Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1995 Sep 12;92(19):8783–8787. doi: 10.1073/pnas.92.19.8783

Subacute neuropathological effects of microplanar beams of x-rays from a synchrotron wiggler.

D N Slatkin 1, P Spanne 1, F A Dilmanian 1, J O Gebbers 1, J A Laissue 1
PMCID: PMC41051  PMID: 7568017

Abstract

Microplanar beam radiation therapy has been proposed to treat brain tumors by using a series of rapid exposures to an array of parallel x-ray beams, each beam having uniform microscopic thickness and macroscopic breadth (i.e., microplanar). Thirty-six rats were exposed head-on either to an upright 4-mm-high, 20- or 37-microns-wide beam or to a horizontal 7-mm-wide, 42-microns-high beam of mostly 32- to 126-keV, minimally divergent x-rays from the X17 wiggler at the National Synchrotron Light Source at Brookhaven National Laboratory. Parallel slices of the head, separated at either 75 or 200 microns on center, were exposed sequentially at 310-650 grays (Gy) per second until each skin-entrance absorbed dose reached 312, 625, 1250, 2500, 5000, or 10,000 Gy. The rats were euthanized 2 weeks or 1 month later. Two rats with 10,000-Gy-entrance slices developed brain tissue necrosis. All the other 10,000- and 5000-Gy-entrance slices and some of the 2500- and 1250-Gy-entrance slices showed loss of neuronal and astrocytic nuclei and their perikarya. No other kind of brain damage was evident histologically in any rat with entrance absorbed doses < or = 5000 Gy. Brain tissues in and between all the 312- and 625-Gy-entrance slices appeared normal. This unusual resistance to necrosis is central to the rationale of microplanar beam radiation therapy for brain tumors.

Full text

PDF
8783

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BERG N. O., LINDGREN M. RELATION BETWEEN FIELD SIZE AND TOLERANCE OF RABBIT'S BRAIN TO ROENTGEN IRRADIATION (200KV) VIA A SLIT-SHAPED FIELD. Acta Radiol Ther Phys Biol. 1963 Jun;1:147–168. doi: 10.3109/02841866309135074. [DOI] [PubMed] [Google Scholar]
  2. Coderre J. A., Joel D. D., Micca P. L., Nawrocky M. M., Slatkin D. N. Control of intracerebral gliosarcomas in rats by boron neutron capture therapy with p-boronophenylalanine. Radiat Res. 1992 Mar;129(3):290–296. [PubMed] [Google Scholar]
  3. Cohen L. The tissue volume factor in radiation oncology. Int J Radiat Oncol Biol Phys. 1982 Oct;8(10):1771–1774. doi: 10.1016/0360-3016(82)90300-5. [DOI] [PubMed] [Google Scholar]
  4. Curtis H. J. The interpretation of microbeam experiments for manned space flight. Radiat Res Suppl. 1967;7:258–264. [PubMed] [Google Scholar]
  5. Enzmann D. R., Pelc N. J. Brain motion: measurement with phase-contrast MR imaging. Radiology. 1992 Dec;185(3):653–660. doi: 10.1148/radiology.185.3.1438741. [DOI] [PubMed] [Google Scholar]
  6. Hopewell J. W., Morris A. D., Dixon-Brown A. The influence of field size on the late tolerance of the rat spinal cord to single doses of X rays. Br J Radiol. 1987 Nov;60(719):1099–1108. doi: 10.1259/0007-1285-60-719-1099. [DOI] [PubMed] [Google Scholar]
  7. KEREIAKES J. G., PARR W. H., STORER J. B., KREBS A. T. Effect of partial shielding by grids on survival of x-irradiated rats. Proc Soc Exp Biol Med. 1954 May;86(1):153–156. doi: 10.3181/00379727-86-21036. [DOI] [PubMed] [Google Scholar]
  8. LEKSELL L. The stereotaxic method and radiosurgery of the brain. Acta Chir Scand. 1951 Dec 13;102(4):316–319. [PubMed] [Google Scholar]
  9. Larsson B., Lidén K., Sarby B. Irradiation of small structures through the intact skull. Acta Radiol Ther Phys Biol. 1974 Dec;13(6):512–534. doi: 10.3109/02841867409132650. [DOI] [PubMed] [Google Scholar]
  10. Larsson B. Potentialities of synchrotron radiation in experimental and clinical radiation surgery. Acta Radiol Suppl. 1983;365:58–64. [PubMed] [Google Scholar]
  11. Leksell L. Cerebral radiosurgery. I. Gammathalanotomy in two cases of intractable pain. Acta Chir Scand. 1968;134(8):585–595. [PubMed] [Google Scholar]
  12. Packer R. J., Zimmerman R. A., Kaplan A., Wara W. M., Rorke L. B., Selch M., Goldwein J., Allen J. A., Boyett J., Albright A. L. Early cystic/necrotic changes after hyperfractionated radiation therapy in children with brain stem gliomas. Data from the Childrens Cancer Group. Cancer. 1993 Apr 15;71(8):2666–2674. doi: 10.1002/1097-0142(19930415)71:8<2666::aid-cncr2820710836>3.0.co;2-k. [DOI] [PubMed] [Google Scholar]
  13. Podgorsak E. B., Olivier A., Pla M., Lefebvre P. Y., Hazel J. Dynamic stereotactic radiosurgery. Int J Radiat Oncol Biol Phys. 1988 Jan;14(1):115–126. doi: 10.1016/0360-3016(88)90059-4. [DOI] [PubMed] [Google Scholar]
  14. Slatkin D. N., Spanne P., Dilmanian F. A., Sandborg M. Microbeam radiation therapy. Med Phys. 1992 Nov-Dec;19(6):1395–1400. doi: 10.1118/1.596771. [DOI] [PubMed] [Google Scholar]
  15. Slatkin D. N., Stoner R. D., Rosander K. M., Kalef-Ezra J. A., Laissue J. A. Central nervous system radiation syndrome in mice from preferential 10B(n, alpha)7Li irradiation of brain vasculature. Proc Natl Acad Sci U S A. 1988 Jun;85(11):4020–4024. doi: 10.1073/pnas.85.11.4020. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Sturm V., Kober B., Höver K. H., Schlegel W., Boesecke R., Pastyr O., Hartmann G. H., Schabbert S., zum Winkel K., Kunze S. Stereotactic percutaneous single dose irradiation of brain metastases with a linear accelerator. Int J Radiat Oncol Biol Phys. 1987 Feb;13(2):279–282. doi: 10.1016/0360-3016(87)90140-4. [DOI] [PubMed] [Google Scholar]
  17. Talbot I. C., Slatkin D. N., Arnot R. N., Doyle F. H., Joplin G. F. Pituitary ablation by Yttrium-90 implantation: some post mortem and clinical observations. Int J Appl Radiat Isot. 1980 Nov;31(11):695–701. doi: 10.1016/0020-708x(80)90006-x. [DOI] [PubMed] [Google Scholar]
  18. Watson R. E., Perlman M. L. Seeing with a new light: synchrotron radiation. Science. 1978 Mar 24;199(4335):1295–1302. doi: 10.1126/science.199.4335.1295. [DOI] [PubMed] [Google Scholar]
  19. Withers H. R., Taylor J. M., Maciejewski B. Treatment volume and tissue tolerance. Int J Radiat Oncol Biol Phys. 1988 Apr;14(4):751–759. doi: 10.1016/0360-3016(88)90098-3. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES