [PubMed] [Google Scholar]
  21. Kennedy S. I., Fewson C. A. Metabolism of mandelate and related compounds by bacterium NCIB 8250. J Gen Microbiol. 1968 Sep;53(2):259–273. doi: 10.1099/00221287-53-2-259. [DOI] [PubMed] [Google Scholar]
  22. LEADBETTER E. R., FOSTER J. W. Oxidation products formed from gaseous alkanes by the bacterium Pseudomonas methanica. Arch Biochem Biophys. 1959 Jun;82(2):491–492. doi: 10.1016/0003-9861(59)90154-7. [DOI] [PubMed] [Google Scholar]
  23. Loos M. A., Roberts R. N., Alexander M. Phenols as intermediates in the decomposition of phenoxyacetates by an Arthrobacter species. Can J Microbiol. 1967 Jun;13(6):679–690. doi: 10.1139/m67-090. [DOI] [PubMed] [Google Scholar]
  24. Matsumura F., Boush G. M. Dieldrin: degradation by soil microorganism. Science. 1967 May 19;156(3777):959–961. doi: 10.1126/science.156.3777.959. [DOI] [PubMed] [Google Scholar]
  25. Raymond R. L., Jamison V. W., Hudson J. O. Microbial hydrocarbon co-oxidation. I. Oxidation of mono- and dicyclic hydrocarbons by soil isolates of the genus Nocardia. Appl Microbiol. 1967 Jul;15(4):857–865. doi: 10.1128/am.15.4.857-865.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Raymond R. L., Jamison V. W., Hudson J. O. Microbial hydrocarbon co-oxidation. II. Use of ion-exchange resins. Appl Microbiol. 1969 Apr;17(4):512–515. doi: 10.1128/am.17.4.512-515.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Ribbons D. W., Senior P. J. 2,3-Dihydroxybenzoate 3,4-oxygenase from Pseudomonas fluorescens: determination of the site of ring cleavage with a substrate analogue. Biochem J. 1970 Apr;117(2):28P–29P. doi: 10.1042/bj1170028p. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Ribbons D. W., Senior P. J. 2,3-dihydroxybenzoate 3,4-oxygenase from Pseudomonas fluorescens--oxidation of a substrate analog. Arch Biochem Biophys. 1970 Jun;138(2):557–565. doi: 10.1016/0003-9861(70)90381-4. [DOI] [PubMed] [Google Scholar]
  29. Ribbons D. W., Senior P. J. Enzymic estimation of 2,3-dihydroxybenzoate and 2,3-dihydroxy-p-toluate. Anal Biochem. 1970 Aug;36(2):310–314. doi: 10.1016/0003-2697(70)90365-9. [DOI] [PubMed] [Google Scholar]
  30. Sehgal S. N., Vézina C. Microbial aromatization of steroids into equilin. Appl Microbiol. 1970 Dec;20(6):875–879. doi: 10.1128/am.20.6.875-879.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Sethunathan N., Pathak M. D. Development of a diazinon-degrading bacterium in paddy water after repeated applications of diazinon. Can J Microbiol. 1971 May;17(5):699–702. doi: 10.1139/m71-112. [DOI] [PubMed] [Google Scholar]
  32. Stanier R. Y. Simultaneous Adaptation: A New Technique for the Study of Metabolic Pathways. J Bacteriol. 1947 Sep;54(3):339–348. doi: 10.1128/jb.54.3.339-348.1947. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Wedemeyer G. Biodegradation of Dichlorodiphenyltrichloroethane: Intermediates in Dichlorodiphenylacetic Acid Metabolism by Aerobacter aerogenes. Appl Microbiol. 1967 Nov;15(6):1494–1495. doi: 10.1128/am.15.6.1494-1495.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Wedemeyer G. Dechlorination of 1,1,1-trichloro-2,2-bis(p-chlorophenyl)ethane by Aerobacter aerogenes. I. Metabolic products. Appl Microbiol. 1967 May;15(3):569–574. doi: 10.1128/am.15.3.569-574.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. van Eyk J., Bartels T. J. Paraffin oxidation in Pseudomonas aeruginosa. I. Induction of paraffin oxidation. J Bacteriol. 1968 Sep;96(3):706–712. doi: 10.1128/jb.96.3.706-712.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Bacteriological Reviews are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES