Skip to main content
Applications in Plant Sciences logoLink to Applications in Plant Sciences
. 2014 Feb 1;2(2):apps.1300061. doi: 10.3732/apps.1300061

New microsatellite markers for wild and commercial species of Passiflora (Passifloraceae) and cross-amplification1

Carlos B M Cerqueira-Silva 2,3, Elisa S L Santos 2,3, João G P Vieira 3, Gustavo M Mori 2, Onildo N Jesus 4, Ronan X Corrêa 5, Anete P Souza 2,6,7
PMCID: PMC4103603  PMID: 25202599

Abstract

Premise of the study: We developed the first microsatellites for Passiflora setacea and characterized new sets of markers for P. edulis and P. cincinnata, enabling further genetic diversity studies to support the conservation and breeding of passion fruit species.

Methods and Results: We developed 69 microsatellite markers and, in conjunction with assessments of cross-amplification using primers available from the literature, present 43 new polymorphic microsatellite loci for three species of Passiflora. The mean number of alleles per locus was 3.1, and the mean values of the expected and observed levels of heterozygosity were 0.406 and 0.322, respectively.

Conclusions: These microsatellite markers will be valuable tools for investigating the genetic diversity and population structure of wild and commercial species of passion fruit (Passiflora spp.) and may be useful for developing conservation and improvement strategies by contributing to the understanding of the mating system and hybridization within the genus.

Keywords: genetic diversity, genomic microsatellite-enriched library, molecular markers, Passiflora, simple sequence repeats, wild passion fruit


The genus Passiflora L. (Passifloraceae) comprises approximately 400 species, of which at least 30% are distributed within Brazilian forests (Cervi et al., 2010). Species such as P. edulis Sims are important because of the economic value of their fruit (Faleiro et al., 2005). Certain wild species, including P. setacea DC. and P. cincinnata Mast., are of interest because of their potential use in genetic breeding. However, the limited number of molecular genetic diversity studies of this genus (Faleiro et al., 2005; Cerqueira-Silva et al., 2012) attests to the need for and relevance of novel molecular tools for studies of its populations and mating system.

Although diversity studies of passion fruit began in the late 1990s, efforts to use microsatellites only began in 2005 (Oliveira et al., 2005; Pádua et al., 2005), and studies related to the development of microsatellites have been published for P. cincinnata (Cerqueira-Silva et al., 2012) and P. contracta Vitta (Cazé et al., 2012) only recently. The markers available are still insufficient for performing consistent genetic studies of most Passiflora species because the evaluated populations exhibit low variability and percentages of polymorphic loci (between 0% and 26%) (Pereira, 2010; Ortiz et al., 2012; Cerqueira-Silva et al., 2012). Thus, considering the difficulty in obtaining informative microsatellites for Passiflora and to enhance the genetic investigation of both wild and commercial populations, we isolated, characterized, and evaluated the cross-amplifications of microsatellites for P. edulis, P. setacea, and P. cincinnata.

METHODS AND RESULTS

Two microsatellite-enriched genomic libraries were developed using genotypes from the germplasm collection of P. edulis (Pe-UESB01) and P. setacea (Ps-UESB01) from the Universidade Estadual do Sudoeste da Bahia (UESB; Itapetinga, Bahia, Brazil). Genomic DNA was isolated from fresh leaves using the cetyltrimethylammonium bromide (CTAB) method, and libraries were constructed following Billote et al. (1999). DNA samples (5 μg) were digested with AfaI and ligated to the double-stranded adapters 5′-CTCTTGCTTACGCGTGGACTA-3′ and 5′-TAGTCCACGCGTAAGCAAGAGCACA-3′. Enrichment was performed using a hybridization-based capture with (GT)8 and (CT)8 biotin-linked probes and streptavidin-coated magnetic beads (Streptavidin Magnesphere Paramagnetic Particles; Promega Corporation, Madison, Wisconsin, USA). The selected fragments were cloned into a pGEM-T Easy Vector (Promega Corporation) and used to transform Escherichia coli xl1-blue competent cells (Stratagene, La Jolla, California, USA). The recombinant colonies were selected using blue/white screening. In total, 480 positive clones (192 for P. edulis and 288 for P. setacea) were randomly selected and double-sequenced using an ABI PRISM 377 automated DNA sequencer (Applied Biosystems, Foster City, California, USA). Every sequence was aligned and edited using SeqMan software (DNASTAR, Madison, Wisconsin, USA). We used the MICROSAT software developed by A. M. Risterucci at the Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD, France; unpublished) to identify and eliminate the adapters and restriction sites from the edited sequences.

Sequences containing microsatellites (134 for P. edulis and 114 for P. setacea) were identified using the SSR Identification Tool (SSRIT; Temnykh et al., 2001). Approximately 85% of the microsatellite motifs observed for both of the species were dinucleotides. We designed a total of 30 (P. edulis) and 75 (P. setacea) primer pairs using PrimerSelect (DNASTAR) and Primer3Plus (Untergasser et al., 2007). The 105 primer pairs exhibited the following characteristics: annealing temperatures ranging from 45°C to 65°C (with a maximum difference of 3°C between the forward and reverse primers), CG concentrations ranging from 40% to 70%, and amplified product sizes varying from 100 to 300 bp. We used 16 genotypes of passion fruit (eight for each species) for the amplification tests. PCRs were conducted using a final volume of 15 μL (containing 15 ng of template DNA) with the reagents and concentrations described by Cerqueira-Silva et al. (2012). Every marker was evaluated by PCR amplification as follows: 94°C for 5 min; 34 cycles of 94°C for 1 min, 60°C for 1 min, and 72°C for 1 min; and a final extension at 72°C for 10 min. The loci that showed unsatisfactory amplification with an annealing temperature of 60°C were subjected to two different touchdown PCR protocols (TD 65–55°C and TD 58–48°C) as follows: an initial denaturation (94°C for 5 min); 10 cycles of 94°C for 1 min and an annealing temperature decreasing by 1°C from 65–55°C or 58–48°C every cycle for 1 min; 14 cycles of 94°C for 1 min, 55°C or 48°C for 1 min, and 72°C for 1 min; and a final extension at 72°C for 10 min. For markers that showed inconsistent amplification after the touchdown protocols, we tested reactions with an annealing temperature gradient ranging from 65°C to 50°C. The products were visualized using vertical electrophoresis on 6% denaturing polyacrylamide gels run in 1× TBE and stained with silver nitrate. The product sizes were determined using a 10-bp DNA ladder (Invitrogen, Carlsbad, California, USA). In total, 17 and 52 markers generated consistent patterns of amplification that matched the expected sizes based on the sequenced fragments from P. edulis and P. setacea, respectively (Table 1). Cross-amplification assays were performed according to previously described protocols, with all 69 primer pairs showing a high percentage of amplification (88% [P. edulis], 70% [P. setacea], and 80% [P. cincinnata]) (Table 1). Cross-amplification assays were also performed with the 25 loci previously characterized for P. cincinnata (Cerqueira-Silva et al., 2012), presenting a percentage of amplification of 48% in P. edulis (mPc-UNICAMP02, -04, -06, -10, -11, -14, -15, -17, -18, -20, -21, and -24) and 28% in P. setacea (mPc-UNICAMP02, -04, -06, -10, -15, -19, and -20).

Table 1.

Characteristics of the 69 new microsatellite markers developed for passion fruit species (17 markers for Passiflora edulis and 52 markers for P. setacea) and cross-amplification assays.

Locus Primer sequences (5′–3′) Allele size (bp) Repeat motif PCR amplification conditionsa GenBank accession no. Cross-amplification
Pe Ps Pc
mPe-UNICAMP01 F: CCTGTCGGAAAGACTTCTGC 230–232 (AC)4 TD58 KF142650 232 232
R: GGATCGTTGTGGAGTGTGGT
mPe-UNICAMP02 F: TCGAGTGAGATTGGCAGTG 165–171 (GT)8 TD58 KF142651 161–163 163
R: TTGGCTTCGAGGAGAAGAA
mPe-UNICAMP03 F: ATAGGCATTTCACAACAGCAC 261 (AC)8 TD58 KF142652 261 261
R: AAGCATCCGTGAGACAGGT
mPe-UNICAMP04 F: GCTAACAAGCCCAAATCAAC 296 (CA)5 TD65 KF142653 296 296
R: CAGACCATGAGACGGCAGTA
mPe-UNICAMP05 F: CGGGGTTATGCAAGGTAACA 121 (TG)8 TD65 KF142654
R: ACTGGGTGGACTAGGAAACG
mPe-UNICAMP06 F: GTTCGAACCTTGGTTCTCTTG 292 (TG)4 TD65 KF142655 290–320
R: AATCCTCTCCCGGTATCCAC
mPe-UNICAMP07 F: GGAACCGTGTGATGGGATAC 255 (AG)8 TD65 KF142656 255 255
R: ACCGATTGACAGCTCTGCC
mPe-UNICAMP08 F: GCTGAGAACCCCGTGACTTA 196 (CA)4 TD65 KF142657 196 196
R: CGAGTATGGCACATCCCTG
mPe-UNICAMP09 F: TGCCTCTCGGATATTTACAGC 212 (AC)5 TD58 KF142658 212 248–261
R: CGCATGTCCCCATACGAC
mPe-UNICAMP10 F: GTCACTGCAGCCTGGTATAGTT 251 (CT)5 TD58 KF142659 251 251
R: GAACATATTCGGCAGATGGA
mPe-UNICAMP11 F: GCAGCAATCAATGCAATCAG 180 (CA)9(AT)5 TD58 KF142660 172 176
R: GCCATTCTCCTCTCACCGTA
mPe-UNICAMP12 F: CACACAAGGCGTTTCTTACG 214 (CA)7 TD65 KF142661
R: TGATATGAACGATACGGTAGGC
mPe-UNICAMP13 F: TTCGTGCATTGTTCATTACC 202 (TC)5 TD58 KF142662 202 166–168
R: GCCTTCTTTGTCATGTTGGA
mPe-UNICAMP14 F: GACTTCGTATGACGCCAGGT 263 (CA)8 TD65 KF142663 263 260
R: TGCAAGAATCCGAAGACTCA
mPe-UNICAMP15 F: CATTCCTCACCCTCACGAA 253 (AC)5 TD58 KF142664 253 253
R: TGGTTGTGTGGTTTGTGCTT
mPe-UNICAMP16 F: CGTGGGTGAGTGTGAATGAG 195 (AT)4(TG)11 TD65 KF142665
R: TGATGTGAGCATGGTTGGTT
mPe-UNICAMP17 F: GCCACGTGCAATGTCAGT 300 (AC)9 TD65 KF142666
R: CGTGCTGTGACCAAGGAG
mPs-UNICAMP01 F: TAGCTTAACACAATGCAACAGA 153–154 (TG)5(TG)5 TD58 KF171014 158–168 154
R: CAACGGAGAACGATGTCAG
mPs-UNICAMP02 F: TAGCTTAACACAATGCAACAGA 154–156 (TG)5(TG)5 TD58 KF171015 160–170 156
R: CAACGGAGAACGATGTCAG
mPs-UNICAMP03 F: GTAGCGTCTCGGCAGGTC 176–177 (CT)4 TD65 KF171016 176 176
R: ACTCTAAGTCGGCCACTCTTG
mPs-UNICAMP04 F: CAACAGGAGGTGAGGTGTGA 156–157 (TG)4 TD65 KF171017 156 156
R: GACAGTGCAACTTTAGGCGAC
mPs-UNICAMP05 F: TCGGTCTTCGTATTCAACTCTG 194–218 (CT)8 61.5°C KF171018 210–220 213–216
R: GAGGAACTGGCATCGCAT
mPs-UNICAMP06 F: GTTGGATCAAAGGGTCACA 218–224 (CGTG)3(ATGA)3 TD65 KF171019 194–224 215
R: CAACTACTGGATCGAACTGGTA
mPs-UNICAMP07 F: ACAGGGGTGAGGCACATTC 143–145 (CA)4 TD58 KF171020
R: TCTGTTATTATCATCGGCAGGA
mPs-UNICAMP08 F: AGTGCCAGTGGCTTCGTATT 207–211 (TGCAA)3 TD65 KF171021 174 176
R: GATCGTCATGGCTGTTGCTA
mPs-UNICAMP09 F: GGGCCGTTGTCAAAGTAGT 250–268 (AC)4 61.5°C KF171022 258–260 260
R: GAGGTTAAGGCAAGCACTG
mPs-UNICAMP10 F: ACTCTCACCTCAATCGACC 256–260 (AG)4(GT)5(GT)4 60°C KF171023 264–268 260–268
R: AATTGTTACTCCGTTTCTCTGA
mPs-UNICAMP11 F: CAGACGTTGTGTTTTGGTAAT 232–270 (CA)4(CA)4(AT)4 60°C KF171024 262
R: TCAGGTTAGGAAGCTGCATC
mPs-UNICAMP12 F: ACAGGGGTGAGGCACATACA 201–204 (CA)4 TD65 KF171025 208 208
R: GTAGTGCGTGGCTTGGGTAG
mPs-UNICAMP13 F: CCTATACCTGCCCAGTCAGC 146–148 (CA)4 TD65 KF171026 144
R: ACTTAAGCACCCCAATCGTT
mPs-UNICAMP14 F: CGTTCATAAGTGAATCAGTCAA 112–116 (CA)4 TD65 KF171027 114 114
R: GGATCGACAAACAAAGGTAGA
mPs-UNICAMP15 F: TATGGAGTTGCGAGGCTTTAG 145–148 (GT)4 60°C KF171028 143–145 146
R: CGGGCAACGAACACTTTATT
mPs-UNICAMP16 F: GAGAAAGCGAGTCAGCGAGA 157–165 (GAG)6(CAA)4 TD65 KF171029 163–167 159–170
R: GACTCCAATATCGGCACTTCA
mPs-UNICAMP17 F: CATCCAACCTCCGAACCTTA 142–148 (AC)5 60°C KF171030 147 146
R: TACCCAGTCCGGTCCATTAG
mPs-UNICAMP18 F: GGGGTTCTTCACTCATCCAC 262–278 (CA)10(AT)6 TD65 KF171031
R: TGACGACTAGGGGATTCAGG
mPs-UNICAMP19 F: CTGTGGCAAGTGGCTAACAA 290–294 (TG)4 60°C KF171032 290 290
R: CCACCCTACTCGACCAACTC
mPs-UNICAMP20 F: GCTGGCTCTAGCTCAACTCG 200 (CT)5 TD65 KF171033 200 200
R: GCCAGCATAGGATGTCAGGT
mPs-UNICAMP21 F: CCCAATCGCTGAGAGGAGT 228 (TG)4 TD58 KF171034
R: CGGTAGGCTCATTCGTGTCA
mPs-UNICAMP22 F: AGGCATGCCCATCAAATG 131 (GT)5(GT)4 TD58 KF171035
R: CACTAAAACCTGCAAAGCGAA
mPs-UNICAMP23 F: GAGCAGCTAAAAGAAACCTAC 298 (AC)5(CA)4 TD58 KF171036 298 298
R: TAGAGGTTGTGCTGGAGTC
mPs-UNICAMP24 F: GAGGTCCCACCAGTGTCAGT 254 (AG)4 TD58 KF171037 254 258–260
R: CTAGCGTCACCCTCCAGAAG
mPs-UNICAMP25 F: GTGTTTGTGGCGATGTGATTA 162 (AAG)5 TD58 KF171038 162 162
R: GACAAACGTTGTTTCCGCTC
mPs-UNICAMP26 F: TGTGGCATGTGTATGACTTGAT 166 (TG)4 TD58 KF171039 166 174
R: CATAGATATGGGATGAGCGACA
mPs-UNICAMP27 F: AGATGGAACAGGTGGGTGAG 151 (CCA)5 TD58 KF171040 151 151
R: TAGGCTTGTTCTGGCTCTGG
mPs-UNICAMP28 F: AATTGTCATCGGTAAACCTGC 274 (AC)6 TD58 KF171041 274 274
R: TGCCATTGCGAGTGAATAAG
mPs-UNICAMP29 F: GAGAAATCTCAGCACACGCA 204 (CA)5 TD58 KF171042
R: CGGTTCTTGGTTTTGTGGAT
mPs-UNICAMP30 F: CGGCTGAAGGAGGAGGTAG 118 (GT)6 TD58 KF171043
R: TGAAAAACAAGTCAGCCAACA
mPs-UNICAMP31 F: GGTGTGGTAGCCTGTTTGTC 211 (TG)4(GT)5 TD65 KF171044 215 215–219
R: CCGCATCTCTTACATCGTTA
mPs-UNICAMP32 F: CAGACGTTGCATCTTGGTAAT 172 (CA)4(AC)9(AT)6 TD65 KF171045 172 172
R: CATCGGAGGAGTTTTACACATT
mPs-UNICAMP33 F: GCAGCAATCAATGCAATCAG 184 (AT)4(CA)10(AT)6 TD65 KF171046 184 184
R: GCCATTCTCCTCTCACCGTA
mPs-UNICAMP34 F: GGCAGGATATGCTTTGGTT 162 (TC)10 TD65 KF171047 160 158–161
R: GCTGTCGGACACATGGAC
mPs-UNICAMP35 F: TCGAGAGTTGCGTGTGTTTC 183 (TG)4 TD65 KF171048 183 183
R: CATTCTCCTGCCACCTGAGT
mPs-UNICAMP36 F: GGGAGTCGGGTTGAGTTA 228 (TG)4(TG)7 TD65 KF171049 228 228
R: AGTCGAGGACCAGTCAAAG
mPs-UNICAMP37 F: TTGTTTGGGTTAGCGTGTGAG 172 (TG)6 TD65 KF171050 172 172
R: CCCTGCCACCTGAGTAATCA
mPs-UNICAMP38 F: CCTGACCTCTGGCACTACC 112 (TGC)6 TD65 KF171051 112 112
R: GAGGCGTATCAGGCTTTGA
mPs-UNICAMP39 F: GGAGGGTTGTTGTGTGAGTG 230 (GT)4 TD65 KF171052 230
R: CTCCTGTCGGAAAGACTTCTG
mPs-UNICAMP40 F: GAATCAATGGAACACAAGCA 224 (AC)5 TD65 KF171053 234 230
R: CCAGCCCACTAGACCACCT
mPs-UNICAMP41 F: CTTCAGTGCAGCCTTCCAT 168 (GT)4 60°C KF171054 168 170
R: ATACCGATACTCGCCTTGATAG
mPs-UNICAMP42 F: AGTGCCAGTGGCTTCGTATT 174 (TGCAA)3 61.5°C KF171055 174 174
R: GATCGTCATGGCTGTTGCTA
mPs-UNICAMP43 F: CTCAGTGAGGAATAAGCAATCA 192 (CA)4 61.5°C KF171056 198 198
R: ATTTGGCATGCTGTTACGC
mPs-UNICAMP44 F: AGTCGTGCTTGTGTTGTTGAG 275 (GATT)3 TD65 KF171057 280 275
R: CCACTGTTGAGGTCCAGATG
mPs-UNICAMP45 F: CCTATACCTGCCCCAGTCAG 110 (AT)4(CA)4 TD65 KF171058 110 110
R: GTATGTGTGTGCCGTGGATT
mPs-UNICAMP46 F: TGCGTGTTGTCCCACCAT 138 (CT)8 TD65 KF171059 138 138–139
R: GACTGAGCGGACTCACATCA
mPs-UNICAMP47 F: AAATTTCGGCATGGTTTATG 298 (AC)5(CA)4 60°C KF171060 294 298
R: CCGAGATCGTTGGAGCTTA
mPs-UNICAMP48 F: AGCTTACCGGCTCACTCTTG 144 (AC)6 60°C KF171061 143 142
R: GACAGGCTTGGAACTGGAAT
mPs-UNICAMP49 F: TGTATGAGTGAGAATGAGCCCA 118 (TA)4 TD65 KF171062 126 126
R: CAATCAACATGAGACAAGCGG
mPs-UNICAMP50 F: TTCTGCGAAACTGGTGAGTG 202 (TA)6 60°C KF171063 202 202
R: CGCCCGTATTTTGTCATGA
mPs-UNICAMP51 F: CTTGCACACTCACGGCTAAA 152 (GT)5 60°C KF171064 152 150–152
R: CAACCTACTGGATCGAACTGAA
mPs-UNICAMP52 F: GTCCGTTGAGAACCCCGTA 118 (AT)5 60°C KF171065 118

Note: — = unsuccessful amplification; Pc = Passiflora cincinnata; Pe = Passiflora edulis; Ps = Passiflora setacea.

a

TD65 and TD58 indicate touchdown PCR programs with temperatures ranging from 65°C to 55°C and 58°C to 48°C, respectively.

To characterize all the loci, we used genotypes from the germplasm collection of the Embrapa Mandioca Fruticultura Center (Empresa Brasileira de Pesquisa Agropecuária [EMBRAPA]), Cruz das Almas, Bahia, Brazil, and of the UESB, Itapetinga, Bahia, totaling 114 genotypes. For each species, 42, 42, and 30 genotypes from P. edulis (all from EMBRAPA), P. setacea (30 from EMBRAPA and 12 from UESB), and P. cincinnata (all from EMBRAPA), respectively, were used (Appendix S1 (130.5KB, doc) ). We performed a descriptive statistical analysis for all the polymorphic loci using GENEPOP software (Raymond and Rousset, 1995; Table 2). The polymorphism information content was calculated using PIC Calculator software (Kemp, 2002), and the probability of null alleles was estimated using MICRO-CHECKER software (van Oosterhout et al., 2004), with significant probabilities between two and six loci observed for the three species evaluated (Table 2).

Table 2.

Results of the initial screening of polymorphic microsatellite markers in populations of Passiflora edulis, P. setacea, and P. cincinnata.

P. edulis (N = 42) P. setacea (N = 42) P. cincinnata (N = 31)
Locus A Ho He PIC A Ho He PIC A Ho He PIC
mPe-UNICAMP01 2 0.051 0.047 0.476 1 1
mPe-UNICAMP02 4 0.651 0.515 0.404 2 0.261 0.497 0.371a 1
mPe-UNICAMP06 1 0 2 0.083 0.079 0.077
mPe-UNICAMP09 1 1 6 0.458 0.679 0.628a
mPe-UNICAMP13 1 1 3 0.055 0.205 0.191ab
mPs-UNICAMP01 5 0.578 0.723 0.642a 2 0.333 0.512 0.393a 1
mPs-UNICAMP02 5 0.631 0.768 0.704 2 0.333 0.511 0.389a 1
mPs-UNICAMP03 1 2 0.311 0.266 0.225 1
mPs-UNICAMP04 1 2 0.142 0.133 0.123 1
mPs-UNICAMP05 4 0.381 0.471 0.476b 4 0.261 0.593 0.468a, b 3 0.401 0.513 0.392
mPs-UNICAMP06 4 0.191 0.176 0.157 2 0.424 0.401 0.322 1
mPs-UNICAMP07 0 2 0.251 0.221 0.194 0
mPs-UNICAMP08 1 2 0.102 0.097 0.093 1
mPs-UNICAMP09 2 0.024 0.024 0.023 4 0.761 0.614 0.551 1
mPs-UNICAMP10 3 0.119 0.197 0.186a 3 0.357 0.583 0.493a,b 4 0.448 0.637 0.577a
mPs-UNICAMP11 1 3 0.166 0.157 0.149 0
mPs-UNICAMP12 1 2 0.208 0.187 0.371 1
mPs-UNICAMP13 1 2 0.282 0.456 0.351a 0
mPs-UNICAMP14 1 4 0.589 0.674 0.678b 1
mPs-UNICAMP15 2 0.024 0.024 0.023 3 0.101 0.531 0.411a,b 1
mPs-UNICAMP16 3 0.476 0.585 0.499 3 0.391 0.485 0.395 4 0.561 0.541 0.464
mPs-UNICAMP17 1 4 0.833 0.714 0.656b 1
mPs-UNICAMP18 0 4 0.524 0.454 0.412 0
mPs-UNICAMP19 1 2 0.189 0.173 0.566 1
mPs-UNICAMP24 1 1 2 0.125 0.187 0.169
mPs-UNICAMP31 1 1 3 0.217 0.326 0.282
mPs-UNICAMP34 0 1 5 0.401 0.671 0.592a,b
mPs-UNICAMP46 1 1 2 0.041 0.041 0.041
mPs-UNICAMP51 1 1 2 0.033 0.033 0.038
mPc-UNICAMP11c 4 0.237 0.447 0.424b 0 1
mPc-UNICAMP19c 0 4 0.418 0.411 0.367 1

Note: — = information not available; A = number of alleles per locus; He = expected heterozygosity; Ho = observed heterozygosity; PIC = polymorphism information content.

a

Markers with the probability of null allele occurrence after a Bonferroni correction.

b

Markers deviating from Hardy–Weinberg equilibrium after a Bonferroni correction (P < 0.004 [P. edulis and P. cincinnata]; P < 0.002 [P. setacea]).

c

Microsatellite markers published by Cerqueira-Silva et al. (2012).

The percentage of polymorphic microsatellites observed was 15% in P. edulis, 29% in P. setacea, and 20% in P. cincinnata, totaling 11, 21, and 11 polymorphic loci, respectively (Table 2). This low number of polymorphic loci was expected because low variability appears to be a characteristic of the genus Passiflora, as suggested by Cerqueira-Silva et al. (2012). The number of alleles per locus ranged from two to six, with a mean of 3.1 for the three species evaluated; overall, the observed heterozygosity was lower than expected heterozygosity. Of the 31 polymorphic microsatellites, only one (P. edulis), six (P. setacea), and two (P. cincinnata) showed significant deviation from Hardy–Weinberg equilibrium (HWE) after a Bonferroni correction. Deviations from HWE can be explained by linkage disequilibrium (LD) or the occurrence of null alleles. Among the 320 possible pairs of microsatellites, we observed significant LD for two pairs (in P. edulis; P < 0.004), 49 pairs (in P. setacea; P < 0.002), and one pair (in P. cincinnata; P < 0.004) after a Bonferroni correction. However, with no additional information, LD should not be attributed solely to physical linkages among loci because of the possibility of population processes such as nonrandom mating (Hedrick, 2005).

CONCLUSIONS

We present the first set of microsatellites developed for P. setacea and characterize new markers for P. edulis and P. cincinnata, thereby increasing the number of available markers for these species. This effort potentiates the use of microsatellites in genetic studies of wild and commercial populations of Passiflora species, enabling the development of more efficient conservation and genetic breeding strategies.

Supplementary Material

Supplementary Material

LITERATURE CITED

  1. Billote N., Lagoda P. J. L., Risterucci A. M., Baurens F. C. 1999. Microsatellite-enriched libraries: Applied methodology for the development of SSR markers in tropical crops. Fruits 54: 277–288 [Google Scholar]
  2. Cazé A. L. R., Kriedt R. A., Beheregaray L. B., Bonatto S. L., Freitas L. B. 2012. Isolation and characterization of microsatellite markers for Passiflora contracta. International Journal of Molecular Sciences 13: 11343–11348 [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Cerqueira-Silva C. B. M., Santos E. S. L., Souza A. M., Mori G. M., Oliveira E. J., Corrêa R. X., Souza A. P. 2012. Development and characterization of microsatellite markers for the wild South American Passiflora cincinnata (Passifloraceae). American Journal of Botany 99: e170–e172 [DOI] [PubMed] [Google Scholar]
  4. Cervi A. C., Milward-De-Azevedo M. A., Bernacci L. C. 2010. Passifloraceae. In Lista de Espécies da Flora do Brasil [online]. Jardim Botânico do Rio de Janeiro, Rio de Janeiro, Brazil. Website http://floradobrasil.jbrj.gov.br/jabot/floradobrasil/FB182 [accessed 19 January 2014].
  5. Faleiro F. G. F., Junqueira N. T. V., Braga M. F. 2005. Germoplasma e melhoramento genético do maracujazeiro: Desafios da pesquisa, 55–78. In F. G. Faleiro, N. T. V. Junqueira, and M. F. Braga [eds.], Maracujá: Germoplasma e melhoramento genético. Embrapa Cerrados, Planaltina, Brazil. [Google Scholar]
  6. Hedrick P. W. 2005. Genetics of populations, 3rd ed. Jones Bartlett Publishers, Boston, Massachusetts, USA [Google Scholar]
  7. Kemp S. 2002. PIC Calculator Extra. Website http://www.genomics.liv.ac.uk/animal/pic.html [accessed 25 April 2012].
  8. Oliveira E. J., Padua J. G., Zucchi M. I., Camargo L. E. A., Fungaro M. H. P., Vieira M. L. C. 2005. Development and characterization of microsatellite markers from the yellow passion fruit (Passiflora edulis f. flavicarpa). Molecular Ecology Notes 5: 331–333 [Google Scholar]
  9. Ortiz D. C., Bohórquez A., Duque M. C., Tohme J., Cuéllar D., Vásquez T. M. 2012. Evaluating purple passion fruit (Passiflora edulis Sims f. edulis) genetic variability in individuals from commercial plantations in Colombia. Genetic Resources and Crop Evolution 59: 1089–1099 [Google Scholar]
  10. Pádua J. G., Oliveira E. J., Zucchi M. I., Oliveira G. C. X., Camargo L. E. A., Vieira M. L. C. 2005. Isolation and characterization of microsatellite markers from the sweet passion fruit (Passiflora alata Curtis Passifloraceae). Molecular Ecology Notes 5: 863–865 [Google Scholar]
  11. Pereira G. S.2010. Desenvolvimento de Marcadores SSR, M-AFLP e SNP visando à integração de mapas genético-moleculares de Passiflora alata Curtis. M.Sc. dissertation, Universidade Estadual de São Paulo, Escola Superior de Agricultura ‘Luiz de Queiroz’, Piracicaba, São Paulo, Brazil.
  12. Raymond M., Rousset F. 1995. GENEPOP (version 1.2): Population genetics software for exact tests and ecumenicism. Heredity 86: 248–249 [Google Scholar]
  13. Temnykh S., Clerck G., Lukashova A., Lipovich L., Cartinhour S., McCouch S. 2001. Computational and experimental analysis of microsatellites in rice (Oryza sativa L.): Frequency, length variation, transposon associations, and genetic marker potential. Genome Research 11: 1441–1452 [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Untergasser A., Nijveen H., Rao X., Bisseling T., Geurts R., Leunissen J. A. M. 2007. Primer3Plus, an enhanced web interface to Primer3. Nucleic Acids Research 35 (Supplement 2): W71–W74 [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. van Oosterhout C. V., Hutchinson W. F., Wills D. P. M., Shipley P. 2004. MICRO-CHECKER: Software for identifying and correcting genotyping errors in microsatellite data. Molecular Ecology Notes 4: 535–538 [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Supplementary Material

Articles from Applications in Plant Sciences are provided here courtesy of Wiley

RESOURCES