Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1995 Oct 10;92(21):9657–9661. doi: 10.1073/pnas.92.21.9657

Protein evolution on partially correlated landscapes.

A S Perelson 1, C A Macken 1
PMCID: PMC40861  PMID: 7568192

Abstract

We extend an earlier model of protein evolution on a rugged landscape to the case in which the landscape exhibits a variable degree of correlation (i.e., smoothness). Correlation is introduced by assuming that a protein is composed of a set of independent blocks or domains and that mutation in one block affects the contribution of that block alone to the overall fitness of the protein. We study the statistical structure of such landscapes and apply our theory to the evolution by somatic hypermutation of antibody molecules composed of framework and complementarity-determining regions. We predict the expected number of replacement mutations in each region.

Full text

PDF
9657

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allen D., Cumano A., Dildrop R., Kocks C., Rajewsky K., Rajewsky N., Roes J., Sablitzky F., Siekevitz M. Timing, genetic requirements and functional consequences of somatic hypermutation during B-cell development. Immunol Rev. 1987 Apr;96:5–22. doi: 10.1111/j.1600-065x.1987.tb00506.x. [DOI] [PubMed] [Google Scholar]
  2. Allen D., Simon T., Sablitzky F., Rajewsky K., Cumano A. Antibody engineering for the analysis of affinity maturation of an anti-hapten response. EMBO J. 1988 Jul;7(7):1995–2001. doi: 10.1002/j.1460-2075.1988.tb03038.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Amitrano C., Peliti L., Saber M. Population dynamics in a spin-glass model of chemical evolution. J Mol Evol. 1989 Dec;29(6):513–525. doi: 10.1007/BF02602923. [DOI] [PubMed] [Google Scholar]
  4. Berek C., Berger A., Apel M. Maturation of the immune response in germinal centers. Cell. 1991 Dec 20;67(6):1121–1129. doi: 10.1016/0092-8674(91)90289-b. [DOI] [PubMed] [Google Scholar]
  5. Berek C., Milstein C. Mutation drift and repertoire shift in the maturation of the immune response. Immunol Rev. 1987 Apr;96:23–41. doi: 10.1111/j.1600-065x.1987.tb00507.x. [DOI] [PubMed] [Google Scholar]
  6. Brüggemann M., Müller H. J., Burger C., Rajewsky K. Idiotypic selection of an antibody mutant with changed hapten binding specificity, resulting from a point mutation in position 50 of the heavy chain. EMBO J. 1986 Jul;5(7):1561–1566. doi: 10.1002/j.1460-2075.1986.tb04397.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Flyvbjerg H, Lautrup B. Evolution in a rugged fitness landscape. Phys Rev A. 1992 Nov 15;46(10):6714–6723. doi: 10.1103/physreva.46.6714. [DOI] [PubMed] [Google Scholar]
  8. Fontana W, Stadler PF, Bornberg-Bauer EG, Griesmacher T, Hofacker IL, Tacker M, Tarazona P, Weinberger ED, Schuster P. RNA folding and combinatory landscapes. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 1993 Mar;47(3):2083–2099. doi: 10.1103/physreve.47.2083. [DOI] [PubMed] [Google Scholar]
  9. French D. L., Laskov R., Scharff M. D. The role of somatic hypermutation in the generation of antibody diversity. Science. 1989 Jun 9;244(4909):1152–1157. doi: 10.1126/science.2658060. [DOI] [PubMed] [Google Scholar]
  10. Kauffman S. A., Weinberger E. D. The NK model of rugged fitness landscapes and its application to maturation of the immune response. J Theor Biol. 1989 Nov 21;141(2):211–245. doi: 10.1016/s0022-5193(89)80019-0. [DOI] [PubMed] [Google Scholar]
  11. Kauffman S., Levin S. Towards a general theory of adaptive walks on rugged landscapes. J Theor Biol. 1987 Sep 7;128(1):11–45. doi: 10.1016/s0022-5193(87)80029-2. [DOI] [PubMed] [Google Scholar]
  12. Kobrin B. J., Buhl S., Shulman M. J., Scharff M. D. A V region mutation in a phosphocholine-binding monoclonal antibody results in loss of antigen binding. J Immunol. 1991 Mar 15;146(6):2017–2020. [PubMed] [Google Scholar]
  13. Kocks C., Rajewsky K. Stable expression and somatic hypermutation of antibody V regions in B-cell developmental pathways. Annu Rev Immunol. 1989;7:537–559. doi: 10.1146/annurev.iy.07.040189.002541. [DOI] [PubMed] [Google Scholar]
  14. Macken C. A., Perelson A. S. Protein evolution on rugged landscapes. Proc Natl Acad Sci U S A. 1989 Aug;86(16):6191–6195. doi: 10.1073/pnas.86.16.6191. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. McKean D., Huppi K., Bell M., Staudt L., Gerhard W., Weigert M. Generation of antibody diversity in the immune response of BALB/c mice to influenza virus hemagglutinin. Proc Natl Acad Sci U S A. 1984 May;81(10):3180–3184. doi: 10.1073/pnas.81.10.3180. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Rudikoff S., Giusti A. M., Cook W. D., Scharff M. D. Single amino acid substitution altering antigen-binding specificity. Proc Natl Acad Sci U S A. 1982 Mar;79(6):1979–1983. doi: 10.1073/pnas.79.6.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Schuster P., Stadler P. F. Landscapes: complex optimization problems and biopolymer structures. Comput Chem. 1994 Sep;18(3):295–324. doi: 10.1016/0097-8485(94)85025-9. [DOI] [PubMed] [Google Scholar]
  18. Sharon J., Gefter M. L., Manser T., Ptashne M. Site-directed mutagenesis of an invariant amino acid residue at the variable-diversity segments junction of an antibody. Proc Natl Acad Sci U S A. 1986 Apr;83(8):2628–2631. doi: 10.1073/pnas.83.8.2628. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Sharon J., Gefter M. L., Wysocki L. J., Margolies M. N. Recurrent somatic mutations in mouse antibodies to p-azophenylarsonate increase affinity for hapten. J Immunol. 1989 Jan 15;142(2):596–601. [PubMed] [Google Scholar]
  20. Sharon J. Structural correlates of high antibody affinity: three engineered amino acid substitutions can increase the affinity of an anti-p-azophenylarsonate antibody 200-fold. Proc Natl Acad Sci U S A. 1990 Jun;87(12):4814–4817. doi: 10.1073/pnas.87.12.4814. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Shlomchik M. J., Aucoin A. H., Pisetsky D. S., Weigert M. G. Structure and function of anti-DNA autoantibodies derived from a single autoimmune mouse. Proc Natl Acad Sci U S A. 1987 Dec;84(24):9150–9154. doi: 10.1073/pnas.84.24.9150. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Siskind G. W., Benacerraf B. Cell selection by antigen in the immune response. Adv Immunol. 1969;10:1–50. doi: 10.1016/s0065-2776(08)60414-9. [DOI] [PubMed] [Google Scholar]
  23. Smith J. M. Natural selection and the concept of a protein space. Nature. 1970 Feb 7;225(5232):563–564. doi: 10.1038/225563a0. [DOI] [PubMed] [Google Scholar]
  24. Takeda Y., Sarai A., Rivera V. M. Analysis of the sequence-specific interactions between Cro repressor and operator DNA by systematic base substitution experiments. Proc Natl Acad Sci U S A. 1989 Jan;86(2):439–443. doi: 10.1073/pnas.86.2.439. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Weinberger E. D., Stadler P. F. Why some fitness landscapes are fractal. J Theor Biol. 1993 Jul 21;163(2):255–275. doi: 10.1006/jtbi.1993.1120. [DOI] [PubMed] [Google Scholar]
  26. Weinberger ED. Local properties of Kauffman's N-k model: A tunably rugged energy landscape. Phys Rev A. 1991 Nov 15;44(10):6399–6413. doi: 10.1103/physreva.44.6399. [DOI] [PubMed] [Google Scholar]
  27. Wysocki L., Manser T., Gefter M. L. Somatic evolution of variable region structures during an immune response. Proc Natl Acad Sci U S A. 1986 Mar;83(6):1847–1851. doi: 10.1073/pnas.83.6.1847. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES