Skip to main content
Applications in Plant Sciences logoLink to Applications in Plant Sciences
. 2013 Mar 28;1(4):apps.1200387. doi: 10.3732/apps.1200387

Estimating the nucleotide diversity in Ceratodon purpureus (Ditrichaceae) from 218 conserved exon-primed, intron-spanning nuclear loci1

Stuart F McDaniel 2,3,5, Marijke J van Baren 4,6, Kelly S Jones 2, Adam C Payton 2, Ralph S Quatrano 3
PMCID: PMC4105291  PMID: 25202534

Abstract

Premise of the study: We developed and tested primers for 218 nuclear loci for studying population genetics, phylogeography, and genome evolution in bryophytes.

Methods and Results: We aligned expressed sequence tags (ESTs) from Ceratodon purpureus to the Physcomitrella patens genome sequence, and designed primers that are homologous to conserved exons but span introns in the P. patens genome. We tested these primers on four isolates from New York, USA; Otavalo, Ecuador; and two laboratory isolates from Austria (WT4 and GG1). The median genome-wide nucleotide diversity was 0.008 substitutions/site, but the range was large (0–0.14), illustrating the among-locus heterogeneity in the species.

Conclusions: These loci provide a valuable resource for finely resolved, genome-wide population genetic and species-level phylogenetic analyses of C. purpureus and its relatives.

Keywords: chromosomal inversion, expressed sequence tag (EST), phylogeography, Physcomitrella patens, sex-linked loci


Over the past 15 yr, our understanding of the microevolutionary processes that shape variation within bryophyte populations has been revolutionized by the use of DNA sequence variation. Most of these inferences have been drawn from variation in a small number of loci, principally from the chloroplast and nuclear ribosomal regions (Stech and Quandt, 2010). However, these loci may be difficult to align, they may lack sufficient variation to answer many questions, and they may not reflect the full complexity of the organismal history (McDaniel et al., 2010; Vanderpoorten and Shaw, 2010).

To develop new loci for phylogeographic and population genetic inference in Ceratodon purpureus (Hedw.) Brid., we have generated primers for exon-primed intron-spanning loci, based on an alignment of expressed sequence tags (ESTs) from C. purpureus to the Physcomitrella patens (Hedw.) Bruch & Schimp. genome. The common ancestor of P. patens and C. purpureus represents the common ancestor of nearly all of the arthrodontous mosses, comprising ∼95% of moss species (Cox et al., 2010). Thus, although we designed these primers specifically for use in C. purpureus and its relatives, by choosing conserved priming sites we have maximized the chance that these loci will amplify homologous regions in other bryophyte species.

METHODS AND RESULTS

To develop primers for nuclear loci in C. purpureus, we screened the 1677 ESTs available on GenBank at the time. We first clustered the ESTs into 850 unigenes, and aligned them to the P. patens genome using the software BLAT (Kent, 2002; http://genome.ucsc.edu/goldenPath/help/blatSpec.html). This resulted in 450 aligned unigenes, or 1050 aligned ESTs. Using the software Primer3 (Rozen and Skaletsky, 2000), we designed pairs of primers that were homologous to the C. purpureus sequence and that spanned a single intron in the P. patens genome. We designed a set of primers with their 3′ end at least 25 bp from the beginning of the intron. This resulted in primers for 212 nuclear loci. On the intron-spanning unigenes that failed the primer design process, we also designed a set of primers with their 3′ ends at least 5 bp from the beginning of the intron. This resulted in primers for an additional 33 nuclear loci (all primer details are in Table 1). In some cases, the unigene spanned multiple introns, and we designed separate pairs of primers for each intron. Where possible, we also designed alternate primers for each intron in the complete unigene set.

Table 1.

Ceratodon purpureus EST intron primer sequences.

EST–intron start position 5′ Primer 3′ Primer Forward Tma Reverse Tmb Prod. sizec
Primer >25 nucleotides from intron
AW098097–137 CCAATAGCAAAAGAATACAATCAAAGC CGCGTTGTTCCTGGAATGG 62 64 318
AF233229–229 CCGAACTTGAACAGGACAGTTATGG TGATCACGATTCCGACTGAGG 65 63 458
AF233229–433 GCTCCCAACTCAGGAACACCC GGAGGCCTGGAGATGGTAACG 65 65 510
AW098318–384 AATCGTCACCGAATGAGAGGG CAATGTTGGCATGCTCCC 63 61 467
AW098631–273 ATGTGTTGTGCTTTCCCAGG TGGACAGTCACAACTCCTCTCCC 60 65 396
AW086794–139 TATCGGCGTGTGCAAGGG GCTGGCTTCTCGAATGTGGG 64 65 342
AW086770–115 TCCGCGAGCTCTGAGTGG AACAACTTCACCACATCTGCACG 63 64 308
AW086590–267 AACTGTGCACAAACAGCGGC TGTACGACCATCCAGACTAAGAAGG 64 62 593
AW098359–150 GCGAAGTCCAAGAACCATACCG AGCCTCGACCTCATCGGC 65 63 407
AW087018–146 CGACATTGCAGTACGAACTTTGC CAAGTGGAGCCTGTCATCTTTGC 64 65 375
AW087018–260 CTGGTCATGGATCTGGTCGC CAGTCCTCTCAGCATCCAGG 64 60 298
AW086837–165 CTTGGACGTGCATGGAGGC GTGTTGAACCGCATGTTGTCG 65 64 316
AW086837–243 ATCAGCTTCGGACCCTTCACC CTATGTGTGGGGCCAGCG 64 63 307
AW086675–86 CCGCATGTAGAAGAGCTACGCC TCTCGTCGCAATGCAGGC 65 64 277
AW086645–117 ATGCTTGCAACGCTTGATGG GTCAGGTTTCGGTGGTCAGTCC 64 65 466
AW098393–199 AAGGCTGAGGCTGAGGGC AGTGCGGGAAGCCACACG 63 65 284
AW098679–454 CCTTGATGTGGTAGTAATCTGCG CGAAATTGGTGGTGTGAGGG 60 63 438
AW098679–532 CATCGGGATTGAAAGCAAGAGC ATTGGTGGTGGTCAAGAGGC 65 62 426
AW098515–203 CTGAAGAATTGGAACCAGTCCG TTAAGCTTCGCGCAGTCCG 63 64 452
AW086579–194 ATCGGACGACTTCCTGCC TTCAGGAATACGGTCGGCG 61 64 223
AW086579–332 TGCAACTCCCAAAGCTGCC TGTTTTGGCACGAGACATGG 64 63 412
AW086736–262 GAGGTCCGAAGAGAGCCACC TCTTGCATGTGGCAGACACG 63 64 404
AW097953–298 GCCCCTTCAAGAGACTTTGGC GGCAAGAACATCTTGTCTTTGATGC 64 65 354
AW098418–107 GAAGAAGGAGACGCCCGC AGACGGTCGGACAACACGG 63 64 320
AW098974–394 TTGGAAGCCAATTTCTCCTTGG CAGGCACAGGAAGACTGTGAACC 64 65 510
AW086877–265 TTGATCCTCGGCTAGTTGCTCC TCCAGTGCTTCCAGCAGCC 64 65 511
AW086877–378 ATGGAGATGCGGCTGCTGG ACCAAGTGAATGCGGTCATATCC 67 64 339
AW086549–119 ACAAGGAAAGACGCAATTATTTATAGG TGTGTCCTCCGGCTCACG 61 64 394
AW086549–238 AGAGCACAGGCATGACGGC GCAGAATTGTATGCGCGACG 64 64 323
AW086868–74 CGATGTGGTTTACAACGCGTCC ACCAGGTACGGAAGGGGGC 66 65 377
AW086868–247 TCGATGCTGCCCCCTTCC CAGAACGGCCGCATTGG 66 64 392
AW086594–170 TGCTCCAACAAGTCACCAATGC TTCCCATTGACTTGCGCC 65 63 337
AW086594–327 GCTTGGTCAACCTCCTGCG TGAGAGTTGCCAAGGTCACTGG 64 64 479
AW098340–132 GCCCAGCAACAGCAAGGG CACCACCCTGGCCAACTCC 65 66 441
AW098700–545 CCACTTCTGCCATGGTGGG GCTTCGGTGTGGTTCTGTGG 64 64 350
