Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1995 Sep 26;92(20):9186–9190. doi: 10.1073/pnas.92.20.9186

Helix packing of lactose permease in Escherichia coli studied by site-directed chemical cleavage.

J Wu 1, D M Perrin 1, D S Sigman 1, H R Kaback 1
PMCID: PMC40949  PMID: 7568098

Abstract

Biotinylated lactose permease from Escherichia coli containing a single-cysteine residue at position 330 (helix X) or at position 147, 148, or 149 (helix V) was purified by avidin-affinity chromatography and derivatized with 5-(alpha-bromoacetamido)-1,10-phenanthroline-copper [OP(Cu)]. Studies with purified, OP(Cu)-labeled Leu-330 --> Cys permease in dodecyl-beta-D-maltopyranoside demonstrate that after incubation in the presence of ascorbate, cleavage products of approximately 19 and 6-8 kDa are observed on immunoblots with anti-C-terminal antibody. Remarkably, the same cleavage products are observed with permease embedded in the native membrane. Comparison with the C-terminal half of the permease expressed independently as a standard indicates that the 19-kDa product results from cleavage near the cytoplasmic end of helix VII, whereas the 6- to 8-kDa fragment probably results from fragmentation near the cytoplasmic end of helix XI. Results are entirely consistent with a tertiary-structure model of the C-terminal half of the permease derived from earlier site-directed fluorescence and site-directed mutagenesis studies. Similar studies with OP(Cu)-labeled Cys-148 permease exhibit cleavage products at approximately 19 kDa and at 15-16 kDa. The larger fragment probably reflects cleavage at a site near the cytoplasmic end of helix VII, whereas the 15- to 16-kDa fragment is consistent with cleavage near the cytoplasmic end of helix VIII. When OP(Cu) is moved 100 degrees to position 149 (Val-149 --> Cys permease), a single product is observed at 19 kDa, suggesting fragmentation at the cytoplasmic end of helix VII. However, when the reagent is moved 100 degrees in the other direction to position 147 (Gly-147 --> Cys permease), cleavage is not observed. The results suggest that helix V is in close proximity to helices VII and VIII with position 148 in the interface between the helices, position 149 facing helix VII, and position 147 facing the lipid bilayer.

Full text

PDF
9186

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Altenbach C., Marti T., Khorana H. G., Hubbell W. L. Transmembrane protein structure: spin labeling of bacteriorhodopsin mutants. Science. 1990 Jun 1;248(4959):1088–1092. doi: 10.1126/science.2160734. [DOI] [PubMed] [Google Scholar]
  2. Bateman R. C., Jr, Youngblood W. W., Busby W. H., Jr, Kizer J. S. Nonenzymatic peptide alpha-amidation. Implications for a novel enzyme mechanism. J Biol Chem. 1985 Aug 5;260(16):9088–9091. [PubMed] [Google Scholar]
  3. Bibi E., Kaback H. R. In vivo expression of the lacY gene in two segments leads to functional lac permease. Proc Natl Acad Sci U S A. 1990 Jun;87(11):4325–4329. doi: 10.1073/pnas.87.11.4325. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bradbury A. F., Smyth D. G. Peptide amidation. Trends Biochem Sci. 1991 Mar;16(3):112–115. doi: 10.1016/0968-0004(91)90044-v. [DOI] [PubMed] [Google Scholar]
  5. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  6. Büchel D. E., Gronenborn B., Müller-Hill B. Sequence of the lactose permease gene. Nature. 1980 Feb 7;283(5747):541–545. doi: 10.1038/283541a0. [DOI] [PubMed] [Google Scholar]
  7. Calamia J., Manoil C. lac permease of Escherichia coli: topology and sequence elements promoting membrane insertion. Proc Natl Acad Sci U S A. 1990 Jul;87(13):4937–4941. doi: 10.1073/pnas.87.13.4937. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Carrasco N., Herzlinger D., Mitchell R., DeChiara S., Danho W., Gabriel T. F., Kaback H. R. Intramolecular dislocation of the COOH terminus of the lac carrier protein in reconstituted proteoliposomes. Proc Natl Acad Sci U S A. 1984 Aug;81(15):4672–4676. doi: 10.1073/pnas.81.15.4672. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Consler T. G., Persson B. L., Jung H., Zen K. H., Jung K., Privé G. G., Verner G. E., Kaback H. R. Properties and purification of an active biotinylated lactose permease from Escherichia coli. Proc Natl Acad Sci U S A. 1993 Aug 1;90(15):6934–6938. doi: 10.1073/pnas.90.15.6934. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Dunten R. L., Sahin-Tóth M., Kaback H. R. Role of the charge pair aspartic acid-237-lysine-358 in the lactose permease of Escherichia coli. Biochemistry. 1993 Mar 30;32(12):3139–3145. doi: 10.1021/bi00063a028. [DOI] [PubMed] [Google Scholar]
  11. Foster D. L., Boublik M., Kaback H. R. Structure of the lac carrier protein of Escherichia coli. J Biol Chem. 1983 Jan 10;258(1):31–34. [PubMed] [Google Scholar]
  12. Foster D. L., Garcia M. L., Newman M. J., Patel L., Kaback H. R. Lactose-proton symport by purified lac carrier protein. Biochemistry. 1982 Oct 26;21(22):5634–5638. doi: 10.1021/bi00265a038. [DOI] [PubMed] [Google Scholar]
  13. Jung H., Jung K., Kaback H. R. A conformational change in the lactose permease of Escherichia coli is induced by ligand binding or membrane potential. Protein Sci. 1994 Jul;3(7):1052–1057. doi: 10.1002/pro.5560030707. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Jung H., Jung K., Kaback H. R. Cysteine 148 in the lactose permease of Escherichia coli is a component of a substrate binding site. 1. Site-directed mutagenesis studies. Biochemistry. 1994 Oct 11;33(40):12160–12165. doi: 10.1021/bi00206a019. [DOI] [PubMed] [Google Scholar]
  15. Jung K., Jung H., Kaback H. R. Dynamics of lactose permease of Escherichia coli determined by site-directed fluorescence labeling. Biochemistry. 1994 Apr 5;33(13):3980–3985. doi: 10.1021/bi00179a026. [DOI] [PubMed] [Google Scholar]
  16. Jung K., Jung H., Wu J., Privé G. G., Kaback H. R. Use of site-directed fluorescence labeling to study proximity relationships in the lactose permease of Escherichia coli. Biochemistry. 1993 Nov 23;32(46):12273–12278. doi: 10.1021/bi00097a001. [DOI] [PubMed] [Google Scholar]
  17. Kaback H. R. Active transport in Escherichia coli: passage to permease. Annu Rev Biophys Biophys Chem. 1986;15:279–319. doi: 10.1146/annurev.bb.15.060186.001431. [DOI] [PubMed] [Google Scholar]
  18. Kaback H. R., Frillingos S., Jung H., Jung K., Privé G. G., Ujwal M. L., Weitzman C., Wu J., Zen K. The lactose permease meets Frankenstein. J Exp Biol. 1994 Nov;196:183–195. doi: 10.1242/jeb.196.1.183. [DOI] [PubMed] [Google Scholar]
  19. Kaback H. R. In and out and up and down with lac permease. Int Rev Cytol. 1992;137:97–125. doi: 10.1016/s0074-7696(08)62674-1. [DOI] [PubMed] [Google Scholar]
  20. Kaback H. R., Jung K., Jung H., Wu J., Privé G. G., Zen K. What's new with lactose permease. J Bioenerg Biomembr. 1993 Dec;25(6):627–636. doi: 10.1007/BF00770250. [DOI] [PubMed] [Google Scholar]
  21. Kaback H. R. Molecular biology and energetics of membrane transport. J Cell Physiol. 1976 Dec;89(4):575–593. doi: 10.1002/jcp.1040890414. [DOI] [PubMed] [Google Scholar]
  22. Kaback H. R. Molecular biology of active transport: from membrane to molecule to mechanism. Harvey Lect. 1987;83:77–105. [PubMed] [Google Scholar]
  23. Kaback H. R. The lac carrier protein in Escherichia coli. J Membr Biol. 1983;76(2):95–112. doi: 10.1007/BF02000610. [DOI] [PubMed] [Google Scholar]
  24. King S. C., Hansen C. L., Wilson T. H. The interaction between aspartic acid 237 and lysine 358 in the lactose carrier of Escherichia coli. Biochim Biophys Acta. 1991 Feb 25;1062(2):177–186. doi: 10.1016/0005-2736(91)90390-t. [DOI] [PubMed] [Google Scholar]
  25. Kuwabara M. D., Sigman D. S. Footprinting DNA-protein complexes in situ following gel retardation assays using 1,10-phenanthroline-copper ion: Escherichia coli RNA polymerase-lac promoter complexes. Biochemistry. 1987 Nov 17;26(23):7234–7238. doi: 10.1021/bi00397a006. [DOI] [PubMed] [Google Scholar]
  26. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  27. Lee J. I., Hwang P. P., Hansen C., Wilson T. H. Possible salt bridges between transmembrane alpha-helices of the lactose carrier of Escherichia coli. J Biol Chem. 1992 Oct 15;267(29):20758–20764. [PubMed] [Google Scholar]
  28. Li M., Meares C. F., Zhong G. R., Miers L., Xiong C. Y., DeNardo S. J. Labeling monoclonal antibodies with 90yttrium- and 111indium-DOTA chelates: a simple and efficient method. Bioconjug Chem. 1994 Mar-Apr;5(2):101–104. doi: 10.1021/bc00026a001. [DOI] [PubMed] [Google Scholar]
  29. Martinez E., Bartolomé B., de la Cruz F. pACYC184-derived cloning vectors containing the multiple cloning site and lacZ alpha reporter gene of pUC8/9 and pUC18/19 plasmids. Gene. 1988 Aug 15;68(1):159–162. doi: 10.1016/0378-1119(88)90608-7. [DOI] [PubMed] [Google Scholar]
  30. Newman M. J., Foster D. L., Wilson T. H., Kaback H. R. Purification and reconstitution of functional lactose carrier from Escherichia coli. J Biol Chem. 1981 Nov 25;256(22):11804–11808. [PubMed] [Google Scholar]
  31. Pan C. Q., Landgraf R., Sigman D. S. DNA-binding proteins as site-specific nucleases. Mol Microbiol. 1994 May;12(3):335–342. doi: 10.1111/j.1365-2958.1994.tb01022.x. [DOI] [PubMed] [Google Scholar]
  32. Pearson L., Chen C. B., Gaynor R. P., Sigman D. S. Footprinting RNA-protein complexes following gel retardation assays: application to the R-17-procoat-RNA and tat--TAR interactions. Nucleic Acids Res. 1994 Jun 25;22(12):2255–2263. doi: 10.1093/nar/22.12.2255. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Perrin D. M., Mazumder A., Sadeghi F., Sigman D. S. Hybridization of a complementary ribooligonucleotide to the transcription start site of the lacUV-5-Escherichia coli RNA polymerase open complex. Potential for gene-specific inactivation reagents. Biochemistry. 1994 Apr 5;33(13):3848–3854. doi: 10.1021/bi00179a008. [DOI] [PubMed] [Google Scholar]
  34. Platis I. E., Ermácora M. R., Fox R. O. Oxidative polypeptide cleavage mediated by EDTA-Fe covalently linked to cysteine residues. Biochemistry. 1993 Nov 30;32(47):12761–12767. doi: 10.1021/bi00210a027. [DOI] [PubMed] [Google Scholar]
  35. Rana T. M., Meares C. F. Transfer of oxygen from an artificial protease to peptide carbon during proteolysis. Proc Natl Acad Sci U S A. 1991 Dec 1;88(23):10578–10582. doi: 10.1073/pnas.88.23.10578. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Sahin-Tóth M., Dunten R. L., Gonzalez A., Kaback H. R. Functional interactions between putative intramembrane charged residues in the lactose permease of Escherichia coli. Proc Natl Acad Sci U S A. 1992 Nov 1;89(21):10547–10551. doi: 10.1073/pnas.89.21.10547. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Sahin-Tóth M., Kaback H. R. Cysteine scanning mutagenesis of putative transmembrane helices IX and X in the lactose permease of Escherichia coli. Protein Sci. 1993 Jun;2(6):1024–1033. doi: 10.1002/pro.5560020615. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Sahin-Tóth M., Kaback H. R. Properties of interacting aspartic acid and lysine residues in the lactose permease of Escherichia coli. Biochemistry. 1993 Sep 28;32(38):10027–10035. doi: 10.1021/bi00089a019. [DOI] [PubMed] [Google Scholar]
  39. Sahin-Tóth M., Lawrence M. C., Kaback H. R. Properties of permease dimer, a fusion protein containing two lactose permease molecules from Escherichia coli. Proc Natl Acad Sci U S A. 1994 Jun 7;91(12):5421–5425. doi: 10.1073/pnas.91.12.5421. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Sarkar H. K., Viitanen P. V., Padan E., Trumble W. R., Poonian M. S., McComas W., Kaback H. R. Oligonucleotide-directed site-specific mutagenesis of the lac permease of Escherichia coli. Methods Enzymol. 1986;125:214–230. doi: 10.1016/s0076-6879(86)25019-3. [DOI] [PubMed] [Google Scholar]
  42. Sigman D. S. Chemical nucleases. Biochemistry. 1990 Oct 2;29(39):9097–9105. doi: 10.1021/bi00491a001. [DOI] [PubMed] [Google Scholar]
  43. Sigman D. S., Kuwabara M. D., Chen C. H., Bruice T. W. Nuclease activity of 1,10-phenanthroline-copper in study of protein-DNA interactions. Methods Enzymol. 1991;208:414–433. doi: 10.1016/0076-6879(91)08022-a. [DOI] [PubMed] [Google Scholar]
  44. Teather R. M., Bramhall J., Riede I., Wright J. K., Fürst M., Aichele G., Wilhelm U., Overath P. Lactose carrier protein of Escherichia coli. Structure and expression of plasmids carrying the Y gene of the lac operon. Eur J Biochem. 1980;108(1):223–231. doi: 10.1111/j.1432-1033.1980.tb04715.x. [DOI] [PubMed] [Google Scholar]
  45. Viitanen P., Newman M. J., Foster D. L., Wilson T. H., Kaback H. R. Purification, reconstitution, and characterization of the lac permease of Escherichia coli. Methods Enzymol. 1986;125:429–452. doi: 10.1016/s0076-6879(86)25034-x. [DOI] [PubMed] [Google Scholar]
  46. Weitzman C., Kaback H. R. Cysteine scanning mutagenesis of helix V in the lactose permease of Escherichia coli. Biochemistry. 1995 Jul 25;34(29):9374–9379. doi: 10.1021/bi00029a013. [DOI] [PubMed] [Google Scholar]
  47. Wu J., Frillingos S., Kaback H. R. Dynamics of lactose permease of Escherichia coli determined by site-directed chemical labeling and fluorescence spectroscopy. Biochemistry. 1995 Jul 4;34(26):8257–8263. doi: 10.1021/bi00026a007. [DOI] [PubMed] [Google Scholar]
  48. Wu J., Frillingos S., Voss J., Kaback H. R. Ligand-induced conformational changes in the lactose permease of Escherichia coli: evidence for two binding sites. Protein Sci. 1994 Dec;3(12):2294–2301. doi: 10.1002/pro.5560031214. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Wu J., Kaback H. R. Cysteine 148 in the lactose permease of Escherichia coli is a component of a substrate binding site. 2. Site-directed fluorescence studies. Biochemistry. 1994 Oct 11;33(40):12166–12171. doi: 10.1021/bi00206a020. [DOI] [PubMed] [Google Scholar]
  50. Zen K. H., McKenna E., Bibi E., Hardy D., Kaback H. R. Expression of lactose permease in contiguous fragments as a probe for membrane-spanning domains. Biochemistry. 1994 Jul 12;33(27):8198–8206. doi: 10.1021/bi00193a005. [DOI] [PubMed] [Google Scholar]
  51. van Iwaarden P. R., Pastore J. C., Konings W. N., Kaback H. R. Construction of a functional lactose permease devoid of cysteine residues. Biochemistry. 1991 Oct 8;30(40):9595–9600. doi: 10.1021/bi00104a005. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES