Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1995 Sep 12;92(19):8680–8684. doi: 10.1073/pnas.92.19.8680

Cytochrome c oxidase in Neurospora crassa contains myristic acid covalently linked to subunit 1.

A O Vassilev 1, N Plesofsky-Vig 1, R Brambl 1
PMCID: PMC41030  PMID: 7567996

Abstract

Radiolabel from [3H]myristic acid was incorporated by Neurospora crassa into the core catalytic subunit 1 of cytochrome c oxidase (EC 1.9.3.1), as indicated by immunoprecipitation. This modification of the subunit, which was specific for myristic acid, represents an uncommon type of myristoylation through an amide linkage at an internal lysine, rather than an N-terminal glycine. The [3H]myristate, which was chemically recovered from the radiolabeled subunit peptide, modified an invariant Lys-324, based upon analyses of proteolysis products. This myristoylated lysine is found within one of the predicted transmembrane helices of subunit 1 and could contribute to the environment of the active site of the enzyme. The myristate was identified by mass spectrometry as a component of mature subunit 1 of a catalytically active, purified enzyme. To our knowledge, fatty acylation of a mitochondrially synthesized inner-membrane protein has not been reported previously.

Full text

PDF
8680

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Attardi G., Schatz G. Biogenesis of mitochondria. Annu Rev Cell Biol. 1988;4:289–333. doi: 10.1146/annurev.cb.04.110188.001445. [DOI] [PubMed] [Google Scholar]
  2. Borgese N., Longhi R. Both the outer mitochondrial membrane and the microsomal forms of cytochrome b5 reductase contain covalently bound myristic acid. Quantitative analysis on the polyvinylidene difluoride-immobilized proteins. Biochem J. 1990 Mar 1;266(2):341–347. doi: 10.1042/bj2660341. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Brambl R. Mitochondrial biogenesis during fungal spore germination. Biosynthesis and assembly of cytochrome c oxidase in Botryodiplodia theobromae. J Biol Chem. 1980 Aug 25;255(16):7673–7680. [PubMed] [Google Scholar]
  4. Brambl R. Mitochondrial biogenesis during fungal spore germination. Development of cytochrome c oxidase activity. Arch Biochem Biophys. 1977 Jul;182(1):273–281. doi: 10.1016/0003-9861(77)90308-3. [DOI] [PubMed] [Google Scholar]
  5. Brambl R., Plesofsky-Vig N. Pantothenate is required in Neurospora crassa for assembly of subunit peptides of cytochrome c oxidase and ATPase/ATP synthase. Proc Natl Acad Sci U S A. 1986 Jun;83(11):3644–3648. doi: 10.1073/pnas.83.11.3644. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Brambl R., Wenzler H., Josephson M. Mitochondrial biogenesis during fungal spore germination: effects of the antilipogenic antibiotic cerulenin upon Botryodiplodia spores. J Bacteriol. 1978 Aug;135(2):311–317. doi: 10.1128/jb.135.2.311-317.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Burger G., Scriven C., Machleidt W., Werner S. Subunit 1 of cytochrome oxidase from Neurospora crassa: nucleotide sequence of the coding gene and partial amino acid sequence of the protein. EMBO J. 1982;1(11):1385–1391. doi: 10.1002/j.1460-2075.1982.tb01327.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Buss J. E., Der C. J., Solski P. A. The six amino-terminal amino acids of p60src are sufficient to cause myristylation of p21v-ras. Mol Cell Biol. 1988 Sep;8(9):3960–3963. doi: 10.1128/mcb.8.9.3960. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Capaldi R. A. Structure and function of cytochrome c oxidase. Annu Rev Biochem. 1990;59:569–596. doi: 10.1146/annurev.bi.59.070190.003033. [DOI] [PubMed] [Google Scholar]
  10. Harington A., Herbert C. J., Tung B., Getz G. S., Slonimski P. P. Identification of a new nuclear gene (CEM1) encoding a protein homologous to a beta-keto-acyl synthase which is essential for mitochondrial respiration in Saccharomyces cerevisiae. Mol Microbiol. 1993 Aug;9(3):545–555. doi: 10.1111/j.1365-2958.1993.tb01715.x. [DOI] [PubMed] [Google Scholar]
  11. Hedo J. A., Collier E., Watkinson A. Myristyl and palmityl acylation of the insulin receptor. J Biol Chem. 1987 Jan 25;262(3):954–957. [PubMed] [Google Scholar]
  12. Hosler J. P., Ferguson-Miller S., Calhoun M. W., Thomas J. W., Hill J., Lemieux L., Ma J., Georgiou C., Fetter J., Shapleigh J. Insight into the active-site structure and function of cytochrome oxidase by analysis of site-directed mutants of bacterial cytochrome aa3 and cytochrome bo. J Bioenerg Biomembr. 1993 Apr;25(2):121–136. doi: 10.1007/BF00762854. [DOI] [PubMed] [Google Scholar]
  13. Issartel J. P., Koronakis V., Hughes C. Activation of Escherichia coli prohaemolysin to the mature toxin by acyl carrier protein-dependent fatty acylation. Nature. 1991 Jun 27;351(6329):759–761. doi: 10.1038/351759a0. [DOI] [PubMed] [Google Scholar]
  14. Knoll L. J., Levy M. A., Stahl P. D., Gordon J. I. Analysis of the compartmentalization of myristoyl-CoA:protein N-myristoyltransferase in Saccharomyces cerevisiae. J Biol Chem. 1992 Mar 15;267(8):5366–5373. [PubMed] [Google Scholar]
  15. Lakin-Thomas P. L., Brody S. Neurospora crassa mitochondria contain two forms of a 4'-phosphopantetheine-modified protein. J Biol Chem. 1986 Apr 15;261(11):4785–4788. [PubMed] [Google Scholar]
  16. Lemire E. G., Nargang F. E. A missense mutation in the oxi-3 gene of the [mi-3] extranuclear mutant of Neurospora crassa. J Biol Chem. 1986 Apr 25;261(12):5610–5615. [PubMed] [Google Scholar]
  17. Lonsdale-Eccles J. D., Lynley A. M., Dale B. A. Cyanogen bromide cleavage of proteins in sodium dodecyl sulphate/polyacrylamide gels. Diagonal peptide mapping of proteins from epidermis. Biochem J. 1981 Sep 1;197(3):591–597. doi: 10.1042/bj1970591. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Ozols J., Carr S. A., Strittmatter P. Identification of the NH2-terminal blocking group of NADH-cytochrome b5 reductase as myristic acid and the complete amino acid sequence of the membrane-binding domain. J Biol Chem. 1984 Nov 10;259(21):13349–13354. [PubMed] [Google Scholar]
  19. Pillai S., Baltimore D. Myristoylation and the post-translational acquisition of hydrophobicity by the membrane immunoglobulin heavy-chain polypeptide in B lymphocytes. Proc Natl Acad Sci U S A. 1987 Nov;84(21):7654–7658. doi: 10.1073/pnas.84.21.7654. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Plesofsky-Vig N., Brambl R. Gene sequence and analysis of hsp30, a small heat shock protein of Neurospora crassa which associates with mitochondria. J Biol Chem. 1990 Sep 15;265(26):15432–15440. [PubMed] [Google Scholar]
  21. Plesofsky-Vig N., Brambl R. Pantothenic acid and coenzyme A in cellular modification of proteins. Annu Rev Nutr. 1988;8:461–482. doi: 10.1146/annurev.nu.08.070188.002333. [DOI] [PubMed] [Google Scholar]
  22. Plesofsky-Vig N., Brambl R. Three subunit proteins of membrane enzymes in mitochondria of Neurospora crassa contain a pantothenate derivative. J Biol Chem. 1984 Sep 10;259(17):10660–10663. [PubMed] [Google Scholar]
  23. Runswick M. J., Fearnley I. M., Skehel J. M., Walker J. E. Presence of an acyl carrier protein in NADH:ubiquinone oxidoreductase from bovine heart mitochondria. FEBS Lett. 1991 Jul 29;286(1-2):121–124. doi: 10.1016/0014-5793(91)80955-3. [DOI] [PubMed] [Google Scholar]
  24. Sackmann U., Zensen R., Röhlen D., Jahnke U., Weiss H. The acyl-carrier protein in Neurospora crassa mitochondria is a subunit of NADH:ubiquinone reductase (complex I). Eur J Biochem. 1991 Sep 1;200(2):463–469. doi: 10.1111/j.1432-1033.1991.tb16205.x. [DOI] [PubMed] [Google Scholar]
  25. Stevenson F. T., Bursten S. L., Fanton C., Locksley R. M., Lovett D. H. The 31-kDa precursor of interleukin 1 alpha is myristoylated on specific lysines within the 16-kDa N-terminal propiece. Proc Natl Acad Sci U S A. 1993 Aug 1;90(15):7245–7249. doi: 10.1073/pnas.90.15.7245. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Stevenson F. T., Bursten S. L., Locksley R. M., Lovett D. H. Myristyl acylation of the tumor necrosis factor alpha precursor on specific lysine residues. J Exp Med. 1992 Oct 1;176(4):1053–1062. doi: 10.1084/jem.176.4.1053. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Stucki J. W., Lehmann L. H., Siegel E. Acylation of proteins by myristic acid in isolated mitochondria. J Biol Chem. 1989 Apr 15;264(11):6376–6380. [PubMed] [Google Scholar]
  28. Towler D. A., Adams S. P., Eubanks S. R., Towery D. S., Jackson-Machelski E., Glaser L., Gordon J. I. Purification and characterization of yeast myristoyl CoA:protein N-myristoyltransferase. Proc Natl Acad Sci U S A. 1987 May;84(9):2708–2712. doi: 10.1073/pnas.84.9.2708. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Towler D. A., Gordon J. I., Adams S. P., Glaser L. The biology and enzymology of eukaryotic protein acylation. Annu Rev Biochem. 1988;57:69–99. doi: 10.1146/annurev.bi.57.070188.000441. [DOI] [PubMed] [Google Scholar]
  30. Tzagoloff A., Myers A. M. Genetics of mitochondrial biogenesis. Annu Rev Biochem. 1986;55:249–285. doi: 10.1146/annurev.bi.55.070186.001341. [DOI] [PubMed] [Google Scholar]
  31. Vijayasarathy C., Bhat N. R., Avadhani N. G. Intramitochondrial fatty acylation of a cytoplasmic imported protein in animal cells. J Biol Chem. 1989 May 15;264(14):7772–7775. [PubMed] [Google Scholar]
  32. Wenzler H., Brambl R. Mitochondrial biogenesis during fungal spore germination. Catalytic activity, composition, and subunit biosynthesis of oligomycin-sensitive ATPase in Botryodiplodia. J Biol Chem. 1981 Jul 25;256(14):7166–7172. [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES