Abstract
We present a method for predicting protein folding class based on global protein chain description and a voting process. Selection of the best descriptors was achieved by a computer-simulated neural network trained on a data base consisting of 83 folding classes. Protein-chain descriptors include overall composition, transition, and distribution of amino acid attributes, such as relative hydrophobicity, predicted secondary structure, and predicted solvent exposure. Cross-validation testing was performed on 15 of the largest classes. The test shows that proteins were assigned to the correct class (correct positive prediction) with an average accuracy of 71.7%, whereas the inverse prediction of proteins as not belonging to a particular class (correct negative prediction) was 90-95% accurate. When tested on 254 structures used in this study, the top two predictions contained the correct class in 91% of the cases.
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Chothia C., Finkelstein A. V. The classification and origins of protein folding patterns. Annu Rev Biochem. 1990;59:1007–1039. doi: 10.1146/annurev.bi.59.070190.005043. [DOI] [PubMed] [Google Scholar]
- Chothia C. Proteins. One thousand families for the molecular biologist. Nature. 1992 Jun 18;357(6379):543–544. doi: 10.1038/357543a0. [DOI] [PubMed] [Google Scholar]
- Chou K. C., Zhang C. T. A correlation-coefficient method to predicting protein-structural classes from amino acid compositions. Eur J Biochem. 1992 Jul 15;207(2):429–423. doi: 10.1111/j.1432-1033.1992.tb17067.x. [DOI] [PubMed] [Google Scholar]
- Chou K. C., Zhang C. T. A new approach to predicting protein folding types. J Protein Chem. 1993 Apr;12(2):169–178. doi: 10.1007/BF01026038. [DOI] [PubMed] [Google Scholar]
- Dubchak I., Holbrook S. R., Kim S. H. Prediction of protein folding class from amino acid composition. Proteins. 1993 May;16(1):79–91. doi: 10.1002/prot.340160109. [DOI] [PubMed] [Google Scholar]
- Finkelstein A. V., Ptitsyn O. B. Why do globular proteins fit the limited set of folding patterns? Prog Biophys Mol Biol. 1987;50(3):171–190. doi: 10.1016/0079-6107(87)90013-7. [DOI] [PubMed] [Google Scholar]
- Holbrook S. R., Dubchak I., Kim S. H. PROBE: a computer program employing an integrated neural network approach to protein structure prediction. Biotechniques. 1993 Jun;14(6):984–989. [PubMed] [Google Scholar]
- Holbrook S. R., Muskal S. M., Kim S. H. Predicting surface exposure of amino acids from protein sequence. Protein Eng. 1990 Aug;3(8):659–665. doi: 10.1093/protein/3.8.659. [DOI] [PubMed] [Google Scholar]
- Holley L. H., Karplus M. Protein secondary structure prediction with a neural network. Proc Natl Acad Sci U S A. 1989 Jan;86(1):152–156. doi: 10.1073/pnas.86.1.152. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Klein P., Delisi C. Prediction of protein structural class from the amino acid sequence. Biopolymers. 1986 Sep;25(9):1659–1672. doi: 10.1002/bip.360250909. [DOI] [PubMed] [Google Scholar]
- Klein P. Prediction of protein structural class by discriminant analysis. Biochim Biophys Acta. 1986 Nov 21;874(2):205–215. doi: 10.1016/0167-4838(86)90119-6. [DOI] [PubMed] [Google Scholar]
- Kneller D. G., Cohen F. E., Langridge R. Improvements in protein secondary structure prediction by an enhanced neural network. J Mol Biol. 1990 Jul 5;214(1):171–182. doi: 10.1016/0022-2836(90)90154-E. [DOI] [PubMed] [Google Scholar]
- Levitt M., Chothia C. Structural patterns in globular proteins. Nature. 1976 Jun 17;261(5561):552–558. doi: 10.1038/261552a0. [DOI] [PubMed] [Google Scholar]
- Metfessel B. A., Saurugger P. N., Connelly D. P., Rich S. S. Cross-validation of protein structural class prediction using statistical clustering and neural networks. Protein Sci. 1993 Jul;2(7):1171–1182. doi: 10.1002/pro.5560020712. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Muskal S. M., Kim S. H. Predicting protein secondary structure content. A tandem neural network approach. J Mol Biol. 1992 Jun 5;225(3):713–727. doi: 10.1016/0022-2836(92)90396-2. [DOI] [PubMed] [Google Scholar]
- Nakashima H., Nishikawa K., Ooi T. The folding type of a protein is relevant to the amino acid composition. J Biochem. 1986 Jan;99(1):153–162. doi: 10.1093/oxfordjournals.jbchem.a135454. [DOI] [PubMed] [Google Scholar]
- Orengo C. A., Flores T. P., Taylor W. R., Thornton J. M. Identification and classification of protein fold families. Protein Eng. 1993 Jul;6(5):485–500. doi: 10.1093/protein/6.5.485. [DOI] [PubMed] [Google Scholar]
- Pascarella S., Argos P. A data bank merging related protein structures and sequences. Protein Eng. 1992 Mar;5(2):121–137. doi: 10.1093/protein/5.2.121. [DOI] [PubMed] [Google Scholar]
- Qian N., Sejnowski T. J. Predicting the secondary structure of globular proteins using neural network models. J Mol Biol. 1988 Aug 20;202(4):865–884. doi: 10.1016/0022-2836(88)90564-5. [DOI] [PubMed] [Google Scholar]
- Richardson J. S. The anatomy and taxonomy of protein structure. Adv Protein Chem. 1981;34:167–339. doi: 10.1016/s0065-3233(08)60520-3. [DOI] [PubMed] [Google Scholar]
- Rost B., Sander C. Prediction of protein secondary structure at better than 70% accuracy. J Mol Biol. 1993 Jul 20;232(2):584–599. doi: 10.1006/jmbi.1993.1413. [DOI] [PubMed] [Google Scholar]
- White J. V., Stultz C. M., Smith T. F. Protein classification by stochastic modeling and optimal filtering of amino-acid sequences. Math Biosci. 1994 Jan;119(1):35–75. doi: 10.1016/0025-5564(94)90004-3. [DOI] [PubMed] [Google Scholar]
- Zhang C. T., Chou K. C. An optimization approach to predicting protein structural class from amino acid composition. Protein Sci. 1992 Mar;1(3):401–408. doi: 10.1002/pro.5560010312. [DOI] [PMC free article] [PubMed] [Google Scholar]