Skip to main content
Applications in Plant Sciences logoLink to Applications in Plant Sciences
. 2013 Jul 21;1(7):apps.1200539. doi: 10.3732/apps.1200539

Discovery of EST-derived microsatellite primers in the legume Lens culinaris (Fabaceae)1

Neelu Jain 2, H K Dikshit 2,3, D Singh 2, Akanksha Singh 2, Harish Kumar 2
PMCID: PMC4103130  PMID: 25202567

Abstract

Premise of the study: We developed microsatellite markers in the legume Lens culinaris from publicly available databases to enrich the limited marker resource available for the crop.

Methods and Results: Eighty-two primer sets were identified using expressed sequence sets of L. culinaris available in the National Center for Biotechnology Information (NCBI) database and were characterized in six species of Lens. Among them, 20 simple sequence repeat (SSR) primers produced no amplification product, 43 produced monomorphic products, and 19 were polymorphic. The primers amplified mono-, di-, tri-, tetra-, penta-, and hexanucleotide repeats with one to four alleles. These SSR loci successfully amplified in five related wild species, with a total of 61 primer pairs in L. nigricans and L. odemensis (98.39%), 59 in L. tomentosus (95.1%), and 60 in L. ervoides and L. orientalis (96.7%), respectively.

Conclusions: The microsatellite markers discovered in this study will be useful in genetic mapping, marker-assisted breeding, and characterization of germplasm.

Keywords: EST-SSRs, Fabaceae, Lens culinaris, microsatellites


Lentil (Lens culinaris Medik. subsp. culinaris) is a self-pollinated crop (2n = 2x = 14) belonging to the Vicieae tribe in the Fabaceae family. Lentil is a rich source of protein and micronutrients and is grown mainly in the Indian subcontinent, Middle East, North Africa, southern Europe, North and South America, Australia, and West Asia. Lentil has varied uses for consumption as a main dish, salads, or infant foods, and mixed with cereals to make bread and cakes. Although lentil is a highly nutritious food legume, its conservation and breeding potential is largely limited by a lack of molecular markers available for the crop.

Microsatellites are well-known genetic markers because of their codominant inheritance, polymorphism, and abundant coverage. They have become the markers of choice for many crops for studying genetic relatedness, diversity analysis, and constructing framework genetic maps. A limited number of microsatellite markers (approx. 100) have been published in L. culinaris to date. Hamwieh et al. (2005) developed 35 simple sequence repeat (SSR) markers, but these have reported no amplification or limited polymorphism, creating a major bottleneck to gene tagging and mapping studies in this crop. Kaur et al. (2011) developed 51 SSRs in L. culinaris, but these are less polymorphic and not sufficient to be used for genetic studies or for marker-assisted selection. An effective strategy for enrichment of microsatellite markers is the screening of expressed sequence tags, thereby reducing the time and cost for microsatellite development. The objective of this study was to develop new microsatellite markers using this strategy and characterize them in 18 L. culinaris accessions. The amplification success of these markers was also investigated in five wild Lens Mill. species (L. nigricans (M. Bieb.) Godron, L. odemensis Ladiz., L. tomentosus Ladiz., L. ervoides (Brign.) Grande, L. orientalis Popow) for potential genetic application or improvement of cultivated lentil (L. culinaris).

METHODS AND RESULTS

A total of 9513 L. culinaris expressed sequence tags (ESTs) were downloaded from the dbEST/GenBank database as of 15 January 2012 (http://www.ncbi.nlm.nih.gov). The ESTs were trimmed for poly(A) tails, and vector sequence contamination were removed using the SeqClean program (Masoudi-Nejad et al., 2006). The trimmed EST sequences were assembled into unigenes with the Cap3 program (Huang and Madan, 1999) to reduce redundancy. The unigenes containing 951 contigs and 3092 singletons produced a total of 251 putative SSRs using the software Troll (Martins et al., 2009). The fragments with inappropriate flanking sequences or with less than 500 bp were excluded and 82 SSRs were designed using Primer3 software (Rozen and Skaletsky, 2000).

The newly identified microsatellite markers were screened on 32 individuals representing six Lens species including 18 accessions from cultivated species and 14 wild accessions comprising five species. Voucher specimens were sourced from the International Center for Agricultural Research in the Dry Areas (ICARDA), Aleppo, Syria, and the lentil breeding program at the Indian Agricultural Research Institute (IARI), New Delhi, India (Appendix 1). The genomic DNA from each individual was isolated using the cetyltrimethylammonium bromide (CTAB) method as described by Murray and Thompson (1980). PCR mixtures of 20 μL consisted of 2.0 μL 10× buffer (100 mM Tris-HCl, 500 mM KCl, 15 mM MgCl2, 0.01% gelatin), 200 μM each dNTP, 0.5 μM each of forward and reverse primers, 1 U Taq DNA polymerase (PCR reagents and primers procured from Sigma-Aldrich, St. Louis, Missouri, USA), and ∼40 ng DNA and were performed in a Veriti Thermal Cycler (Applied Biosystems, Life Technologies, Singapore). The PCR protocol consisted of one denaturation cycle at 94°C for 4 min followed by 30 cycles of 94°C for 1 min, annealing at 59–62°C (depending upon the primer) for 30 s, extension at 72°C for 1 min, and a final extension at 72°C for 8 min. The amplification fragments were separated on 3% MetaPhor Agarose gels (Lonza, Rockland, Maine, USA) and visualized by ethidium bromide staining. The band size was obtained in comparison to a 100-bp DNA ladder (MBI, Fermentas, Vilnius, Lithuania). Among these 82 SSRs, 62 amplified successfully in most of the species, providing an amplification success rate of 75.6%, and 19 of them showed more than two clear scorable bands in the Lens species (Table 1). Primer sequences and related information for 43 monomorphic EST-SSR primers are available as Appendix 2. The conservation of SSRs across species has been validated by sequencing one amplicon from each species. The EST-SSR markers amplified one to four alleles among the six species. The expected heterozygosity was determined on the basis of the number of genotypes amplified per species and ranged from 0 to 0.875 (Table 2). The putative functions of SSR-associated unigenes were determined by using BLASTX (Altschul et al., 1997) against the nonredundant GenBank database.

Table 1.

Characteristics of the 19 polymorphic EST-SSRs identified in Lens culinaris.

No. EST-SSR locus GenBank EST no. (Probe DB_id) Primer sequences (5′–3′) Repeat motif Ta (°C) Allele size range (bp) Putative function (organism) BLASTX E-value
1 PLC5 GT626272 (16537804) F: CATTGCAGCTTATTCTCACAGC (CAATGG)5 60 320–360 Auxin-induced protein  5NG4-like (Glycine max) 2E-41
R: TGACCCATCCTCATCCTTAAAT
2 PLC10 GT62175 (16581945) F: TGCAACAAAGGACACTAGAGGTT (AT)6 59 279–328 Predicted aspartic proteinase  nepenthesin-1 like protein  (Glycine max) 1E-157
R: ATTTCTTTCTCCCTAACCAGCC
3 PLC16 GT627608 (16581946) F: CGTTTGATCTTCTAAGCCCCTA (T)10 59 255–270 Uncharacterized protein  (Glycine max) 2E-10
R: AAGGGAAAGGATGTTTGACTTG
4 PLC17 GT624932 (16581947) F: AAGCTGAAGGAAATCAAAGTGG (TCTTT)3 59 315–335 Peptidyl prolyl cis-trans  isomerase (Arabidopsis  thaliana) 1E-118
R: TCAACACACTCCATGTTTAGAGC
5 PLC21 GT626993 (16581949) F: AACTCGCATCCTCTTCACAACT (TTC)6 60 264–286 Glutathione peroxidase  (Medicago truncatula) 5E-112
R: GGACCTTTCCCTTGTAGTCACC
6 PLC22 GT626865 (16581950) F: TACACTGAAGGAGATGCACTGG (T)11 60 279–290 DNA-directed RNA polymerase  I, II, and III subunits  (Medicago truncatula) 1E-43
R: TAACAACAAAACACAGCTTCGC
7 PLC30 GT625366 (16581951) F: TTGGTCAGGTTCTCAATCCTCT (T)10 61 243–257 Uncharacterized protein  (Glycine max) 3E-39
R: ACGGATGAACGCTTGTAAAGAA
8 PLC35 GT619232 (16581952) F: TTGCTTCCTCCTCTTCTCACTC (T)10 60 260–277 GDP-l-galactose phosphorylase-1  like (Glycine max) 7E-141
R: AGCCTCAGTACCCTCCTCTTTT
9 PLC38 GT626497 (16581953) F: CCTGGAGAAGTCTGTGGAAGAT (TTTGT)3 59 309–334 LEA protein (Medicago  truncatula) 4E-65
R: AGCTCTAGCATTTTGCATGTGA
10 PLC39 GT624018 (16581954) F: CAGAGAAATCCCCTGCTGAG (AAG)5 62 158–178 5′-adenylylsulfate reductase  3 (Glycine max) 1E-177
R: CATGATTCCCATAGCCTTGC
11 PLC42 GT626865 (16581955) F: AACCAATCATGGCTTCTGCT (GA)8 60 183–210 BZIP transcription factor  ATB2 (Medicago truncatula) 6E-78
R: TTTCACCGTCTTTATGAACCA
12 PLC46 GT624901 (16581956) F: CAAACTGGAAGATGCTGCTG (CAATGG)3 61 192–220 Auxin-induced protein  5NG4-like (Medicago  truncatula) 2E-71
R: TGACCCATCCTCATCCTTAAA
13 PLC51 GT624642 (16581957) F: CCATGATGAGCCTTGAATGA (GAA)10 62 125–143 Peroxidase (Medicago  truncatula) 0.0
R: TCTTCAATCTCCAGGAACACTTT
14 PLC60 GT624076 (16581958) F: TGCTTGGACCCTAAATTTGC (TA)6 60 130–145 Cysteine proteinase inhibitor  (Medicago truncatula) 4E-131
R: AAGAAAAGGGCAACCACTGA
15 PLC63 GT619353 (16581959) F: TTGATGGCTATGGGAGTGGT (TTA)8 60 175–189 Early nodulin-like protein  (Medicago truncatula) 1E-51
R: TGGTCCCAACAAAATACCAA
16 PLC70 GT618700 (16581960) F: CATCTCTTCGTGGCGTAAT (GTT)9 60 179–195 Albumin-2 (Pisum sativum) 6E-159
R: AGCAAACAACAGCACACATA
17 PLC74 GT624794 (16581961) F: GATTTACCGATGGATCTTCA (TTA)6 61 168–191 Xylose isomerase  (Medicago truncatula) 5E-68
R: CTAAGGGAGAGAAAGAAAAGG
18 PLC81 GT621832 (16581962) F: GGGTAGAGTATTATTGAAGGTGG (TA)6 61 182–209 Chromo-domain–containing  protein LHP1 (Medicago  truncatula) 8E-34
R: AGAATCGCTAGTTTAGAGCAAG
19 PLC82 GT621329 (16581963) F: CACCAATCTTCACTTCACTTTC (GAA)4 60 178–200 Legumin protein (garden pea) 5E-121
R: CAAGTACAAGGACTGACTAGGG

Note: Ta = annealing temperature.

Table 2.

Total number of alleles (A) and expected heterozygosity (He) of EST-SSRs in six Lens species.

EST-SSR locus L. culinaris Medik. (n = 18) L. nigricans (M. Bieb.) Godron (n = 3) L. odemensis Ladiz. (n = 3) L. tomentus Ladiz. (n = 2) L. ervoides (Brign.) Grande (n = 4) L. orientalis Popow (n = 2)
A He A He A He A He A He A He
PLC5 3 0.494 2 0.444 1 0.000 2 0.500 2 0.688 2 0.500
PLC10 3 0.586 2 0.444 2 0.444 1 0.000 2 0.375 1 0.000
PLC16 4 0.799 2 0.444 1 0.000 2 0.500 2 0.500 1 0.000
PLC17 2 0.198 2 0.444 2 0.444 1 0.000 2 0.375 2 0.500
PLC21 4 0.722 1 0.000 2 0.444 1 0.000 2 0.375 1 0.000
PLC22 3 0.667 2 0.444 2 0.444 2 0.500 3 0.625 2 0.500
PLC30 3 0.648 2 0.444 1 0.000 1 0.000 2 0.500 1 0.000
PLC35 4 0.667 2 0.444 1 0.000 2 0.500 2 0.375 2 0.500
PLC38 4 0.722 2 0.444 2 0.444 1 0.000 2 0.375 2 0.500
PLC39 3 0.537 2 0.444 3 0.667 1 0.500 2 0.500 2 0.500
PLC42 3 0.648 2 0.444 1 0.000 1 0.000 2 0.375 2 0.500
PLC46 3 0.046 3 0.667 4 0.222 2 0.500 3 0.438 1 0.000
PLC51 3 0.278 2 0.444 3 0.667 2 0.500 2 0.375 2 0.500
PLC60 4 0.747 2 0.444 2 0.444 1 0.000 2 0.625 1 0.000
PLC63 4 0.623 3 0.667 1 0.000 2 0.500 3 0.375 1 0.000
PLC70 2 0.444 1 0.000 2 0.875 1 0.000
PLC74 4 0.747 3 0.667 1 0.000 2 0.500 3 0.625 2 0.500
PLC81 4 0.386 2 0.778 3 0.667 1 0.000 1 0.000 1 0.000
PLC82 4 0.574 2 0.444 2 0.444 1 0.000 3 0.625 1 0.000

Note: — = no amplification; n = number of accessions used for each species.

CONCLUSIONS

The EST-SSR markers identified and characterized in this study have enriched the limited microsatellite marker resources in Lens species. The markers developed will be helpful in saturating Lens genetic maps and for tagging and mapping of genes and quantitative trait loci associated with important traits to be further used in marker-assisted breeding for enhancing productivity and quality. These markers would also be helpful in studying genetic diversity and detecting interspecies polymorphisms for marker-based introgression of genes from related species.

Appendix 1.

Voucher information for Lens species used for the EST-SSR polymorphism study.

Species Country of origin/source Voucher accession no. Specimens collected/maintained
Lens culinaris Medik. Turkey IG-70208, IG-70211, IG-112, IG-115, IG-12 ICARDA, Aleppo, Syria
Ethiopia IG-208, IG-69502, IG-69513, IG-69517, IG-69522, IG-70174 ICARDA, Aleppo, Syria
India L4149, PL08, L9-12, L830, L4603 NBPGR and IARI, New Delhi, India
Syria FLIP2004-7L, ILL4605 ICARDA, Aleppo, Syria
L. nigricans (M. Bieb.) Godron Syria ILWL-111, ILWL-22, ILWL-445 ICARDA, Aleppo, Syria
L. odemensis Ladiz. Syria ILWL-254, ILWL-35, ILWL-153 ICARDA, Aleppo, Syria
L. tomentosus Ladiz. Syria ILWL-91, ILWL-93 ICARDA, Aleppo, Syria
L. ervoides (Brign.) Grande Syria ILWL-126, ILWL-206, ILWL-139, ILWL-393 ICARDA, Aleppo, Syria
L. orientalis Popow Syria ILWL-7, ILWL-81 ICARDA, Aleppo, Syria

Note: IARI = Indian Agricultural Research Institute; ICARDA = International Center for Agricultural Research in Dry Areas; NBPGR = National Bureau of Plant Genetic Resources.

Appendix 2.

Primer sequences and characteristics of the 43 monomorphic EST-SSR markers in Lens.a

No. EST-SSR locus Primer sequences (5′–3′) Repeat motif Ta (°C) Allele size (bp) Putative function (organism) BLASTX E-value
1 PLC2 F: TTGACTGTTCTGGCGTTTTCTA (T)19 56 330 Peptidyl-prolyl cis-trans isomerase  (Medicago truncatula) 5E-101
R: TGCACCATCTTTTGCCTACATA
2 PLC4 F: CCTATCGGGAAACTACATGGAA (GGCAGC)3 58 359 Calnexin-like protein (Zea mays) 1E-157
R: TCTGCATTGGTCTTCTTCTCAA
3 PLC6 F: ATCAAGTTAGGGACGATTGGAA (GTA)6 56 185 Hypothetical protein MTR_5g092090  (Medicago truncatula) 2E-65
R: TGGTTGTAGTCTTTTAGGGTTTGC
4 PLC7 F: GCTTTTATGATCTTCTCGTGGT (GAAT)4 56 184 Chitinase domain-containing protein  1-like (Glycine max) 6E-17
R: CGAGGATTACTTTTCAATGGTC
5 PLC8 F: CTCCTTCCATTTCTCTTTCTGC (TTC)6 58 158 Uncharacterized protein (Glycine max) 1E-108
R: TCCTGAACGACACCAACACTAC
6 PLC9 F: ATGTGGATACGTCAGAAACCCT (TATCTA)4 56 348 Glycinin subunit G7 (Glycine max) 8E-56
R: TCGAGAACTGGGAGAGTCAAAT
7 PLC11 F: GTTTGTTTGGTTTGACTGGGAT (TTA)6 58 185 Histone H1 (Pisum sativum) 1E-35
R: TTAGGAACGGTGTCGAGTACAA
8 PLC12 F: GGAAGCAAGATGGAAGAAGTTG (T)11 60 146 Heat-shock protein  (Medicago truncatula) 2E-49
R: GCGCCATTAGTGCAGAGTAAAT
9 PLC13 F: TCACCATTTTGGGTTATCTTCC (T)13 56 211 Hydrophobic protein LTI6B-like  (Cicer arietinum) 1E-17
R: AGCTTCACACTATCAATTCCACAC
10 PLC14 F: TCTGGAAGAGGGTTTGTACCAT (T)12 56 210 Uncharacterized protein  (Cicer arietinum) 1E-66
R: GCAGTTAGATCACAGCTACCAAAA
11 PLC15 F: CCAGTAAAAGAGCTTGCATTCC (A)10 58 345 Vicilin precursor (Vicia faba) 1E-179
R: AGAAAAGAGTTGCAGAGAAGCG
12 PLC18 F: GGACCATCAACTAGCACATGAC (GAA)6 56 382 Peroxidase (Medicago truncatula) 1E-91
R: TCACATCATCAACATGCTCAAC
13 PLC25 F: GTTGCAGAAAATGTAACTGCGT (A)12 56 396 Uncharacterized mRNA  (Glycine max) 8E-44
R: ACAATGAGAGGCCAGTGCTTA
14 PLC28 F: CAAGGTTGGAAAAGACAAGAGG (A)18 60 398 60S ribosomal protein L36  (Medicago truncatula) 2E-68
R: TTTGGAGCTAGACTTCGCATTT
15 PLC40 F: CAACTCGCATCCTCTTCACA (TTC)6 60 163 Glutathione peroxidase  (Medicago truncatula) 2E-108
R: CAAAGGGGTTGGAGTCGTAA
16 PLC41 F: TTTGTTGATGTTGTTGGCGT (T)12 60 164 Arabinogalactan peptide 16-like  (Cicer arietinum) 1E-12
R: CTCCTCCGCGTTCTACAAAC
17 PLC48 F: TGTGGTACATGCACACCAAAT (ACC)5 58 168 Proline-rich protein  (Medicago truncatula) 1E-27
R: GGTGGTAGCAGTGGTGGAGT
18 PLC49 F: TTGTTTTGAGAACCTTCCCC (T)28 58 200 Hypothetical protein  PRUPE_ppa010183mg (Prunus persica) 3E-35
R: TTTTGCAAGGGTATTTCTTTTTG
19 PLC50 F: CGATTGGTCTTATATGGTTCTG (ATGTA)4 60 172 Peptide transporter PTR3-A  (Medicago truncatula) 9E-41
R: AAGCTACCTGCATACTTGGTC
20 PLC52 F: CGTTTGATCTTCTAAGCCCC (T)10 58 198 Uncharacterized protein (Glycine max) 3E-10
R: TCGGCACATTGTTGAAAAGA
21 PLC53 F: TCGTGATAAAAACGGGGAAG (GAA)5 56 200 BRI1-KD interacting protein  (Medicago truncatula) 2E-94
R: TATCTTTGCCACTGCCTCCT
22 PLC54 F: GTAAACGAAGCTCAGAGCCG (GGA)5 56 200 Glycine-rich RNA-binding protein  (Medicago truncatula) 3E-48
R: CATATCCACGATCCCTGCTT
23 PLC55 F: AGACACCGGCATCAAATCAT (A)10 60 173 Acylamino-acid-releasing enzyme  (Medicago truncatula) 3E-111
R: CATATTCAAATATTCAGTGTCATGTTC
24 PLC57 F: GGAAGTGATTGTGGTTTTTAATCA (A)17 60 182 WD repeat-containing protein 26-like  (Glycine max) 8E-45
R: ATTGCTCATTCCCACCAAAG
25 PLC58 F: TGGAAGAAAGAGAAGGGCAA (T)12 60 138 Putative zinc finger protein  (Arabidopsis thaliana) 1E-102
R: CACAGCTACCAAAAATCAGTTCC
26 PLC59 F: TTGTTTAGCTGGTGTGGTTTTC (A)18 56 180 F-box protein SKP2B-like  (Glycine max) 1E-46
R: CTACAGCACGTTTGCAAGGA
27 PLC61 F: ACTAGGAAAGGAAAACGGCG (TC)26 56 145 No significant similarity
R: GAGTGACACGTGAATGGTGG
28 PLC62 F: GCAAAGAACAAGAATAACGTGG (AAAC)4 56 126 Beta-1,3-galactosyltransferase 2-like  isoform 1 (Glycine max) 1E-91
R: CAAACCGAAGAATAAGAGAGGG
29 PLC64 F: CAAACTCTTCACCGACACGC (TCTTC)5 60 181 Bcr-associated protein (BAP) putative  (Ricinus communis) 4E-83
R: AACGAGGGTTAGGATGAGAAGC
30 PLC65 F: TGTTGCAATGCTTTTAGCCT (A)11 56 165 40S ribosomal protein SA  (Medicago truncatula) 3E-110
R: CAGAAGCTTTTCGGTGTTCC
31 PLC66 F: ATTTGGAGCAAAGATGCAGG (A)10 56 200 d-tyrosyl-tRNATyr deacylase-like  (Glycine max) 1E-69
R: GGATCGACCTCCAATCAAGA
32 PLC67 F: GCATAATCAGTTTGTTTTTGCG (A)23 58 190 Cyclin-dependent kinases regulatory  subunit 1-like (Cicer arietinum) 3E-45
R: TTCTGCAAAAGCTTCTGGGT
33 PLC68 F: AAAAAGAGGCCATCATGTTCA (A)18 56 156 Ferritin (Pisum sativum) 1E-48
R: CAGCAGTGACGGCAATTTTA
34 PLC69 F: CGCTCTACCAACAGCATAA (CT)19 56 195 No significant similarity
R: GAGGTCTCTTTTGTTCTTCACT
34 PLC71 F: AGTGAGCAAGGAATAAAACG (AG)38 58 276 Legumin J acidic chain  (Pisum sativum) 0.0
R: GAGTAGCAAGGAAAGTGAAAAC
36 PLC72 F: TATGATGAAAGCCAGGACA (TAT)8 58 142 Aminocyclopropane-1-carboxylate  oxidase (Pisum sativum) 9E-180
R: GACTGCACAATCTTAAACACC
37 PLC73 F: GAAAGGAAAGGTTTTAGCTG (AG)13 60 198 40S ribosomal protein S18  (Medicago truncatula) 8E-91
R: CTTTGATTGAGGTAAGAGCA
38 PLC75 F: TCGTTCCATATCTGTGTTCA (AATC)3 56 195 Xylose isomerase  (Medicago truncatula) 5E-68
R: GTAGCGAGATTCATACCTATCC
39 PLC76 F: AGGAAGGTGGAGTTACGG (CT)52 56 160 Cyclin-like F-box  (Medicago truncatula) 6E-164
R: AAACCTAGAAGTAAAGGGGAAG
40 PLC77 F: GGAAAGAGCCAAGAAGTTG (CAATGG)5 56 230 Auxin-induced protein 5NG4-like  (Glycine max) 8E-70
R: ACCCATCCTCATCCTTAAAT
41 PLC78 F: CTATGACTGCTCAAACTCAAGA (GAT)6 56 150 Nascent polypeptide-associated complex  subunit alpha-like (Medicago truncatula) 1E-115
R: CCTTCTACATCATCATCTTCCT
42 PLC79 F: AATTTCTGGTGTTTCTGGTG (GAT)7 58 165 Translational elongation factor 1 subunit  beta (Pisum sativum) 2E-94
R: TCTTCTCTTCCTCAGTCTCTTC
43 PLC80 F: GCTAACAAACAACACCATGA (GAA)10 58 150 Peroxidase (Arabidopsis thaliana) 3E-176
R: GCATCTAAGTTCTTCAATCTCC

Note : T a = annealing temperature.

a

Only polymorphic primers were submitted to GenBank, therefore GenBank IDs for monomorphic markers are not available.

LITERATURE CITED

  1. Altschul S. F., Madden T. L., Schaffer A., Zhang J., Zhang Z., Miller W., Lipman D. J. 1997. Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Research 25: 3389–3402 [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Hamwieh A., Udupa S. M., Choumane W., Sarker A., Dreyer F., Jung C., Baum M. 2005. A genetic linkage map of Lens sp. based on microsatellite and AFLP markers and the localization of fusarium vascular wilt resistance. Theoretical and Applied Genetics 110: 669–677 [DOI] [PubMed] [Google Scholar]
  3. Huang X., Madan A. 1999. CAP3: A DNA sequence assembly program. Genome Research 9: 868–877 [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Kaur S., Cogan N. O., Pembleton L. W., Shinozuka M., Savin K. W., Materne M., Forster J. W. 2011. Transcriptome sequencing of lentil based on second-generation technology permits large-scale unigene assembly and SSR marker discovery. BMC Genomics 12: 265–276 [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Martins W. S., Lucas D. C. S., Neves K. F. S., Bertioli D. J. 2009. WebSat: A Web software for microsatellite marker development. Bioinformation 3: 282–283 [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Masoudi-Nejad A., Tonomura K., Kawashima S., Moriya Y., Suzuki M., Itoh M., Kanehisa M., et al. 2006. EGassembler: Online bioinformatics service for large-scale processing, clustering and assembling ESTs and genomic DNA fragments. Nucleic Acids Research 34(Supplement 2): W459–W462 [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Murray M. G., Thompson W. F. 1980. Rapid isolation of high molecular weight plant DNA. Nucleic Acids Research 8: 4321–4325 [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Rozen S., Skaletsky H. J. 2000. Primer3 on the WWW for general users and for biologist programmers. In S. Misener and S. A. Krawetz [eds.], Methods in molecular biology, vol. 132: Bioinformatics methods and protocols, 365–386. Humana Press, Totowa, New Jersey, USA. [DOI] [PubMed] [Google Scholar]

Articles from Applications in Plant Sciences are provided here courtesy of Wiley

RESOURCES