Abstract
Electron spin echo electron-nuclear double resonance (ESE-ENDOR) experiments performed on a broad radical electron paramagnetic resonance (EPR) signal observed in photosystem II particles depleted of Ca2+ indicate that this signal arises from the redox-active tyrosine YZ. The tyrosine EPR signal width is increased relative to that observed in a manganese-depleted preparation due to a magnetic interaction between the photosystem II manganese cluster and the tyrosine radical. The manganese cluster is located asymmetrically with respect to the symmetry-related tyrosines YZ and YD. The distance between the YZ tyrosine and the manganese cluster is estimated to be approximately 4.5 A. Due to this close proximity of the Mn cluster and the redox-active tyrosine YZ, we propose that this tyrosine abstracts protons from substrate water bound to the Mn cluster.
Full text
PDF




Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Babcock G. T., Barry B. A., Debus R. J., Hoganson C. W., Atamian M., McIntosh L., Sithole I., Yocum C. F. Water oxidation in photosystem II: from radical chemistry to multielectron chemistry. Biochemistry. 1989 Dec 12;28(25):9557–9565. doi: 10.1021/bi00451a001. [DOI] [PubMed] [Google Scholar]
- Babcock G. T., Sauer K. A rapid, light-induced transient in electron paramagnetic resonance signal II activated upon inhibition of photosynthetic oxygen evolution. Biochim Biophys Acta. 1975 Feb 17;376(2):315–328. doi: 10.1016/0005-2728(75)90024-9. [DOI] [PubMed] [Google Scholar]
- Baumgarten M., Philo J. S., Dismukes G. C. Mechanism of photoinhibition of photosynthetic water oxidation by Cl- depletion and F- substitution: oxidation of a protein residue. Biochemistry. 1990 Dec 4;29(48):10814–10822. doi: 10.1021/bi00500a014. [DOI] [PubMed] [Google Scholar]
- Berthomieu C., Boussac A. Histidine oxidation in the S2 to S3 transition probed by FTIR difference spectroscopy in the Ca(2+)-depleted photosystem II: comparison with histidine radicals generated by UV irradiation. Biochemistry. 1995 Feb 7;34(5):1541–1548. doi: 10.1021/bi00005a010. [DOI] [PubMed] [Google Scholar]
- Boussac A., Rutherford A. W. The origin of the split S3 EPR signal in Ca(2+)-depleted photosystem II: histidine versus tyrosine. Biochemistry. 1992 Aug 25;31(33):7441–7445. doi: 10.1021/bi00148a003. [DOI] [PubMed] [Google Scholar]
- Boussac A., Sétif P., Rutherford A. W. Inhibition of tyrosine Z photooxidation after formation of the S3 state in Ca(2+)-depleted and Cl(-)-depleted photosystem II. Biochemistry. 1992 Feb 4;31(4):1224–1234. doi: 10.1021/bi00119a036. [DOI] [PubMed] [Google Scholar]
- Boussac A., Zimmermann J. L., Rutherford A. W. EPR signals from modified charge accumulation states of the oxygen evolving enzyme in Ca2+-deficient photosystem II. Biochemistry. 1989 Nov 14;28(23):8984–8989. doi: 10.1021/bi00449a005. [DOI] [PubMed] [Google Scholar]
- Boussac A., Zimmermann J. L., Rutherford A. W. Factors influencing the formation of modified S2 EPR signal and the S3 EPR signal in Ca(2+)-depleted photosystem II. FEBS Lett. 1990 Dec 17;277(1-2):69–74. doi: 10.1016/0014-5793(90)80811-v. [DOI] [PubMed] [Google Scholar]
- Box H. C., Freund H. G., Lilga K. T. ENDOR study of irradiated histidine HCl. J Chem Phys. 1967 Mar 15;46(6):2130–2133. doi: 10.1063/1.1841012. [DOI] [PubMed] [Google Scholar]
- Debus R. J., Barry B. A., Babcock G. T., McIntosh L. Site-directed mutagenesis identifies a tyrosine radical involved in the photosynthetic oxygen-evolving system. Proc Natl Acad Sci U S A. 1988 Jan;85(2):427–430. doi: 10.1073/pnas.85.2.427. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Debus R. J. The manganese and calcium ions of photosynthetic oxygen evolution. Biochim Biophys Acta. 1992 Oct 16;1102(3):269–352. doi: 10.1016/0005-2728(92)90133-m. [DOI] [PubMed] [Google Scholar]
- Hallahan B. J., Nugent J. H., Warden J. T., Evans M. C. Investigation of the origin of the "S3" EPR signal from the oxygen-evolving complex of photosystem 2: the role of tyrosine Z. Biochemistry. 1992 May 19;31(19):4562–4573. doi: 10.1021/bi00134a005. [DOI] [PubMed] [Google Scholar]
- Haumann M., Junge W. Extent and rate of proton release by photosynthetic water oxidation in thylakoids: electrostatic relaxation versus chemical production. Biochemistry. 1994 Feb 1;33(4):864–872. doi: 10.1021/bi00170a003. [DOI] [PubMed] [Google Scholar]
- Koulougliotis D., Tang X. S., Diner B. A., Brudvig G. W. Spectroscopic evidence for the symmetric location of tyrosines D and Z in photosystem II. Biochemistry. 1995 Mar 7;34(9):2850–2856. doi: 10.1021/bi00009a015. [DOI] [PubMed] [Google Scholar]
- Lorigan G. A., Britt R. D. Temperature-dependent pulsed electron paramagnetic resonance studies of the S2 state multiline signal of the photosynthetic oxygen-evolving complex. Biochemistry. 1994 Oct 11;33(40):12072–12076. doi: 10.1021/bi00206a009. [DOI] [PubMed] [Google Scholar]
- MacLachlan D. J., Nugent J. H. Investigation of the S3 electron paramagnetic resonance signal from the oxygen-evolving complex of photosystem 2: effect of inhibition of oxygen evolution by acetate. Biochemistry. 1993 Sep 21;32(37):9772–9780. doi: 10.1021/bi00088a032. [DOI] [PubMed] [Google Scholar]
- Michel H., Weyer K. A., Gruenberg H., Dunger I., Oesterhelt D., Lottspeich F. The 'light' and 'medium' subunits of the photosynthetic reaction centre from Rhodopseudomonas viridis: isolation of the genes, nucleotide and amino acid sequence. EMBO J. 1986 Jun;5(6):1149–1158. doi: 10.1002/j.1460-2075.1986.tb04340.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rigby S. E., Nugent J. H., O'Malley P. J. The dark stable tyrosine radical of photosystem 2 studied in three species using ENDOR and EPR spectroscopies. Biochemistry. 1994 Feb 22;33(7):1734–1742. doi: 10.1021/bi00173a016. [DOI] [PubMed] [Google Scholar]
- Sivaraja M., Tso J., Dismukes G. C. A calcium-specific site influences the structure and activity of the manganese cluster responsible for photosynthetic water oxidation. Biochemistry. 1989 Nov 28;28(24):9459–9464. doi: 10.1021/bi00450a032. [DOI] [PubMed] [Google Scholar]
- Svensson B., Vass I., Cedergren E., Styring S. Structure of donor side components in photosystem II predicted by computer modelling. EMBO J. 1990 Jul;9(7):2051–2059. doi: 10.1002/j.1460-2075.1990.tb07372.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tang X. S., Diner B. A., Larsen B. S., Gilchrist M. L., Jr, Lorigan G. A., Britt R. D. Identification of histidine at the catalytic site of the photosynthetic oxygen-evolving complex. Proc Natl Acad Sci U S A. 1994 Jan 18;91(2):704–708. doi: 10.1073/pnas.91.2.704. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vermass W. F., Rutherford A. W., Hansson O. Site-directed mutagenesis in photosystem II of the cyanobacterium Synechocystis sp. PCC 6803: Donor D is a tyrosine residue in the D2 protein. Proc Natl Acad Sci U S A. 1988 Nov;85(22):8477–8481. doi: 10.1073/pnas.85.22.8477. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yocum C. F., Yerkes C. T., Blankenship R. E., Sharp R. R., Babcock G. T. Stoichiometry, inhibitor sensitivity, and organization of manganese associated with photosynthetic oxygen evolution. Proc Natl Acad Sci U S A. 1981 Dec;78(12):7507–7511. doi: 10.1073/pnas.78.12.7507. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zimmermann J. L., Boussac A., Rutherford A. W. The manganese center of oxygen-evolving and Ca(2+)-depleted photosystem II: a pulsed EPR spectroscopy study. Biochemistry. 1993 May 11;32(18):4831–4841. doi: 10.1021/bi00069a019. [DOI] [PubMed] [Google Scholar]