Skip to main content
Applications in Plant Sciences logoLink to Applications in Plant Sciences
. 2013 Apr 30;1(5):apps.1200499. doi: 10.3732/apps.1200499

Development and characterization of microsatellite markers for Central American Begonia sect. Gireoudia (Begoniaceae)1

Alex D Twyford 2,3,5, Richard A Ennos 4, Catherine A Kidner 2,3
PMCID: PMC4105041  PMID: 25202548

Abstract

Premise of the study: Transcriptome sequence data were used to design microsatellite primers for two widespread Central American Begonia species, B. heracleifolia and B. nelumbiifolia, to investigate population structure and hybridization.

Methods and Results: The transcriptome from vegetative meristem tissue from the related B. plebeja was mined for microsatellite loci, and 31 primer pairs amplified in the target species. Fifteen primer pairs were combined in two multiplex PCR reactions, which amplified an average of four alleles per locus.

Conclusions: The markers developed will be a valuable genetic resource for medium-throughput genotyping of Central American species of Begonia sect. Gireoudia. A subset of these markers have perfect sequence matches to Asian B. venusta, and are promising for studies in other Begonia sections.

Keywords: Begonia heracleifolia, Begonia nelumbiifolia, Begoniaceae, hybridization, microsatellite primers, transcriptome sequences


Begonia L. is a diverse tropical genus with over 1500 species. Evolutionary research has focused on the early-diverging African species (e.g., Hughes and Hollingsworth, 2008) and the more derived Asian species (e.g., Thomas et al., 2011), with the American species largely overlooked. The most recent common ancestor of Central American Begonia is likely to be relatively recent (Miocene; Dewitte et al., 2011), and subsequent speciation has resulted in high species richness (total c. 690 species; Goodall-Copestake et al., 2010). Population studies of Central American Begonia species will shed light on the evolution of species richness in a morphologically diverse group of neotropical herbs; but to date, studies have been limited by the availability of suitable nuclear markers to complement plastid microsatellite markers (Twyford et al., 2013).

In this study, we describe the development of nuclear microsatellite markers to study gene flow within and between Central American Begonia species. This requires markers that amplify over a broad phylogenetic scope, which can then be cross-amplified in divergent species.

METHODS AND RESULTS

Microsatellite markers were designed from the transcriptome sequence of vegetative meristem tissue from B. plebeja Liebm., a related species from Begonia sect. Gireoudia (European Nucleotide Archive Sequence Read Archive accession number: ERP001195; Brennan et al., 2012). The QDD bioinformatic pipeline (Meglécz et al., 2010), which integrates microsatellite detection, a redundancy check to avoid amplifying multiple PCR products, and designs primers, was used according to Lepais and Bacles (2011). A FASTA file of the B. plebeja transcriptome sequence assembly was analyzed in QDD version 1.3 using default parameters: selecting only primers that amplify a PCR product between 90 and 320 bp in length, with a repeat motif of 2–6 bp repeats, and a minimum length of four repeat units. To make microsatellite amplification in other species more likely, primers were excluded if they did not have a perfect BLAST match to the transcriptome of B. conchifolia A. Dietr. (sect. Gireoudia; Brennan et al., 2012). Reads from which the primers were designed were BLAST searched against the Arabidopsis Information Resource (TAIR) database (http://www.arabidopsis.org) to investigate the putative function of each locus.

Thirty-one primer pairs detected in QDD were tested for amplification in B. heracleifolia Cham. & Schltdl. and B. nelumbiifolia Cham. & Schltdl. These species were chosen because they are two of the most widespread Begonia species in a genus of mostly rare endemics (Hughes and Hollingsworth, 2008). The species are known to hybridize (Burt-Utley, 1985), facilitating studies of species boundaries. Primer amplification was tested in seven individuals of the two species (Appendix 1). A subset of polymorphic markers that amplified reliably in both species was then tested for multiplex compatibility by mixing equimolar ratios of each primer. The PCR multiplexes were then tested on a population of each species (20 individuals) to estimate the genetic diversity of the markers. The primer sequences were BLAST searched against the transcriptome sequence of the divergent Asian species B. venusta King (sect. Platycentrum) to test for likely cross-amplification of primers in other Begonia species.

Approximately 15 mg of silica-dried leaf material was extracted using DNeasy 96-sample kit (QIAGEN, Germantown, Maryland, USA). To overcome an unknown PCR inhibitor that coelutes with DNA extractions in Begonia, extractions were diluted 100-fold with Millipore dH2O to a final DNA concentration of ∼0.1–1.5 μg/mL. PCR reactions were performed using the M13-tailed primer method (Schuelke, 2000) in a final reaction volume of 10 μL containing: 0.5 μL of 1 mM M13-tailed forward primer (Invitrogen, Grand Island, New York, USA), 1 μL reverse primer (1 mM), 1 μL of 1 mM M13 fluorescently modified primer (6-FAM,VIC, NED, PET), 0.25 μL bovine serum albumin (BSA, 0.4%), 1 μL of 10× reaction buffer, 1 μL of 2 mM dNTPs, 0.6 μL of 25 mM MgCl2, 0.05 μL BIOTAQ polymerase (Bioline, London, United Kingdom), 1 μL dilute DNA template, and made up to the final volume using dH2O. PCR cycles consisted of an initial denaturation of 1 min at 95°C, followed by 40 cycles of denaturation for 1 min at 95°C, annealing for 1 min at 57°C, and extension for 1 min at 72°C. Five microliters of each PCR product labeled with the four fluorescent dye colors was pooled and diluted 2× in Millipore dH2O, and the GeneScan 500 LIZ internal size standard (Applied Biosystems, Foster City, California, USA) was added prior to fragment analysis on the ABI 3730xl analyzer (Applied Biosystems; analysis was performed at GenePool, University of Edinburgh, Edinburgh, United Kingdom). Fluorescent traces were analyzed automatically with manual editing using GeneMapper version 4.0 (Applied Biosystems).

A total of 136 primer pairs were located in the B. plebeja transcriptome using the QDD bioinformatic pipeline (Appendix 2). All 31 of the subset of primers tested for amplification yielded a PCR product (Table 1). Sixteen loci had a significant (<E-5) BLAST match in the TAIR database (Table 1). Of these loci, four loci were monomorphic (BI6701, BC402, BI6294, and BI7247) and one amplified multiple PCR products (BI3377). Two PCR multiplex reactions were designed to amplify a total of 15 polymorphic loci (Table 1). All loci were polymorphic in at least one of the populations tested, and showed moderate genetic diversity, with the number of alleles per species ranging from one to five and the expected within-population heterozygosity between 0 and 0.75 (Table 2). Twenty-one of the 62 primers (34%) had perfect BLAST matches in the transcriptome of the divergent B. venusta, including both the forward and reverse primers for loci BI3348, BC932, and BC552.

Table 1.

Characterization of nuclear microsatellites for Central American Begonia species.

A
Locus Primer sequences (5′–3′)a Multiplexb Fluorescent dye Tm (°C) Repeat motifc her nel Allele sizes (bp)d Putative functione E-value
Multiplexed loci
BI4329 F: M13-CAACCAACAATGGCAGCTT 1 FAM 59 (GGA)6 4 2 89–104 immunoglobulin E-set superfamily protein 2E-13
R: CATGGAGATAATGGAGCTGG
BI3043 F: M13-CGACATCCAACCAAACCTG 1 FAM 60 (TC)5 1 2 173–179
R: TTGATAGATGGAAGGGTCGC
BC432 F: M13-AAACTCCGATGGATTCAGCA 1 FAM 60 (TG)5 1 1 261–263 endotrans glucosylase/hydrolase 5E-18
R: TGAAATAAACACACAAACAAAGACA
BC344 F: M13-GAGGGAGGGTCCCTTGTTAG 1 VIC 60 (GCA)5 1 1 105–108 chitinase-like protein 3E-07
R: CCGTCTTACGTTGCATCATC
BI6278 F: M13-TGTAGTTGTTGTAGTAGCAGAACTTTG 1 VIC 59 (TCC)7 1 3 238–253 DOF zinc finger protein 3E-25
R: CAGATGGGTCGGAGATTTTG
BI5347 F: M13-TCAGTCCATTTTCTTAATCAGACC 1 VIC 59 (CTT)6 2 1 171–183 unknown gene 0.000002
R: CTCTATCATTTCCAAGCGATTTC
BC552 F: M13-TGTCTGAGATGGAAACTGCG 1 NED 60 (GT)5 2 2 271–273
R: TAGTCGAAGGGATCCGAATG
BI3348 F: M13-ACTTGTTTCTCGTTGGGAGC 1 PET 60 (CT)6 3 3 279–283
R: CTGCAGCCCAGTGGATTTAC
BI06534 F: M13-CGTTGCTCTGCTCTAACCCT 1 PET 59 (TC)6 6 2 97–107 sterol 4-alpha-methyl-oxidase 2-1 7E-57
R: AGATACAGCCAACCGGATTC
BI7112 F: M13-ATCCAATGTCAACCTCTCGG 2 FAM 60 (TCC)6 2 2 109–115
R: GTGCATTAGAGTCCCGTGGT
BI3820 F: M13-AGGACCAGTTTTGACGGCTA 2 FAM 59 (CTT)7 5 2 158–176 LOB domain-containing protein 2E-39
R: GAAGCTTTTGCTCTTCTGTTGA
BI134 F: M13-ATCAGCTCACTCCCTATCCTCT 2 VIC 60 (CT)6 4 2 306–314
R: TGCAATCTCCTTCGGTTCTT
BI362 F: M13-CTTCACCTCGCCTGAACAAC 2 NED 60 (ATG)6 4 4 147–159 Acyl-CoA N-acyltransferases (NAT) superfamily protein 1.00E-45
R: GAGGCGAAATATTATGCGGA
BC332 F: M13-GAACCAGAAGTCAAGGGTTCA 2 PET 59 (TCA)5 4 2 188–200 ATPase 1.00E-122
R: AAACATGATTTTCCTCATCCAA
Additional loci tested
BC672 F: M13-CCTTGATCGAGAAAGAACCG 60 (CTT)8 3 1 152–158 cellulose-synthase-like C12 2E-57
R: AAAGCCAGCTCCTTCCTGTA
BI4477 F: M13-GGATCTCCTCTGCTTTGCTG 60 (CT)9 4 2 111–119
R: GGCGAGACCAGAAGAAAAGTT
BI06604 F: M13-ATTTTTCCACAGAAGAGCCC 59 (AT)8 6 1 111–127
R: GGCAGAACCCGCAGTATATC
BI6294 F: M13-TGCTGGTCTGAATCTTTAATCA 59 (AT)10 1M 1M 148 catalytic LigB subunit of aromatic ring-opening dioxygenase family 3E-13
R: TGGGGTCTTGGTACTCTTTCC
BI6701 F: M13-AGAATCCCCACTCACTGCAC 60 (GA)6 1M 1M 195
R: GAGATGATGAGGGTTCAGGC
BI05710 F: M13-GAAAGTTTTGGAGGAAGCCC 60 (GAA)7 3 1 178–184
R: TGGAAGAGATCAGAAGGTACA
BI4848 F: M13-CGACGCCTCTCAAAGAAGAA 59 (AG)6 4 2 71–74 arabinogalactan protein 6E-07
R: GAGCTTTGAATTTCGCTACG
BC402 F: M13-TTACTCGAGCTAGAAGCCGC 60 (AT)5 1M 1M 92 bifunctional inhibitor/lipid-transfer protein/seed storage 2S albumin superfamily protein 3E-09
R: AGGGCTTGGAGAGCTAGAGG
BC932 F: M13-GTAGTCCATCAGTCCGCCAT 60 (GA)5 2 1 660–662 cysteine proteinase superfamily protein 0.000001
R: GAGTGATGAAGGCGAAGAGG
BI3069 F: M13-AACCACAGTAATCATCCGGC 60 (CA)5 1 1 184–192
R: TGTCCGGTAACTGTGGTGAA
BI3377 F: M13-AACACAATCATCAGCCGGAC 60 (AGG)5 MP MP
R: GAAGGAGATGATTATGACGAA
BI5174 F: M13-GTCGCAGGGTTTGTCTAGGA 60 (CTT)5 1 1 118–121 stromal cell-derived factor 2-like protein precursor 8E-07
R: GGAAATCAGAGTGCTGGCTC
BC42 F: M13-GCTATGCAGGTTCTGGTGGT 59 (TGG)6 3 2 147–173
R: ACTGGTTGTCACTACTGCCG
BI6984 F: M13-GAAGGGGTTTCTTGGTCTCA 59 (TC)6 3 2 148–164
R: TTGTCAATTCTCACCAGACACA
BI7247 F: M13-CTCTTATTCCGCGTCAAAGC 60 (AG)6 1M 1M 135
R: AGCGGAGAAGTCGAAAACAG
BC312 F: M13-ATTTCCTTCTGCGAACGATG 60 (GA)5 2 1 178–180
R: ATCGGAACTCTGAGCCTGAA

Note: A = number of alleles per locus; her = B. heracleifolia; MP = multiple PCR products amplified; nel = B. nelumbiifolia; Tm = primer melting temperature when amplifi ed individually.

a

M13 sequence is: CACGACGTTGTAAAACGAC.

b

Multiplex to which the primer was assigned.

c

Repeat motif in B. plebeja.

d

The observed range of PCR product sizes excluding the M13 motif.

e

Putative function in Arabidopsis.

M

Monomorphic in all individuals tested.

Large product size assumed to be caused by an intron.

Table 2.

Genetic diversity in population samples of Begonia heracleifolia and B. nelumbiifolia.

B. heracleifolia B. nelumbiifolia
Locus A Ho He A Ho He At
BEI4329 3 0.400 0.524 3 0.500 0.537 5
BEI03043 4 0.000 0.444 3 0.500 0.630 4
BEC432 2 0.100 0.097 2 0.000 0.097 3
BEC344 1 2 0.000 0.097 2
BEI6278 1 3 0.353 0.668 4
BEI5347 3 0.300 0.449 1 4
BEC552 1 3 0.050 0.229 3
BEI3348 4 0.579 0.604 4 0.500 0.665 5
BEI06534 5 0.500 0.750 4 0.105 0.201 7
BEI7112 2 0.400 0.467 3 0.278 0.522 4
BEI3820 5 0.600 0.623 2 0.000 0.108 6
BEC134 4 0.611 0.732 3 0.050 0.145 5
BEI04004 2 0.059 0.059 3 0.188 0.623 4
BIC362 2 0.050 0.050 2 0.000 0.097 2
BEC332 4 0.250 0.483 3 0.154 0.495 5
Mean 3.333 0.321 0.440 2.857 0.191 0.365 4
SD 1.155 0.228 0.246 0.663 0.199 0.243 1.327

Note: A = number of alleles per locus; At = total alleles observed in the two species; He = expected heterozygosity; Ho = observed heterozygosity.

CONCLUSIONS

We have described the development of nuclear microsatellite primers that amplify in two divergent Central American Begonia species. Some of the primers have exact BLAST matches in the transcriptome of the Southeast Asian species B. venusta and, therefore, may be transferable more widely across the genus. The transferability of markers is important for the study of natural hybrids, and the development of a multiplexed assay of 15 loci should enable accurate assignment to hybrid classes (e.g., F1, backcross). Future studies will use these loci to estimate the genetic structure of populations, the frequency of hybrids, and the extent of introgression in hybrid swarms.

Appendix 1.

Information on Mexican Begonia voucher specimens deposited in the herbarium at the Royal Botanic Garden Edinburgh (E). Information presented: taxon, collection number, collection locality, GPS coordinates.

Begonia heracleifolia Cham. & Schltdl.: AT48, San Andrés Tuxtla, 18.47850, −95.17802; AT244, Agua Azul, 17.22117, −92.11073; AT375, Ocozocoautla, 16.90533, −93.45153; AT505, Berriozábal, 16.86693, −93.32781; AT819, Santa María Jacatepec, 17.85819, −96.21853; AT922, Motzorongo, 18.66953, −96.78714; AT1080, Santa María Xanabi, 15.98808, −96.11061.

Begonia nelumbiifolia Cham. & Schltdl.: AT28, Los Tuxtlas, 18.59026, −95.07876; AT125, San Andrés Tuxtla, 18.50660, −95.16607; AT619, Huatusco, 19.20367, −96.74256; AT683, Josaa, 16.01419, −96.11289; AT771, Los Cantiles, 17.74356, −96.32803; AT958, Motzorongo, 18.66953, −96.78714; AT1029, San Jeronimo Zoochina, 17.22117, −95.23547.

Appendix 2.

Microsatellite loci in the transcriptome of Begonia plebeja.

Locus Forward primer sequence (5′–3′) Reverse primer sequence (5′–3′) Repeat motif
BC134* ATCAGCTCACTCCCTATCCTCT TGCAATCTCCTTCGGTTCTT (CT)6
BC192 AAGTCAAACCTGTTGACCCG ATCCTCATCGGATTCGTCAT (GAT)9
BC232 TGGAAATGCTGTCGTTGAAT ATTGGAGAAAAGGCAAAGCA (TCT)8
BC312* ATTTCCTTCTGCGAACGATG ATCGGAACTCTGAGCCTGAA (GA)5
BC332* GAACCAGAAGTCAAGGGTTCA AAACATGATTTTCCTCATCCAA (TCA)5
BC344* GAGGGAGGGTCCCTTGTTAG CCGTCTTACGTTGCATCATC (GCA)5
BC362* CTTCACCTCGCCTGAACAAC GAGGCGAAATATTATGCGGA (ATG)6
BC42* GAAGGGGTTTCTTGGTCTCA TTGTCAATTCTCACCAGACACA (TGG)6
BC402* TTACTCGAGCTAGAAGCCGC AGGGCTTGGAGAGCTAGAGG (AT)5
BC432* AAACTCCGATGGATTCAGCA TTGAAATAAACACACAAACAAAGACA (TG)5
BC532 TCATTCCGCTTCTATGCTCC CGTCATCGTCAATATCATCCTC (TGA)6
BC552* TGTCTGAGATGGAAACTGCG TAGTCGAAGGGATCCGAATG (TG)5
BC602 GCAAAGCAGGTAACTTTTAGCC ACTCACCGAACTTTGGCAAC (CAG)5
BC632 CATAGCGCTCAGCTTGCTC GAGATCTTATACGAGCTACTGGATAGT (TC)9
BC643 GGAGGAGCTCGGTCATTAGA AACCACCGGTACCCTCATTT (CT)6
BC652 TTTCGTCCATGAAGAAAGGC TCCAGGGAACTCCATCACTC (GAA)5
BC672* CCTTGATCGAGAAAGAACCG AAAGCCAGCTCCTTCCTGTA (GAA)8
BC692 AACATGGCCGTCACTAGTCC CAGGCAGACAAAGAAGATTCC (AG)11
BC752 GGCAGATTTTACTGGGACGA CGCCCATCTATCTGTATCCAA (TTC)5
BC762 CAACTCTGCAAATGCAAGGA ACCCATGACAGCATGAACAA (CT)5
BC932* GTAGTCCATCAGTCCGCCAT GAGTGATGAAGGCGAAGAGG (GA)5
BI0537 CAGATCAACCCTCTTCCTGC ATCGAAAACCCATTGACTGC (CCT)6
BI1195 TGCTGCAGAAACTTTAGCCA CGGTGATTAAAGAAGAGCAAGAA (GA)11
BI1430 CACAATTCGTGAAAACACGG TTCTGCATGATGTTGGCTTT (GA)5
BI1733 GTTCACCACTCCAATGGCTT CGAGTTTGCCTTCGAATCTC (GCCACA)5
BI1816 GTTTTGCGGTTGAGTTTGGT CAAATGAATCTTCTTCATCCAGTG (GAT)7
BI1937 TCATCATCGCAGCAGAAGAC CGAAGCTGGGAGTGAGTTTC (GGA)6
BI1948 CAAAACTGGCTTTGCAGACA CACGGGCACTTTCAATTTCT (TA)5
BI2413 GAATGAAGAGCGAATCGACG CAGAGCTCCGGAATCTCATC (AGA)5
BI2675 TTCCATTTACTCTCAGCCGC CGTTCTCCTTCGAGGACTTG (GA)7
BI2875 CCCAATCTCCCTGTCTATCG AAGCTGACGAAGCTCTTCCA (TC)5
BI2935 TGGAAGAAGGTCTCCATATAAGTCA CATGTTTTCTTCGCCCATTC (CAC)9
BI2946 ATTTGAAGCCATTGGGTCTG AAGACGGGAAAGGGTGAGAG (TC)6
BI2961 TCGCAAAAGAAGAAATCACAAA TCCTCCGGCACAATAATCTC (GAA)6
BI2967 GGTGGCTTGTACGGTGAGAT TCGATTCTCAAATGCCTTCA (GAA)5
BI2994 GATTTCCGTGGAGGAAACAA AAACATCACCAGAGCACAACA (CT)5
BI3043* CGACATCCAACCAAACCTG TTGATAGATGGAAGGGTCGC (TC)5
BI3069* AACCACAGTAATCATCCGGC TGTCCGGTAACTGTGGTGAA (CA)5
BI3131 ACATTGTGTTCAATGGCGAA GAGCTCATGCAATGCTTCAA (GAA)6
BI3233 TATGAAGGACGTGGGAGGAG GGGAATCAGAAGCCAATCAA (GA)5
BI3234 AAACAAGGAACGCTCAATCC GCTCGAGTTGGCTTCATTTC (AG)5
BI3286 CCTATGATGATAGCGTCCGA AGGCCGACATTCTTTTCCTT (CT)10
BI3301 GCATGGAGATTGCCAGATTT CTATTGCTCAGCGGAGAAGG (GAA)5
BI3348* ACTTGTTTCTCGTTGGGAGC CTGCAGCCCAGTGGATTTAC (CT)6
BI3377* AACACAATCATCAGCCGGAC ACGAAGGAGATGATTATGACGAA (AGG)5
BI3384 ATAATTGGGCTAGGGTTCGG GCTTTTGGTTGCTTCAGAGG (TC)5
BI3403 TGTAGGAACAACGGTTAGCG CGTAGAGACGATTTCCTTAGCC (GAA)6
BI3519 TTCAGAGCGCTTTTGGTTTT ACGCACTATGCCGTTCTTCT (TA)6
BI3553 TCTGAAATAGCACCGCTTCC TTTCTTCGATGAACGCACTG (AAG)5
BI3600 CATTATTTCCTGTCGGGACG TGCTGAAAAGTTGCAGGAAA (TGTT)5
BI3727 CCTCCACCAGATTTGCTTAAA AACAGAAACATTTGCCGGTG (TC)12
BI3741 GCAACACAGCTCCTCTTCGT GGTCGGAATCGTCGAGTAAA (CT)7
BI3820* AGGACCAGTTTTGACGGCTA GAAGCTTTTGCTCTTCTGTTGA (CTT)7
BI3865 ACCTCACTCAACCGCCATAG TTCAGCATCTGTTGCAGGAC (CT)5
BI3970 TGTGTTCACTCAATTCTGCCA TCCTTCACCTGAGACGACAA (TC)5
BI4004* TCAGGAAATATTCGATTGGGA GCATTCCTCTGTGTACAATGC (AT)5
BI4013 AAGCCAAGATACCCCAAAGG CCGCTTGTCCTTTCTTCTTG (AG)5
BI4021 TGTGTTGCCCTGCAAGTAGA GGAAACCTTTCAGAGCTCCA (AG)5
BI4028 GTCTTCTCCCCATCGTTGAA GGGCTTTGGAAACATCTCCT (CT)15
BI4031 TCTTCGCTCTAAAGGCTTGC AAATTTCGCCAAACATGGAG (TC)5
BI4088 GGTTTCGAGATATGGCCTCA TTGGCAATTTATCCCTCCTC (GGC)5
BI4128 AAGACAACGCCATTCCAAAC AGGGACGACCGGAAGTAGAG (CT)5
BI4166 CGGGACAAATGTTAAGCGAT CAATAAAGAACTTCCGGCGA (TG)5
BI4175 GGCGATCAAAGGGTGATTTA CGATTAGCCTCTTCTCGACG (AG)5
BI4233 ATGCAGACGTAATCGAAGGC CAAGTTGGTTGGCAAAGACA (AG)12
BI4279 GGGAGGAAGAGGAAGAAGCA TCAGATTCAGCGTCATCAGAA (AGG)6
BI4329* CAACCAACAATGGCAGCTT TCATGGAGATAATGGAGCTGG (GGA)6
BI4360 CCGCAGATCCTCCATTAGAA TTATGTCCCAAACTCCGCTC (TGT)5
BI4477* GGATCTCCTCTGCTTTGCTG GGCGAGACCAGAAGAAAAGTT (CT)9
BI4594 CCAGAATCGTGGTCACTTCC CGTGAATCGAAACTTCTCCC (TC)9
BI4600 GCTATGGGAAGTTGCTTGGA AGCTCTTCCTCCCTTTCTGG (AGA)7
BI4641 GCCACAGTTTTAGCTGTGCTAT CTGCAACCACGAGGAGTTTA (CT)5
BI4721 ACTACCCTCCCAAGGCTGTT GGCCAGAAGTCAAACCTCAA (TC)8
BI4740 AGGCACCCTCCCAAAGTAAT GCCTGTATCTGAAATTGGCA (GA)7
BI4746 GTCGGAGTCAGCGAGGGA TGATCCTATGCACTCGTGGT (AG)5
BI4779 CGAAGGAGGAAGAGACGATG TGGCACTATAATTCCAAGCTCC (AACG)5
BI4793 CAGTCCCCGCACTAATCTTC GAAAGACCAGCTTCGTTTGC (GA)5
BI4804 TCGCTGATGATTTGTTTGGA AGAATGCCGACGAAATTGAG (TCT)10
BI4848* CGACGCCTCTCAAAGAAGAA GAGCTTTGAATTTCGCTACG (AG)6
BI4899 CCCATTTGCTTCCAAAACAT GAGTCGAGGAGCAGCACTCT (GAA)5
BI4987 AGTGAAAACCTTGGCACCAC ACCCTTTTCCTATTCCACGG (GAG)5
BI5091 TGCTTTCCAGGTTCATAGGG GGCAAGCTTGGAACTTTTGT (AGA)7
BI5107 CGCGTTTTACATGGCTGAAT CGATTGAAAACCTTGAAGATGA (AT)5
BI5115 AGACCGATGACCGAACAATC TCCGTCGTTTCTAACCGTTC (TC)5
BI5162 CTCTGAAACTCGCTCATCCC GCTCTTTCCGTCTCATTTGC (AGG)5
BI5174* GTCGCAGGGTTTGTCTAGGA GGAAATCAGAGTGCTGGCTC (CTT)5
BI5285 GGTCAAATGGGTAACATGCC CTGGTTCATCATCGCTGCTA (GGT)5
BI5317 GCCCTCAAGTTCCTCCATCT GGGACCGTCGATTATTCTCA (AT)5
BI5325 TTCCGGACTGAAAGAAATGG CGTGAGTGGAGTGGTGATTG (TC)5
BI5347* TCAGTCCATTTTCTTAATCAGACC CTCTATCATTTCCAAGCGATTTC (CTT)6
BI5377 ATCCTCTTCCTATCCACCGC GGGAGACGGTGAAACTCTGA (TC)5
BI5414 GCAAAGCAAAGCTGAAAACC GGCCCAGTCTACCTGCAATA (AT)5
BI5423 GCTTCCAATGATGCAAACCT GAGAAGCGCAGGAGAGCTTA (AG)5
BI5561 GTTGACTCGTCCTCGTCTCC GTCGTTTCTGCCGATTCTTC (CTT)5
BI5588 CAGCTGGTTGAGAAACGTGA AATCATATCGCCGATCAAGG (TC)5
BI5593 ACTCCAAATTAGGTGCGTGG AGATAACGAAGCAAAGCGGA (AG)9
BI5638 GCTTCTTCGTCCTCTTCTTCC TTACGGCTCCAGATTCTGCT (TCT)7
BI5668 TATGGGTCCGGATATGGAAA AGGAAGAGCTCGAAGAAGCC (GCG)5
BI5710* GAAAGTTTTGGAGGAAGCCC TGGAAGAGATCAGAAGGTACA (GAA)7
BI5800 CGCCTCCCATATCTCGTAAA GGAAGGTGATGGTTGTTGCT (TCT)5
BI5813 CGGTAGATTGAATGGGGAGA AGCATCGCCTCAAGTTGTCT (AG)5
BI6067 CAGCTTGGAAAATCAGACCC AGGGGCGTAAGCATAAAGGT (TA)5
BI6141 GTCGCCATGACGATAAGGTT TCTGACCCTGAAGATGGACC (AG)10
BI6227 GACGCGACGAAGATAAGGTA ATACATCGGAGGGAAGCAAA (TCT)5
BI6278* TGTAGTTGTTGTAGTAGCAGAACTTTG CAGATGGGTCGGAGATTTTG (TCC)7
BI6294* TGCTGGTCTGAATCTTTAATCA TGGGGTCTTGGTACTCTTTCC (AT)10
BI6299 CATCGCTCTATGAAGCTGCTACT CCTGAGACCCTGCTATTCCA (AT)5
BI6399 CTGTCATCATCCCCATCACA CAGTGAGAAATGCAGGGTCA (TC)5
BI6422 TTTGATGGAGAAGATTAGTGAGAAGA AGGCGGAATACCTTGTCCTT (TTC)5
BI6423 ATATTGGACATGCCAGCACA CATGAAACAAGAACTCTGGAGAA (AG)5
BI6469 TCTAGGCGCCAAAAGAAAGA CTCCCTCATCACTTGCGAAT (GA)13
BI6534* CGTTGCTCTGCTCTAACCCT AGATACAGCCAACCGGATTC (TC)6
BI6535 AAAGGGGAAAGCAAGGAAAA GGGATGGATGGCTGATTAAA (GAA)7
BI6561 CTTCTGAGACTCGTACCGGC TAGCTCGGTTCAAAACACCC (GTG)5
BI6581 TTGCTTTTCCTTTCTCATCCA CCGATTCCAGCTCTATCAGC (TTC)6
BI6604* ATTTTTCCACAGAAGAGCCC GGCAGAACCCGCAGTATATC (TA)8
BI6605 TCAAAGCTTCGTTCCCATTC GGAAAGCGTCAGAGTTGAGG (TTC)5
BI6701* AGAATCCCCACTCACTGCAC GAGATGATGAGGGTTCAGGC (GA)6
BI6717 GATCTCGGGGATTTGGATTT ACTGCCATAGCCTCCATCAC (GTG)5
BI6761 TGTTCTTCCGCTCTCCACTT ACATGCTCTTCCTGGCTTGT (TC)5
BI6776 CCAAACAGCAAAACTCTTCG GTTTTGTGGAAGGGTGGCTA (AG)5
BI6828 TCGTCTCCTTCTTCGTCTCC GGTCGTCGCTCTGATTCTTC (CTC)5
BI6849 CCTCAGATCCAGAGGAAGGG GCGCCTTTTCCTTTAAGTCC (TA)6
BI6886 TCTTCTCACGGCTCTCCATT TGGAAATCAAGGAAAGCACC (CTT)5
BI6901 CGAACTGGAAGAAGACTACAATCA GCTGCAGCACGGAGTTTTAG (AG)8
BI6984* GTATGCAAAGGAGAGCCGAG TTGTCAATTCTCACCAGACACA (TC)6
BI7015 TGGTCCAGATTATGATCAGCC TCTTCTCCGATTCCGATCAC (GAA)5
BI7023 TTAAGGCGGTGACACAGAGA CCTTTCGTCTGCAAATGGAT (GAA)5
BI7036 TTGAGCAGGCTTCCAAACTT ATTCGAAGGAAGAAGACGGC (CTT)5
BI7059 CTCCCTCCGACCTCCATAAC TAGCCTTCTGCGGAGTGTTT (CT)5
BI7085 ACTCGCGAATATCTCCGAAA CACCTCTTCAGCTCGTCTCC (GA)5
BI7112* ATCCAATGTCAACCTCTCGG GTGCATTAGAGTCCCGTGGT (TTC)6
BI7149 CGGAGAATCGAACCTCTGAT CCCTGAACGATGGAACTCAT (CT)5
BI7165 AATGAGCACGAACCTGCTTT GAGGAATTTGGACCGTCTGA (AG)5
BI7247* CTCTTATTCCGCGTCAAAGC AGCGGAGAAGTCGAAAACAG (AG)6
BI7287 TTGGGGACAACAAATGATGA CAGTGCTTTCTTTAACAACGCTT (TGA)5
*

Indicates markers tested for amplification and polymorphism.

LITERATURE CITED

  1. Brennan A. C., Bridgett S., Ali M. S., Harrison N., Matthews A., Pellicer J., Twyford A. D., Kidner C. A. 2012. Genomic resources for evolutionary studies in the large, diverse, tropical genus, Begonia. Tropical Plant Biology 5: 261–276 [Google Scholar]
  2. Burt-Utley K. 1985. A revision of Central American species of Begonia section Gireoudia (Begoniaceae). Tulane Studies in Zoology and Botany 25: 1–131 [Google Scholar]
  3. Dewitte A., Twyford A. D., Thomas D. C., Kidner C. A., Van Huylenbroeck J. 2011. The origin of diversity in Begonia: Genome dynamism, population processes and phylogenetic patterns. In O. Grillo and G. Venora [eds.], The dynamical processes of biodiversity: Case studies of evolution and spatial distribution. InTech Press, New York, New York, USA. [Google Scholar]
  4. Goodall-Copestake W., Pérez-Espona S., Harris D. J., Hollingsworth P. M. 2010. The early evolution of the mega-diverse genus Begonia (Begoniaceae) inferred from organelle DNA phylogenies. Biological Journal of the Linnean Society 101: 243–250 [Google Scholar]
  5. Hughes M., Hollingsworth P. M. 2008. Population genetic divergence corresponds with species-level biodiversity patterns in the large genus Begonia. Molecular Ecology 17: 2643–2651 [DOI] [PubMed] [Google Scholar]
  6. Lepais O., Bacles C. F. E. 2011. Comparison of random and SSR-enriched shotgun pyrosequencing for microsatellite discovery and single multiplex PCR optimization in Acacia harpophylla. F. Muell. ex Benth. Molecular Ecology Resources 11: 711–724 [DOI] [PubMed] [Google Scholar]
  7. Meglécz E., Costedoat C., Dubut V., Gilles A., Malausa T., Pech N., Martin J.-F. 2010. QDD: A user-friendly program to select microsatellite markers and design primers from large sequencing projects. Bioinformatics (Oxford, England) 26: 403–404 [DOI] [PubMed] [Google Scholar]
  8. Schuelke M. 2000. An economic method for the fluorescent labeling of PCR fragments. Nature Biotechnology 18: 233–234 [DOI] [PubMed] [Google Scholar]
  9. Thomas D. C., Hughes M., Phutthai T., Ardi W. H., Rajbhandary S., Rubite R., Twyford A. D., Richardson J. E. 2011. West to east dispersal and subsequent rapid diversification of the mega-diverse genus Begonia (Begoniaceae) in the Malesian archipelago. Journal of Biogeography 39: 1365–2699 [Google Scholar]
  10. Twyford A. D., Kidner C. A., Harrison N., Ennos R. A. 2013. Population history and seed dispersal in widespread Central American Begonia species (Begoniaceae) inferred from plastome-derived microsatellite markers. Botanical Journal of the Linnean Society 171: 260–276 [Google Scholar]

Articles from Applications in Plant Sciences are provided here courtesy of Wiley

RESOURCES