Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1995 Sep 26;92(20):9132–9136. doi: 10.1073/pnas.92.20.9132

Fungal metabolic model for human type I hereditary tyrosinaemia.

J M Fernández-Cañón 1, M A Peñalva 1
PMCID: PMC40938  PMID: 7568087

Abstract

Type I hereditary tyrosinaemia (HT1) is a severe human inborn disease resulting from loss of fumaryl-acetoacetate hydrolase (Fah). Homozygous disruption of the gene encoding Fah in mice causes neonatal lethality, seriously limiting use of this animal as a model. We report here that fahA, the gene encoding Fah in the fungus Aspergillus nidulans, encodes a polypeptide showing 47.1% identity to its human homologue, fahA disruption results in secretion of succinylacetone (a diagnostic compound for human type I tyrosinaemia) and phenylalanine toxicity. We have isolated spontaneous suppressor mutations preventing this toxicity, presumably representing loss-of-function mutations in genes acting upstream of fahA in the phenylalanine catabolic pathway. Analysis of a class of these mutations demonstrates that loss of homogentisate dioxygenase (leading to alkaptonuria in humans) prevents the effects of a Fah deficiency. Our results strongly suggest human homogentisate dioxygenase as a target for HT1 therapy and illustrate the usefulness of this fungus as an alternative to animal models for certain aspects of human metabolic diseases.

Full text

PDF
9132

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Awata H., Endo F., Tanoue A., Kitano A., Nakano Y., Matsuda I. Structural organization and analysis of the human fumarylacetoacetate hydrolase gene in tyrosinemia type I. Biochim Biophys Acta. 1994 May 25;1226(2):168–172. doi: 10.1016/0925-4439(94)90025-6. [DOI] [PubMed] [Google Scholar]
  2. Cove D. J. The induction and repression of nitrate reductase in the fungus Aspergillus nidulans. Biochim Biophys Acta. 1966 Jan 11;113(1):51–56. doi: 10.1016/s0926-6593(66)80120-0. [DOI] [PubMed] [Google Scholar]
  3. Espeso E. A., Peñalva M. A. Carbon catabolite repression can account for the temporal pattern of expression of a penicillin biosynthetic gene in Aspergillus nidulans. Mol Microbiol. 1992 Jun;6(11):1457–1465. doi: 10.1111/j.1365-2958.1992.tb00866.x. [DOI] [PubMed] [Google Scholar]
  4. Grenier A., Lescault A., Laberge C., Gagné R., Mamer O. Detection of succinylacetone and the use of its measurement in mass screening for hereditary tyrosinemia. Clin Chim Acta. 1982 Aug 4;123(1-2):93–99. doi: 10.1016/0009-8981(82)90117-6. [DOI] [PubMed] [Google Scholar]
  5. Grompe M., al-Dhalimy M., Finegold M., Ou C. N., Burlingame T., Kennaway N. G., Soriano P. Loss of fumarylacetoacetate hydrolase is responsible for the neonatal hepatic dysfunction phenotype of lethal albino mice. Genes Dev. 1993 Dec;7(12A):2298–2307. doi: 10.1101/gad.7.12a.2298. [DOI] [PubMed] [Google Scholar]
  6. Grompe M., al-Dhalimy M. Mutations of the fumarylacetoacetate hydrolase gene in four patients with tyrosinemia, type I. Hum Mutat. 1993;2(2):85–93. doi: 10.1002/humu.1380020205. [DOI] [PubMed] [Google Scholar]
  7. Janocha S., Wolz W., Srsen S., Srsnova K., Montagutelli X., Guénet J. L., Grimm T., Kress W., Müller C. R. The human gene for alkaptonuria (AKU) maps to chromosome 3q. Genomics. 1994 Jan 1;19(1):5–8. doi: 10.1006/geno.1994.1003. [DOI] [PubMed] [Google Scholar]
  8. Kelsey G., Ruppert S., Beermann F., Grund C., Tanguay R. M., Schütz G. Rescue of mice homozygous for lethal albino deletions: implications for an animal model for the human liver disease tyrosinemia type 1. Genes Dev. 1993 Dec;7(12A):2285–2297. doi: 10.1101/gad.7.12a.2285. [DOI] [PubMed] [Google Scholar]
  9. Klebig M. L., Russell L. B., Rinchik E. M. Murine fumarylacetoacetate hydrolase (Fah) gene is disrupted by a neonatally lethal albino deletion that defines the hepatocyte-specific developmental regulation 1 (hsdr-1) locus. Proc Natl Acad Sci U S A. 1992 Feb 15;89(4):1363–1367. doi: 10.1073/pnas.89.4.1363. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Kvittingen E. A., Rootwelt H., Berger R., Brandtzaeg P. Self-induced correction of the genetic defect in tyrosinemia type I. J Clin Invest. 1994 Oct;94(4):1657–1661. doi: 10.1172/JCI117509. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Labelle Y., Phaneuf D., Leclerc B., Tanguay R. M. Characterization of the human fumarylacetoacetate hydrolase gene and identification of a missense mutation abolishing enzymatic activity. Hum Mol Genet. 1993 Jul;2(7):941–946. doi: 10.1093/hmg/2.7.941. [DOI] [PubMed] [Google Scholar]
  12. Lindblad B., Lindstedt S., Steen G. On the enzymic defects in hereditary tyrosinemia. Proc Natl Acad Sci U S A. 1977 Oct;74(10):4641–4645. doi: 10.1073/pnas.74.10.4641. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Lindstedt S., Holme E., Lock E. A., Hjalmarson O., Strandvik B. Treatment of hereditary tyrosinaemia type I by inhibition of 4-hydroxyphenylpyruvate dioxygenase. Lancet. 1992 Oct 3;340(8823):813–817. doi: 10.1016/0140-6736(92)92685-9. [DOI] [PubMed] [Google Scholar]
  14. Miller B. L., Miller K. Y., Timberlake W. E. Direct and indirect gene replacements in Aspergillus nidulans. Mol Cell Biol. 1985 Jul;5(7):1714–1721. doi: 10.1128/mcb.5.7.1714. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Phaneuf D., Labelle Y., Bérubé D., Arden K., Cavenee W., Gagné R., Tanguay R. M. Cloning and expression of the cDNA encoding human fumarylacetoacetate hydrolase, the enzyme deficient in hereditary tyrosinemia: assignment of the gene to chromosome 15. Am J Hum Genet. 1991 Mar;48(3):525–535. [PMC free article] [PubMed] [Google Scholar]
  16. Phaneuf D., Lambert M., Laframboise R., Mitchell G., Lettre F., Tanguay R. M. Type 1 hereditary tyrosinemia. Evidence for molecular heterogeneity and identification of a causal mutation in a French Canadian patient. J Clin Invest. 1992 Oct;90(4):1185–1192. doi: 10.1172/JCI115979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Ruppert S., Kelsey G., Schedl A., Schmid E., Thies E., Schütz G. Deficiency of an enzyme of tyrosine metabolism underlies altered gene expression in newborn liver of lethal albino mice. Genes Dev. 1992 Aug;6(8):1430–1443. doi: 10.1101/gad.6.8.1430. [DOI] [PubMed] [Google Scholar]
  18. Sargent T. D. Isolation of differentially expressed genes. Methods Enzymol. 1987;152:423–432. doi: 10.1016/0076-6879(87)52049-3. [DOI] [PubMed] [Google Scholar]
  19. Zimmermann C. R., Orr W. C., Leclerc R. F., Barnard E. C., Timberlake W. E. Molecular cloning and selection of genes regulated in Aspergillus development. Cell. 1980 Oct;21(3):709–715. doi: 10.1016/0092-8674(80)90434-1. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES