Skip to main content
Jornal Brasileiro de Pneumologia logoLink to Jornal Brasileiro de Pneumologia
. 2014 Mar-Apr;40(2):148–154. doi: 10.1590/S1806-37132014000200008
View full-text in Portuguese

Use of amplified Mycobacterium tuberculosis direct test in respiratory samples from HIV-infected patients in Brazil*

Leonardo Bruno Paz Ferreira Barreto 1, Maria Cristina da Silva Lourenço 2, Valéria Cavalcanti Rolla 3, Valdiléia Gonçalves Veloso 4, Gisele Huf 5
PMCID: PMC4083646  PMID: 24831399

Abstract

OBJECTIVE:

To compare the accuracy of the amplified Mycobacterium tuberculosis direct (AMTD) test with reference methods for the laboratory diagnosis of tuberculosis in HIV-infected patients.

METHODS:

This was a study of diagnostic accuracy comparing AMTD test results with those obtained by culture on Löwenstein-Jensen (LJ) medium and by the BACTEC Mycobacteria Growth Indicator Tube 960 (BACTEC MGIT 960) system in respiratory samples analyzed at the Bioassay and Bacteriology Laboratory of the Oswaldo Cruz Foundation Evandro Chagas Clinical Research Institute in the city of Rio de Janeiro, Brazil.

RESULTS:

We analyzed respiratory samples collected from 118 patients, of whom 88 (74.4%) were male. The mean age was 36.6 ± 10.6 years. Using the AMTD test, the BACTEC MGIT 960 system, and LJ culture, we identified M. tuberculosis complex in 31.0%, 29.7%, and 27.1% of the samples, respectively. In comparison with LJ culture, the AMTD test had a sensitivity, specificity, positive predictive value, and negative predictive value of 87.5%, 89.4%, 75.7%, and 95.0%, respectively, for LJ culture, whereas, in comparison with the BACTEC MGIT 960 system, it showed values of 88.6%, 92.4%, 83.8%, and 94.8%, respectively.

CONCLUSIONS:

The AMTD test showed good sensitivity and specificity in the population studied, enabling the laboratory detection of M. tuberculosis complex in paucibacillary respiratory specimens.

Keywords: Molecular diagnostic techniques, Tuberculosis, HIV, Molecular probe techniques

Introduction

Even though more than a century has passed since the discovery of the etiologic agent of tuberculosis, i.e., Mycobacterium tuberculosis, the disease remains a public health problem worldwide. Each person with active tuberculosis will infect between 10 and 15 people every year. ( 1 ) It is estimated that at least one of every 10 people who have come in contact with the tuberculosis bacillus will develop the disease and that, in HIV-infected patients, this risk is 20 to 40 times higher.( 2 ) Studies evaluating survival in patients with tuberculosis/HIV co-infection have shown that the risk of death is higher in these patients than in HIV-infected patients without tuberculosis.( 3 - 6 )

Mycobacterial culture on solid Lowenstein-Jensen (LJ) medium is considered the gold standard isolation method.( 7 ) Although the limitation of this method is the long incubation period (2-8 weeks), it is used by most developing countries because of its low cost. Techniques such as nucleic acid amplification and automated liquid culture systems are costly and depend on sophisticated tools, which prevents their routine use in poor countries.

In the last decade, laboratory tests for detection of M. tuberculosis have evolved considerably.( 8 ) Today we have new methods, such as GeneXpert (Cepheid, Sunnyvale, CA, USA), which can yield results in 2 h, detecting M. tuberculosis complex and determining whether the strains are rifampin resistant; however, this method remains costly and has just begun to be used and validated for use in Brazil. The amplified Mycobacterium tuberculosis direct (AMTD) test (Gen-Probe, San Diego, CA, USA) can detect M. tuberculosis complex rRNA in approximately 3 h. This test was approved by the Food and Drug Administration for use in smear microscopy-positive respiratory samples in 1995, and, after it was improved in 1999, it was approved for use in smear microscopy-negative samples.( 9 ) There is still need for a better understanding of the performance of this test for paucibacillary patients, such as HIV-infected patients in Brazil, since the quality of their samples makes it difficult to establish a laboratory diagnosis, even by gold standard methods, such as liquid culture. The objective of the present study was to compare the diagnostic accuracy of the AMTD test with other culture methods in respiratory samples collected from HIV-infected patients, by means of a study under real-life routine conditions in a mycobacteriology laboratory.

Methods

This was a study of diagnostic accuracy, conducted under routine conditions at the bacteriology laboratory of the Evandro Chagas Clinical Research Institute, which is a referral center for the treatment of infectious diseases, located in the city of Rio de Janeiro, Brazil. All respiratory samples provided by HIV-infected patients suspected of having pulmonary tuberculosis and sent to the laboratory between January of 2008 and June of 2009 were included in the study. All samples collected from the same patient subsequent to the first sample were excluded from the study. Respiratory samples included sputum, induced sputum, and bronchoalveolar lavage samples.

The clinical specimens were processed as shown in Figure 1. The samples were analyzed by smear microscopy, LJ culture, and the BACTEC Mycobacteria Growth Indicator Tube 960 (BACTEC MGIT 960) system (Becton Dickinson, Sparks, MD, USA). Smear microscopy was performed on the same day the clinical specimen was received at the laboratory. In contrast, cultures were performed over the course of 2 days at most. The samples showing growth on LJ medium, through culture or through subculture of positive BACTEC MGIT 960 cultures, were sent for biochemical identification of M. tuberculosis complex (detection of niacin production, nitrate reduction, and thermal inactivation of catalase).( 10 ) In the present study, cultures that produced niacin, reduced nitrate to nitrite, and showed inactivation of catalase at 68ºC were identified as positive for M. tuberculosis complex. Different results from those described above were analyzed and defined as positive for mycobacteria other than tuberculosis (MOTT). Part of the pellet obtained from decontamination of the samples was sent for AMTD tests and subsequent interpretation of results and for incubation in the BACTEC MGIT 960 system. Both methods were carried out as described by the respective manufacturers.( 11 , 12 ) A positive result was defined as the presence of M. tuberculosis complex in the sample, and a negative result was defined as the absence of M. tuberculosis complex. The AMTD test was performed weekly, and biochemical identification was obtained in the same week the cultures or subcultures yielded positive results. All collaborators who performed the tests mentioned above are regularly trained and evaluated on these procedures. There was no blinding of the collaborators, since they were performing routine tests.

Figure 1. Sample processing flowchart. NALC-NaOH: N-acetyl-L-cysteine-sodium hydroxide; LJ: Löwenstein-Jensen; MGIT: Mycobacteria Growth Indicator Tube; AMTD: amplified Mycobacterium tuberculosis direct (test); and MOTT: mycobacteria other than tuberculosis.

Figure 1

The outcomes of interest were sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), accuracy, likelihood ratio (LR), and respective 95% CIs. These measures were calculated using the Statistical Package for the Social Sciences, version 17.0 (SPSS, Chicago, IL, USA) and WINPEPI, version 11.15 (http://www.brixtonhealth.com/pepi4windows.html).

The present study was approved by the Research Ethics Committee of the Evandro Chagas Clinical Research Institute (Protocol no. 0002.0.009.000-11) and was developed in accordance with the recommendations of the Standards for Reporting Diagnostic Accuracy.( 13 )

A letter about the present study has been published.( 14 )

Results

Of the 175 samples eligible for the study, 57 were excluded because they were subsequent samples from the same patient. Therefore, we analyzed the first respiratory samples collected from 118 patients, of whom 88 (74.4%) were male. The mean age was 36.6 ± 10.6 years. The results of all tests performed were conclusive. Figure 2 shows the study processing flowchart.

Figure 2. Study design diagram. TB: tuberculosis; LJ: Löwenstein-Jensen; MGIT: Mycobacteria Growth Indicator Tube; and AMTD: amplified Mycobacterium tuberculosis direct (test).

Figure 2

Of the 118 samples analyzed, 16 (13.6%) had positive results by smear microscopy. Of those 118 samples, 33 (27.9%) were positive by LJ culture, 1 of which was identified as MOTT, whereas (33.1%) were positive by the BACTEC MGIT 960 system, 3 of which were identified as MOTT and 1 of which was identified as Rhodococcus spp. The AMTD test detected 37 positive samples (31.4%) for M. tuberculosis complex. The isolated MOTT and Rhodococcus spp. strains were excluded from the main analysis because they are not targeted by the method under analysis.

After exclusion of those 5 samples, the comparison of the AMTD test results with those obtained by LJ culture showed that there were four false-negative results and nine false-positive results, whereas the comparison of the AMTD test results with those obtained by the BACTEC MGIT 960 system showed that there were six false-positive results and four false-negative results. Table 1 shows the diagnostic accuracy of the AMTD test in comparison with LJ culture and with the BACTEC MGIT 960 system.

Table 1. Accuracy of the amplified Mycobacterium tuberculosis direct test relative to culture on Löwenstein-Jensen medium and to the BACTEC Mycobacteria Growth Indicator Tube 960 system.a.

Variable AMTD vs. LJ AMTD vs. MGIT
Sensitivity 87.5 (71.0-96.5) 88.6 (73.3-96.8)
Specificity 89.4 (80.8-95.0) 92.4 (84.2-97.2)
Positive predictive value 75.7 (58.8-88.2) 83.8 (68.0-93.8)
Negative predictive value 95.0 (87.7-98.6) 94.8 (87.2-98.6)
Positive likelihood ratio 8.25 (4.39-15.54) 11.66 (5.35-25.40)
Negative likelihood ratio 0.14 (0.06-0.35) 0.12 (0.05-0.31)
Accuracy 88.9 (81.7-93.9) 91.2 (84.5-95.7)
AMTD

: amplified Mycobacterium tuberculosis direct (test)

LJ

: Löwenstein-Jensen

MGIT

: Mycobacteria Growth Indicator Tube

a

Values expressed as % (95% CI).

In comparison with the BACTEC MGIT 960 system, the AMTD test had a sensitivity, specificity, PPV, and NPP of 88.6%, 92.4%, 83.8%, and 94.8%, respectively, whereas, in comparison with LJ culture, it showed values of 87.5%, 89.4%, 75.7%, and 95.0%, respectively. These results, together with their 95% CIs, the LRs, and the accuracy values, are shown in Table 1.

