Abstract
Protein kinase C (PKC) is involved in the proliferation and differentiation of many cell types. In human erythroleukemia (K-562) cells, the PKC isoforms alpha and beta II play distinct functional roles. alpha PKC is involved in phorbol 12-myristate 13-acetate-induced cytostasis and megakaryocytic differentiation, whereas beta II PKC is required for proliferation. To identify regions within alpha and beta II PKC that allow participation in these divergent pathways, we constructed chimeras in which the regulatory and catalytic domains of alpha and beta II PKC were exchanged. These PKC chimeras can be stably expressed, exhibit enzymatic properties similar to native alpha and beta II PKC in vitro, and participate in alpha and beta II PKC isotype-specific pathways in K-562 cells. Expression of the beta/alpha PKC chimera induces cytostasis in the same manner as overexpression of wild-type alpha PKC. In contrast, the alpha/beta II PKC chimera, like wild-type beta II PKC, selectively translocates to the nucleus and leads to increased phosphorylation of the nuclear envelope polypeptide lamin B in response to bryostatin-1. Therefore, the catalytic domains of alpha and beta II PKC contain determinants important for alpha and beta II PKC isotype function. These results suggest that the catalytic domain represents a potential target for modulating PKC isotype activity in vivo.
Full text
PDF




Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Burns D. J., Bell R. M. Protein kinase C contains two phorbol ester binding domains. J Biol Chem. 1991 Sep 25;266(27):18330–18338. [PubMed] [Google Scholar]
- Burns D. J., Bloomenthal J., Lee M. H., Bell R. M. Expression of the alpha, beta II, and gamma protein kinase C isozymes in the baculovirus-insect cell expression system. Purification and characterization of the individual isoforms. J Biol Chem. 1990 Jul 15;265(20):12044–12051. [PubMed] [Google Scholar]
- Clemens M. J., Trayner I., Menaya J. The role of protein kinase C isoenzymes in the regulation of cell proliferation and differentiation. J Cell Sci. 1992 Dec;103(Pt 4):881–887. doi: 10.1242/jcs.103.4.881. [DOI] [PubMed] [Google Scholar]
- Fields A. P., Pettit G. R., May W. S. Phosphorylation of lamin B at the nuclear membrane by activated protein kinase C. J Biol Chem. 1988 Jun 15;263(17):8253–8260. [PubMed] [Google Scholar]
- Fields A. P., Pincus S. M., Kraft A. S., May W. S. Interleukin-3 and bryostatin 1 mediate rapid nuclear envelope protein phosphorylation in growth factor-dependent FDC-P1 hematopoietic cells. A possible role for nuclear protein kinase C. J Biol Chem. 1989 Dec 25;264(36):21896–21901. [PubMed] [Google Scholar]
- Fields A. P., Tyler G., Kraft A. S., May W. S. Role of nuclear protein kinase C in the mitogenic response to platelet-derived growth factor. J Cell Sci. 1990 May;96(Pt 1):107–114. doi: 10.1242/jcs.96.1.107. [DOI] [PubMed] [Google Scholar]
- Goss V. L., Hocevar B. A., Thompson L. J., Stratton C. A., Burns D. J., Fields A. P. Identification of nuclear beta II protein kinase C as a mitotic lamin kinase. J Biol Chem. 1994 Jul 22;269(29):19074–19080. [PubMed] [Google Scholar]
- Hocevar B. A., Burns D. J., Fields A. P. Identification of protein kinase C (PKC) phosphorylation sites on human lamin B. Potential role of PKC in nuclear lamina structural dynamics. J Biol Chem. 1993 Apr 5;268(10):7545–7552. [PubMed] [Google Scholar]
- Hocevar B. A., Fields A. P. Selective translocation of beta II-protein kinase C to the nucleus of human promyelocytic (HL60) leukemia cells. J Biol Chem. 1991 Jan 5;266(1):28–33. [PubMed] [Google Scholar]
- Hocevar B. A., Morrow D. M., Tykocinski M. L., Fields A. P. Protein kinase C isotypes in human erythroleukemia cell proliferation and differentiation. J Cell Sci. 1992 Mar;101(Pt 3):671–679. doi: 10.1242/jcs.101.3.671. [DOI] [PubMed] [Google Scholar]
- Huang K. P., Huang F. L. Differential sensitivity of protein kinase C isozymes to phospholipid-induced inactivation. J Biol Chem. 1990 Jan 15;265(2):738–744. [PubMed] [Google Scholar]
- Huang K. P., Huang F. L. Purification and analysis of protein kinase C isozymes. Methods Enzymol. 1991;200:241–252. doi: 10.1016/0076-6879(91)00144-l. [DOI] [PubMed] [Google Scholar]
- Hug H., Sarre T. F. Protein kinase C isoenzymes: divergence in signal transduction? Biochem J. 1993 Apr 15;291(Pt 2):329–343. doi: 10.1042/bj2910329. [DOI] [PMC free article] [PubMed] [Google Scholar]
- James G., Olson E. Deletion of the regulatory domain of protein kinase C alpha exposes regions in the hinge and catalytic domains that mediate nuclear targeting. J Cell Biol. 1992 Feb;116(4):863–874. doi: 10.1083/jcb.116.4.863. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kubo K., Ohno S., Suzuki K. Nucleotide sequence of the 3' portion of a human gene for protein kinase C beta I/beta II. Nucleic Acids Res. 1987 Sep 11;15(17):7179–7180. doi: 10.1093/nar/15.17.7179. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Luo J. H., Weinstein I. B. Calcium-dependent activation of protein kinase C. The role of the C2 domain in divalent cation selectivity. J Biol Chem. 1993 Nov 5;268(31):23580–23584. [PubMed] [Google Scholar]
- Muramatsu M., Kaibuchi K., Arai K. A protein kinase C cDNA without the regulatory domain is active after transfection in vivo in the absence of phorbol ester. Mol Cell Biol. 1989 Feb;9(2):831–836. doi: 10.1128/mcb.9.2.831. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Murray N. R., Baumgardner G. P., Burns D. J., Fields A. P. Protein kinase C isotypes in human erythroleukemia (K562) cell proliferation and differentiation. Evidence that beta II protein kinase C is required for proliferation. J Biol Chem. 1993 Jul 25;268(21):15847–15853. [PubMed] [Google Scholar]
- Murray N. R., Burns D. J., Fields A. P. Presence of a beta II protein kinase C-selective nuclear membrane activation factor in human leukemia cells. J Biol Chem. 1994 Aug 19;269(33):21385–21390. [PubMed] [Google Scholar]
- Nakadate T., Jeng A. Y., Blumberg P. M. Effect of phospholipid on substrate phosphorylation by a catalytic fragment of protein kinase C. J Biol Chem. 1987 Aug 25;262(24):11507–11513. [PubMed] [Google Scholar]
- Nishizuka Y. The Albert Lasker Medical Awards. The family of protein kinase C for signal transduction. JAMA. 1989 Oct 6;262(13):1826–1833. [PubMed] [Google Scholar]
- Ohno S., Akita Y., Hata A., Osada S., Kubo K., Konno Y., Akimoto K., Mizuno K., Saido T., Kuroki T. Structural and functional diversities of a family of signal transducing protein kinases, protein kinase C family; two distinct classes of PKC, conventional cPKC and novel nPKC. Adv Enzyme Regul. 1991;31:287–303. doi: 10.1016/0065-2571(91)90018-h. [DOI] [PubMed] [Google Scholar]
- Pears C. J., Kour G., House C., Kemp B. E., Parker P. J. Mutagenesis of the pseudosubstrate site of protein kinase C leads to activation. Eur J Biochem. 1990 Nov 26;194(1):89–94. doi: 10.1111/j.1432-1033.1990.tb19431.x. [DOI] [PubMed] [Google Scholar]
- Pears C. J., Parker P. J. Domain interactions in protein kinase C. J Cell Sci. 1991 Dec;100(Pt 4):683–686. doi: 10.1242/jcs.100.4.683. [DOI] [PubMed] [Google Scholar]
- Pears C., Schaap D., Parker P. J. The regulatory domain of protein kinase C-epsilon restricts the catalytic-domain-specificity. Biochem J. 1991 May 15;276(Pt 1):257–260. doi: 10.1042/bj2760257. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Riedel H., Su L., Hansen H. Yeast phenotype classifies mammalian protein kinase C cDNA mutants. Mol Cell Biol. 1993 Aug;13(8):4728–4735. doi: 10.1128/mcb.13.8.4728. [DOI] [PMC free article] [PubMed] [Google Scholar]