The same parameters were calculated for a subgroup of smear microscopy-negative samples, although that was not part of the initial analysis plan. The following results were obtained: sensitivity, 70.8% (95% CI: 48.6-87.3); specificity, 94.8% (95% CI: 87.2-98.6); PPV, 81.0% (95% CI: 58.1-94.6); and NPV, 91.3% (95% CI: 82.8-96.4).

Discussion

In our study, regardless of the smear microscopy results, the AMTD test results showed sensitivity and specificity comparable to those in the literature. A systematic review of 125 studies not exclusively of patients with paucibacillary disease estimated a sensitivity of 85% and a specificity of 96.8% for commercial nucleic-acid amplification tests.( 15 ) A study not exclusively of patients with paucibacillary disease that compared the AMTD test with GeneXpert found a sensitivity of 96.8% and a specificity of 91.2% for the AMTD test. ( 16 ) It is possible that the difference observed relative to the values estimated in our study is due to the sample composition: whereas the eligibility criteria of the aforementioned study were too restrictive, our patients were selected only because they were seropositive for HIV.

The observed discrepant results, i.e., results that were positive by the AMTD test and negative by culture, may be due to laboratory contamination or to characteristics of the method used. The AMTD test can detect non-viable or dead bacilli, which are hardly to grow in culture. The opposite, i.e., results that were negative by the AMTD test and positive by culture, may indicate the presence of inhibitory substances, which were not examined in the present study.

A feature of nucleic-acid amplification tests is that sensitivity is compromised at the expense of specificity.( 15 ) Other factors that contribute to decreased sensitivity are poor, paucibacillary, or negative samples (in HIV-infected patients) and the presence of inhibitory substances.

The present study showed that, in tuberculosis/HIV-infected patients, the AMTD test was able to detect M. tuberculosis complex in a greater number of samples than culture. However, culture is not 100% sensitive and can yield false-negative results, such as when samples contain dead bacilli, non-viable bacilli (because of decontamination of samples), or less than the minimum detectable amount for culture (approximately 102 bacilli/mL). Therefore, the study results may have been influenced by the chosen reference test.

Although it was not the purpose of our study, analysis of the results of direct examination showed that only one smear microscopy-positive sample was not detected by the AMTD test, possibly because of inhibitors, given that M. tuberculosis was isolated by the two culture methods. Smear microscopy did not detect AFB in approximately 21% of the samples in which the AMTD test was positive. This shows the weakness of smear microscopy in detecting mycobacteria in patients who are seropositive for HIV. Several factors, such as the expertise of the technician; the quality of the sample, which needs to contain between 5,000 and 10,000 bacilli/mL in order to prevent false-negative results( 17 , 18 ); and particular conditions, such as HIV co-infection,( 18 - 20 ) directly influence smear microscopy results. However, smear microscopy remains an important tool for resource-poor countries, since it is the most rapid and inexpensive method available in all countries.

Studies have reported that the sensitivity of the AMTD test varies depending of the prevalence of HIV. However, they have shown the effectiveness of the method in identifying strains in smear microscopy-negative samples.( 21 - 23 )

The AMTD test is approved for use in respiratory samples regardless of smear microscopy results. It provides the greatest benefit to patients when used in smear microscopy-negative samples, given that it enables early diagnosis and the initiation of specific treatment. In our study, according to the reference method used, we obtained sensitivity and specificity similar to that reported by other studies not exclusively of HIV-infected patients.( 24 - 28 )

The main advantage of the routine use of nucleic-acid amplification tests in laboratories is the speed at which results are obtained, enabling early intervention when necessary. However, these tests should not replace culture, since they are able to detect non-viable microorganisms. For the same reason, they are also not useful for monitoring treatment, given that they provide non-quantitative results, which should be interpreted together with results of the conventional tests and with clinical data. However, they are useful in distinguishing between M. tuberculosis and MOTT, becoming an important tool in patients with heavy MOTT colonization/MOTT disease, as is the case of HIV-infected patients.

In conclusion, the AMTD test showed good sensitivity and specificity in the population studied, enabling the laboratory detection of M. tuberculosis complex in paucibacillary respiratory specimens.

Footnotes

*

Study carried out at the Evandro Chagas Clinical Research Institute and at the National Institute of Quality Control in Health, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil.

Financial support: None

Contributor Information

Leonardo Bruno Paz Ferreira Barreto, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil.

Maria Cristina da Silva Lourenço, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil.

Valéria Cavalcanti Rolla, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil.

Valdiléia Gonçalves Veloso, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil.

Gisele Huf, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil.

References

  • 1.World Health Organization . Global tuberculosis control report 2010. Geneva: World Heath Organization; 2010. [Google Scholar]
  • 2.World Health Organization . Tuberculosis. Fact sheet No 104. Geneva: World Heath Organization; 2013. [[cited 2013 Jul 9]]. a Available from:. Available from:. http://www.who.int/mediacentre/factsheets/fs104/en/ [Google Scholar]
  • 3.Whalen CC, Nsubuga P, Okwera A, Johnson JL, Hom DL, Michael NL, et al. Impact of pulmonary tuberculosis on survival of HIV-infected adults: a prospective epidemiologic study in Uganda. AIDS. 2000;14(9):1219–1228. doi: 10.1097/00002030-200006160-00020. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4.Whalen C, Horsburgh CR, Jr, Hom D, Lahart C, Simberkoff M, Ellner J. Site of disease and opportunistic infection predict survival in HIV-associated tuberculosis. AIDS. 1997;11(4):455–460. doi: 10.1097/00002030-199704000-00008. [DOI] [PubMed] [Google Scholar]
  • 5.Whalen C, Horsburgh CR, Hom D, Lahart C, Simberkoff M, Ellner J. Accelerated course of human immunodeficiency virus infection after tuberculosis. Am J Respir Crit Care Med. 1995;151(1):129–135. doi: 10.1164/ajrccm.151.1.7812542. [DOI] [PubMed] [Google Scholar]
  • 6.Whalen C, Okwera A, Johnson J, Vjecha M, Hom D, Wallis R, et al. Predictors of survival in human immunodeficiency virus-infected patients with pulmonary tuberculosis. The Makerere University-Case Western Reserve University Research Collaboration. Pt 1Am J Respir Crit Care Med. 1996;153(6):1977–1981. doi: 10.1164/ajrccm.153.6.8665064. [DOI] [PubMed] [Google Scholar]
  • 7.Conde MB, Melo FA, Marques AM, Cardoso NC, Pinheiro VG, Dalcin Pde T et al III Brazilian Thoracic Association Guidelines on tuberculosis. J Bras Pneumol. 2009;35(10):1018–1048. doi: 10.1590/s1806-37132009001000011. [DOI] [PubMed] [Google Scholar]
  • 8.Nyendak MR, Lewinsohn DA, Lewinsohn DM. New diagnostic methods for tuberculosis. Curr Opin Infect Dis. 2009;22(2):174–182. doi: 10.1097/QCO.0b013e3283262fe9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9.Centers for Disease Control and Prevention Updated guidelines for the use of nucleic acid amplification tests in the diagnosis of tuberculosis. MMWR Morb Mortal Wkly Rep. 2009;58(1):7–10. [PubMed] [Google Scholar]
  • 10.Kent PT, Kubica GP. Public health mycobacteriology: a guide for the level III laboratory. Atlanta: US Dept. of Health and Human Services; Public Health Service; Centers for Disease Control; 1985. [Google Scholar]
  • 11.Dickinson Beckton. BACTECTM MGITTM 960 User's manual. Franklin Lakes: Beckton Dickinson; 1998. [Google Scholar]
  • 12.Gen-Probe Inc . Teste amplified para a detecção directa das micobactérias do complexo Mycobacterium tuberculosis. San Diego: Gen-Probe Inc.; 2007. [Google Scholar]
  • 13.Bossuyt PM, Reitsma JB, Bruns DE, Gatsonis CA, Glasziou PP, Irwig LM, et al. The STARD statement for reporting studies of diagnostic accuracy: explanation and elaboration. Clin Chem. 2003;49(1):7–18. doi: 10.1373/49.1.7. [DOI] [PubMed] [Google Scholar]
  • 14.Barreto LB, Lourenço MC, Rolla VC, Veloso VG, Huf G. Evaluation of the Amplified MTD(r) Test in respiratory specimens of human immunodeficiency virus patients. Int J Tuberc Lung Dis. 2012;16(10):1420–1420. doi: 10.5588/ijtld.11.0841. [DOI] [PubMed] [Google Scholar]
  • 15.Ling DI, Flores LL, Riley LW, Pai M. Commercial nucleic-acid amplification tests for diagnosis of pulmonary tuberculosis in respiratory specimens: meta-analysis and meta-regression. PLoS One. 2008;3(2): doi: 10.1371/journal.pone.0001536. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.Teo J, Jureen R, Chiang D, Chan D, Lin R. Comparison of two nucleic acid amplification assays, the Xpert MTB/RIF and the amplified Mycobacterium tuberculosis direct assay, for detection of Mycobacterium tuberculosis in respiratory and nonrespiratory specimens. J Clin Microbiol. 2011;49(10):3659–3662. doi: 10.1128/JCM.00211-11. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17.Ferreira AA, Queiroz KC, Torres KP, Ferreira MA, Accioly H, Alves MS. Os fatores associados à tuberculose pulmonar e a baciloscopia: uma contribuição ao diagnóstico nos serviços de saúde pública. Rev Bras Epidemiol. 2005;8(2):142–149. doi: 10.1590/S1415-790X2005000200006. [DOI] [Google Scholar]
  • 18.Brasil. Ministério da Saúde. Secretaria de Vigilância em Saúde. Departamento de Vigilância Epidemiológica . Manual nacional de vigilância laboratorial da tuberculose e outras micobactérias. Brasília: Ministério da Saúde; 2008. [Google Scholar]
  • 19.Van Rie A, Page-Shipp L, Scott L, Sanne I, Stevens W. Xpert((r)) MTB/RIF for point-of-care diagnosis of TB in high-HIV burden, resource-limited countries: hype or hope? Expert Rev Mol Diagn. 2010;10(7):937–946. doi: 10.1586/erm.10.67. [DOI] [PubMed] [Google Scholar]
  • 20.Ministério da Saúde. Fundação Nacional de Saúde. Centro Nacional de Pneumologia Sanitária . Manual de recomendações para o controle da tuberculose no Brasil. Brasília: Ministério da Saúde; 2010. [Google Scholar]
  • 21.Boehme CC, Nabeta P, Hillemann D, Nicol MP, Shenai S, Krapp F, et al. Rapid molecular detection of tuberculosis and rifampin resistance. N Engl J Med. 2010;363(11):1005–1015. doi: 10.1056/NEJMoa0907847. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22.Kambashi B, Mbulo G, McNerney R, Tembwe R, Kambashi A, Tihon V, et al. Utility of nucleic acid amplification techniques for the diagnosis of pulmonary tuberculosis in sub-Saharan Africa. Int J Tuberc Lung Dis. 2001;5(4):364–369. [PubMed] [Google Scholar]
  • 23.Kivihya-Ndugga L, Van Cleeff M, Juma E, Kimwomi J, Githui W, Oskam L, et al. Comparison of PCR with the routine procedure for diagnosis of tuberculosis in a population with high prevalences of tuberculosis and human immunodeficiency virus. J Clin Microbiol. 2004;42(3):1012–1015. doi: 10.1128/JCM.42.3.1012-1015.2004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24.Palomino JC. Molecular detection, identification and drug resistance detection in Mycobacterium tuberculosis. FEMS Immunol Med Microbiol. 2009;56(2):103–111. doi: 10.1111/j.1574-695X.2009.00555.x. [DOI] [PubMed] [Google Scholar]
  • 25.Lemaître N, Armand S, Vachée A, Capilliez O, Dumoulin C, Courcol RJ. Comparison of the real-time PCR method and the Gen-Probe amplified Mycobacterium tuberculosis direct test for detection of Mycobacterium tuberculosis in pulmonary and nonpulmonary specimens. J Clin Microbiol. 2004;42(9):4307–4309. doi: 10.1128/JCM.42.9.4307-4309.2004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26.Coll P, Garrigó M, Moreno C, Marti N. Routine use of Gen-Probe Amplified Mycobacterium Tuberculosis Direct (MTD) test for detection of Mycobacterium tuberculosis with smear-positive and smear-negative specimens. Int J Tuberc Lung Dis. 2003;7(9):886–891. [PubMed] [Google Scholar]
  • 27.O'Sullivan CE, Miller DR, Schneider PS, Roberts GD. Evaluation of Gen-Probe amplified mycobacterium tuberculosis direct test by using respiratory and nonrespiratory specimens in a tertiary care center laboratory. J Clin Microbiol. 2002;40(5):1723–1727. doi: 10.1128/JCM.40.5.1723-1727.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 28.Gamboa F, Fernandez G, Padilla E, Manterola JM, Lonca J, Cardona PJ, et al. Comparative evaluation of initial and new versions of the Gen-Probe Amplified Mycobacterium Tuberculosis Direct Test for direct detection of Mycobacterium tuberculosis in respiratory and nonrespiratory specimens. J Clin Microbiol. 1998;36(3):684–689. doi: 10.1128/jcm.36.3.684-689.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
J Bras Pneumol. 2014 Mar-Apr;40(2):148–154. [Article in Portuguese]

Utilização do amplified Mycobacterium tuberculosis direct test em amostras respiratórias de pacientes HIV positivos no Brasil*

Leonardo Bruno Paz Ferreira Barreto 1, Maria Cristina da Silva Lourenço 2, Valéria Cavalcanti Rolla 3, Valdiléia Gonçalves Veloso 4, Gisele Huf 5

Abstract

OBJETIVO:

Comparar a acurácia do teste amplified Mycobacterium tuberculosis direct (AMTD) com métodos de referência para o diagnóstico laboratorial de tuberculose em pacientes HIV positivos.

MÉTODOS:

Estudo de acurácia diagnóstica comparando os resultados do teste AMTD com os de cultura em Löwenstein-Jensen (LJ) e de BACTEC Mycobacteria Growth Indicator Tube 960 (sistema BACTEC MGIT 960) em amostras respiratórias analisadas no Laboratório de Bacteriologia e Bioensaios do Instituto de Pesquisa Clínica Evandro Chagas da Fundação Oswaldo Cruz, no Rio de Janeiro (RJ).

RESULTADOS:

Foram analisadas amostras respiratórias de 118 pacientes, dos quais 88 (74,4%) eram do sexo masculino. A média de idade foi de 36,6 ± 10,6 anos. O complexo M. tuberculosis foi identificado em 31,0%, 29,7% e 27,1% das amostras através do teste AMTD, sistema BACTEC MGIT 960 e LJ, respectivamente. Na comparação com a cultura em LJ, o teste AMTD apresentou sensibilidade, especificidade, valor preditivo positivo e valor preditivo negativo de 87,5%, 89,4%, 75,7% e 95,0%, respectivamente, enquanto na comparação com o sistema BACTEC MGIT 960, os valores foram de 88,6%, 92,4%, 83,8% e 94,8%, respectivamente.

CONCLUSÕES:

O teste AMTD mostrou boa sensibilidade e especificidade na população estudada, possibilitando a detecção laboratorial do complexo M. tuberculosis em espécimes respiratórios paucibacilares.

Keywords: Técnicas de diagnóstico molecular, Tuberculose, HIV, Técnicas de sonda molecular

Introdução

Apesar de mais de um século da descoberta do agente etiológico da tuberculose, Mycobacterium tuberculosis, ela continua sendo um problema de saúde pública de âmbito mundial. Cada indivíduo que apresenta tuberculose em atividade infecta de 10 a 15 pessoas em um ano.( 1 ) Estima-se que a cada 10 pessoas que entram em contato com o bacilo da tuberculose pelo menos uma desenvolva a doença e que, nos pacientes HIV positivos, esse risco aumente de 20 a 40 vezes.( 2 ) Estudos que avaliaram a sobrevida em indivíduos com coinfecção tuberculose/HIV demonstraram um maior risco de morte nesses pacientes do que naqueles com HIV sem tuberculose.( 3 - 6 )

O método de isolamento considerado o padrão ouro é a cultura para micobactérias em meio sólido de Löwenstein-Jensen (LJ).( 7 ) Esse método tem como limitação o longo tempo de incubação (2-8 semanas), mas é utilizado pela maioria dos países em desenvolvimento devido ao seu baixo custo. Técnicas, como a amplificação de ácidos nucleicos e sistemas automatizados utilizando culturas em meio líquido, possuem elevado custo e dependem de ferramentas sofisticadas, o que as inviabilizam para o uso rotineiro em países pobres.

Na última década, os exames laboratoriais para detecção do M. tuberculosis evoluíram sensivelmente.( 8 ) Hoje podemos contar com novas metodologias, tais como GeneXpert (Cepheid, Sunnyvale, CA, EUA), capaz de gerar um resultado em 2 h com a detecção do complexo M. tuberculosis e se as cepas apresentam resistência a rifampicina; no entanto, essa ainda apresenta um alto custo e começa a ser utilizada e validada em nosso meio. O teste amplified Mycobacterium tuberculosis direct (AMTD; Gen-Probe, San Diego, CA, EUA) é capaz de detectar o RNAr do complexo M. tuberculosis em aproximadamente 3 h. Esse método foi aprovado pelo Food and Drug Administration para amostras respiratórias com baciloscopia positiva desde 1995 e, após um aprimoramento em 1999, o teste foi aprovado para a aplicação em amostras com baciloscopia negativa.( 9 ) Ainda é necessário um melhor entendimento do desempenho desse teste para a clientela paucibacilar, como pacientes HIV positivos em nosso meio, já que a qualidade de suas amostras habitualmente dificulta o diagnóstico laboratorial até para os métodos considerados como padrão ouro, como a cultura em meio líquido. O presente estudo teve como objetivo comparar a acurácia diagnóstica do teste AMTD com outros métodos de cultura em amostras respiratórias de pacientes HIV positivos, através de um estudo em condições reais da prática diária de um laboratório de micobactérias.

Métodos

Este é um estudo de acurácia diagnóstica, realizado nas condições de rotina do laboratório de bacteriologia do Instituto de Pesquisa Clínica Evandro Chagas, referência de tratamento em doenças infecto-contagiosas, localizado na cidade do Rio de Janeiro (RJ). Foram incluídas no estudo todas as amostras respiratórias fornecidas por pacientes HIV positivos com suspeita de tuberculose pulmonar e encaminhadas para o laboratório no período entre janeiro de 2008 e junho de 2009. Foram excluídas do estudo todas as amostras coletadas subsequentemente à primeira, fornecidas pelos pacientes incluídos no período do estudo. Foram consideradas como amostras respiratórias amostras de escarro, escarro induzido e lavado broncoalveolar.

O processamento dos espécimes clínicos foi realizado de acordo com a Figura 1. As amostras foram submetidas a baciloscopia e cultura em LJ e sistema BACTEC Mycobacteria Growth Indicator Tube 960 (BACTEC MGIT 960; Becton Dickinson, Sparks, MD, EUA). A baciloscopia foi realizada no mesmo dia do recebimento do espécime clínico no laboratório. Já as culturas foram executadas ao longo de, no máximo, 2 dias. As amostras que apresentaram crescimento em LJ, a partir da cultura ou do subcultivo proveniente do sistema BACTEC MGIT 960 positivo, foram encaminhadas para a identificação bioquímica do complexo M. tuberculosis (detecção da produção de niacina, redução do nitrato e termoinativação da catalase). ( 10 ) No presente estudo, foram identificadas como complexo M. tuberculosis as culturas que produziram niacina, reduziram o nitrato a nitrito e apresentaram inativação de catalase a 68ºC. Resultados diferentes dos citados anteriormente foram analisados e considerados como mycobacteria other than tuberculosis (MOTT, micobactérias que não tuberculose). Parte do sedimento obtido na descontaminação da amostra foi encaminhada para a execução e interpretação do teste AMTD e incubação no sistema BACTEC MGIT 960. Ambas as metodologias foram processadas conforme descrito pelos respectivos fabricantes. ( 11 , 12 ) O resultado positivo foi interpretado como presença do complexo M. tuberculosis, e o negativo, como sua ausência na amostra. O teste AMTD foi realizado semanalmente, e as identificações foram obtidas nas mesmas semanas em que as culturas ou subcultivos apresentaram resultados positivos. Todos os colaboradores que executaram os testes citados são treinados e avaliados periodicamente no cumprimento dos respectivos procedimentos. Não houve cegamento dos mesmos, já que se tratava da execução de exames de rotina.

Figura 1. Fluxo de processamento das amostras. NALC-NaOH: N-acetil-L-cisteína-hidróxido de sódio; LJ: Löwenstein-Jensen; MGIT: Mycobacteria Growth Indicator Tube; AMTD: teste amplified Mycobacterium tuberculosis direct; e MOTT: mycobacteria other than tuberculosis (micobactérias que não tuberculose).

Figura 1

Os desfechos de interesse foram os valores de sensibilidade, especificidade, valor preditivo positivo (VPP), valor preditivo negativo (VPN), acurácia, razão de verossimilhança (RV) e respectivos IC95%. Essas medidas foram calculadas utilizando-se os programas Statistical Package for the Social Sciences, versão 17.0 (SPSS, Chicago, IL, EUA) e WINPEPI, versão 11.15 (http://www.brixtonhealth.com/pepi4windows.html).

O presente estudo foi aprovado pelo Comitê de Ética e Pesquisa do Instituto de Pesquisa Clínica Evandro Chagas sob o nº 0002.0.009.000-11 e foi desenvolvido segundo as recomendações do Standards for Reporting Diagnostic Accuracy.( 13 )

Uma correspondência referente ao presente estudo foi publicada.( 14 )

Resultados

Das 175 amostras elegíveis para o estudo, 57 foram excluídas, pois se tratavam de amostras subsequentes do mesmo paciente. Portanto, foram avaliadas as primeiras amostras respiratórias de 118 pacientes, dos quais 88 (74,4%) eram do sexo masculino. A média de idade foi de 36,6 ± 10,6 anos. Todos os procedimentos realizados obtiveram resultados conclusivos. A Figura 2 mostra o diagrama do estudo.

Figura 2. Diagrama do estudo. TB: tuberculose; LJ: Löwenstein-Jensen; MGIT: Mycobacteria Growth Indicator Tube; e AMTD: teste amplified Mycobacterium tuberculosis direct.

Figura 2

Das 118 amostras analisadas, 16 (13,6%) apresentaram baciloscopia positiva. Das 118 amostras, 33 (27,9%) foram positivas pelo método LJ, sendo 1 identificada como MOTT, enquanto 39 (33,1%) foram positivas pelo método BACTEC MGIT 960, sendo 3 identificadas como MOTT e 1 como Rhodococcus spp. O teste AMTD detectou 37 amostras positivas (31,4%) para o complexo M. tuberculosis. As cepas MOTT e Rhodococcus spp. isoladas foram excluídas da análise principal por não serem alvo da metodologia avaliada.

Após a exclusão daquelas 5 amostras, houve quatro resultados falso-negativos e nove resultados falso-positivos na comparação com o LJ, enquanto houve seis resultados falso-positivos e quatro resultados falso-negativos na comparação com o BACTEC MGIT 960. A Tabela 1 mostra os valores de acurácia diagnóstica do teste AMTD quando comparado aos métodos LJ e BACTEC MGIT 960.

Tabela 1. Acurácia do teste amplified Mycobacterium tuberculosis direct em relação aos métodos de cultura em Löwenstein-Jensen e BACTEC Mycobacteria Growth Indicator Tube 960.a.

Variáveis AMTD vs. LJ AMTD vs. MGIT
Sensibilidade 87,5 (71,0-96,5) 88,6 (73,3-96,8)
Especificidade 89,4 (80,8-95,0) 92,4 (84,2-97,2)
Valor preditivo positivo 75,7 (58,8-88,2) 83,8 (68,0-93,8)
Valor preditivo negativo 95,0 (87,7-98,6) 94,8 (87,2-98,6)
Razão de verossimilhança positiva 8,25 (4,39-15,54) 11,66 (5,35-25,40)
Razão de verossimilhança negativa 0,14 (0,06-0,35) 0,12 (0,05-0,31)
Acurácia 88,9 (81,7-93,9) 91,2 (84,5-95,7)
AMTD

: amplified Mycobacterium tuberculosis direct test

LJ

: Löwenstein-Jensen

MGIT

: Mycobacteria Growth Indicator Tube

a

Valores expressos em % (IC95%).

Na comparação do teste AMTD com BACTEC MGIT 960, os resultados de sensibilidade, especificidade, VPP e VPN foram de 88,6%, 92,4%, 83,8% e 94,8%, respectivamente. Na comparação do teste AMTD com LJ, esses foram de 87,5%, 89,4%, 75,7% e 95,0%, respectivamente. Tais resultados, juntamente com os IC95%, RV e acurácia, são apresentados na Tabela 1.

Embora não estivesse previsto no plano de análise inicial, foram calculados os mesmos parâmetros para um subgrupo de amostras com baciloscopia negativa. Foram obtidos os seguintes resultados: sensibilidade, 70,8% (IC95%: 48,6-87,3); especificidade, 94,8% (IC95%: 87,2-98,6); VPP, 81,0% (IC95%: 58,1-94,6); e VPN, 91,3% (IC95%: 82,8-96,4).

Discussão

Em nosso estudo, independentemente do resultado de baciloscopia das amostras, o teste AMTD apresentou sensibilidade e especificidade comparáveis com dados da literatura. Uma revisão sistemática que incluiu 125 estudos em pacientes não exclusivamente paucibacilares estimou uma sensibilidade de 85% e uma especificidade de 96,8% para técnicas de amplificação de ácidos nucleicos comerciais.( 15 ) Um estudo comparando o teste AMTD e GeneXpert em pacientes não exclusivamente paucibacilares, obteve-se uma sensibilidade de 96,8% e uma especificidade de 91,2% para o teste AMTD.( 16 ) É possível que a diferença observada em relação aos valores estimados em nosso estudo possa se dever à composição da amostra: enquanto os critérios de elegibilidade foram muito restritivos no estudo acima citado, nossos pacientes eram selecionados apenas por serem soropositivos para o HIV.

Os resultados discordantes observados, positivo para o teste AMTD e negativo para cultura, podem se dever à contaminação laboratorial ou a características da metodologia utilizada. O teste AMTD pode detectar bacilos mortos ou não viáveis, que dificilmente cresceriam na cultura. O contrário, resultado negativo para o teste AMTD e positivo para cultura, pode indicar a presença de substâncias inibidoras, as quais não foram examinadas no presente estudo.

Uma característica das técnicas de amplificação de ácidos nucleicos é o comprometimento da sensibilidade em detrimento da especificidade.( 15 ) Outros fatores que contribuem para a diminuição da sensibilidade são amostras pobres, paucibacilares ou negativas (em pacientes HIV) e a presença de substâncias inibidoras.

O presente estudo mostrou que o teste AMTD foi capaz de detectar um maior número de amostras positivas para o complexo M. tuberculosis do que as culturas na população tuberculose/HIV positiva. Entretanto, a cultura não é 100% sensível, podendo apresentar resultados falso-negativos, como, por exemplo, em casos de bacilos mortos, bacilos inviabilizados pela descontaminação da amostra, ou quantidade inferior ao mínimo para a detecção pela cultura (cerca de 102 bacilos/mL). Portanto, o resultado do estudo pode ter sido influenciado pelo teste de referência escolhido.

Embora não fosse a proposta do nosso estudo, ao analisar os resultados de exame direto, apenas uma amostra com baciloscopia positiva não foi detectada pelo teste AMTD, possivelmente por conta de inibidores, uma vez que foi isolado M. tuberculosis em ambos os métodos de cultura. A baciloscopia não detectou BAAR em aproximadamente 21% das amostras em que o teste AMTD foi positivo. Isso mostra a fragilidade da baciloscopia na detecção de micobactérias na população HIV soropositiva. Diversos fatores influenciam diretamente o resultado da baciloscopia, tais como a experiência do técnico; a qualidade da amostra, que necessita apresentar entre 5.000 e 10.000 bacilos/mL para evitar a ocorrência de resultados falso-negativos( 17 , 18 ); e condições peculiares, como a coinfecção pelo HIV.( 18 - 20 ) Entretanto, a baciloscopia ainda é uma ferramenta importante para países com poucos recursos, já que é o método mais rápido e mais barato disponível em todos os países.

Estudos reportaram uma sensibilidade variável do teste AMTD dependendo da prevalência de HIV. Entretanto, mostraram a competência do método na identificação das cepas em amostras com baciloscopia negativa.( 21 - 23 )

O teste AMTD está aprovado para uso em amostras respiratórias independentemente do resultado de baciloscopia. A situação em que se proporciona o maior benefício ao paciente é o uso dessa metodologia em amostras com baciloscopia negativa, uma vez que permite o diagnóstico precoce e a introdução do tratamento específico. Em nosso estudo, de acordo com o método de referência empregado, obtivemos sensibilidade e especificidade semelhantes aos resultados encontrados por outros autores em pacientes não exclusivamente HIV.( 24 - 28 )

A maior vantagem da utilização de uma técnica de amplificação de ácidos nucleicos na rotina laboratorial é a velocidade em que se obtém o resultado, possibilitando a rápida intervenção quando necessário. Entretanto, essas técnicas não devem substituir a cultura, já que são capazes de detectar o microrganismo não viável. Pela mesma razão, também não são úteis para o monitoramento do tratamento, uma vez que o resultado não é quantitativo, devendo ser interpretados em conjunto com os testes convencionais e dados clínicos. No entanto, eles são úteis na distinção entre M. tuberculosis e MOTT, tornando-se uma ferramenta importante em populações que possuam alta colonização/doença por MOTT, como é o caso dos pacientes HIV positivos.

Em conclusão, o teste AMTD mostrou boa sensibilidade e especificidade na população estudada, possibilitando a detecção laboratorial do complexo M. tuberculosis em espécimes respiratórios paucibacilares.

Footnotes

*

Trabalho realizado no Instituto de Pesquisa Clínica Evandro Chagas e no Instituto Nacional de Controle de Qualidade em Saúde, Fundação Oswaldo Cruz, Rio de Janeiro (RJ) Brasil.

Apoio financeiro: Nenhum.


Articles from Jornal Brasileiro de Pneumologia : Publicaça̋o Oficial da Sociedade Brasileira de Pneumologia e Tisilogia are provided here courtesy of Sociedade Brasileira de Pneumologia e Tisiologia (Brazilian Thoracic Society)

RESOURCES