AW086759–94 CCGTAGCTTCTGCAATATGTTTGAGG TGGCAAGGCGACCAAAGC 65 65 486
AW098624–132 GACAAGGCCAGTTTGTACGCC TGGTCTTAGCCTTATTGTGAAAGACG 64 63 269
AW098020–216 TCCGTTCAATTCAGCTCGG TGACGCAGCTTAGCGGGC 62 65 262
AW098462–157 TGACGATAGAAGGTGTGCGCC AACAGGAAGGCCAGCCTATGG 65 64 576
AW086686–370 CACTCCCTTTTTGAGATCTTCAGGG ATGGGGTGCAGATTGGGG 65 64 396
AW098568–216 ACCACATCCATTTCGGACGC TTCCCAGCTCGACAACATGG 65 64 327
AW086975–261 ACTTATTTCGCCAGAGGATCTGC TCACTTTGACTCACAGACTGAATGACC 63 65 391
AW086975–331 TTGCGCAAGTTTGACAGTGG GCAGGAGCCATTCCCAAGG 63 65 362
AW098234–164 TGGAGCTTGCTCACATCGC CAGCAATACCCACTGCACGG 63 64 396
AW098407–97 GGCGAAGGCTGTGATGGG TTTTTGCAAATGCAACCTGGG 65 65 392
AW086555–375 GCCATAGTCGCATCAAAATTGG GGTTGTGGTCAGCAGCCG 63 63 438
AW097994–187 ACGAAGCTGGAGGCTGTGG CAATGTCTATGGAACCAATCTTTGC 63 62 396
AW086517–380 TTGGTCTTCCTCCGCAGC TCCGTGGATGATGATCTGGC 62 64 473
AW086517–457 CATGTCTTGCTTCAAGGATGC TCTGCATTGGAGGCAGAATCCG 60 68 267
AW098225–85 AGGCCAGAGTTGCTGAACCG ACTCACCCGCCAGCAAGG 65 64 531
AW098839–86 TGACTAGATGCTTTTATTGCTGAAAGG ATCACATCGAACGGGCAGC 63 64 493
AW098839–177 CAACCTGGTCCAGATCACGC TACGGTGGCCGCAAGAGC 64 65 428
AW086694–137 TCTTCATGACCTTAGCCACAGCC AGATGATCTTGATGCGAGGG 64 60 304
AW086845–149 AGGGGAAAGGCACCAGGG AGTTCACGGTTCCGGTGAGG 64 64 679
AW086858–91 CATCAAGGGAGTGGGGCG TCAGCTTCATGTCCAAGGCG 64 64 451
AW086858–280 TGGTGATCGTTGCCAACCC CACCGACGGTTCTTCCACG 65 64 406
BI894288–61 TGGAAGAAGCCTTTTGCTGG TTCAAACAACCATCGTTGGGG 62 65 285
BI894288–188 GGCTAAGCAGCCCAACTCTGC TCTCCCACGGCATGTCCC 65 65 353
AW087023–114 GGATCCACAAGGCCAAGTTGC CATTTCGACGAACGGTGGC 66 64 433
AW087023–239 AGCCATAAACGCAATTCGGG TGACTGAACCCGTCCGGC 64 65 399
AW097931–294 AGAAGTTCCAAGTCGGGTGGC TCCGTTGGCGTTCTTCAGC 64 64 500
AW098613–99 CTTTGGCTTGAGAAACAAGGGG GCCGGCGATACAAATGAAACC 64 65 251
AW086659–247 TTCCAGGTGGGTGGGAGC AGGGTTTGACCCCGTCGC 64 65 494
AW086999–142 AGCTATTAGGGCGAGTGAAAGCG GGCTGGAGTGAATCATTTTGGG 65 64 368
AW086548–172 AAATTCGGCAAATAAGAGGGG CCGGGCAAATCGTTCAGG 61 64 428
AW098157–126 CCTGCGAGGAAGATGACGC AAGTTTCCACATTCAGAAGAGCCG 64 64 514
AJ250735–923 TCAGCCAGTTTGATGGGC GGTTTCCATCCGGGGAGC 60 65 723
AJ250735–1460 TCAGGCCCGAGTTGACCC AAGTGCCCGAAGCCATGC 64 64 747
AW097975–117 GAAGGGAAAGCCTGATTTGCG GATGGGTCCGGTGATGGC 65 64 564
AW098252–97 CAAGGAGGTGGCGACTGC CCGGCGAACTGCAAAACC 63 64 624
AW086519–461 CAGCGAAAATCAGACGCTGC CCGCAAGGACCATCACCC 64 64 1025
AW098432–169 ATGAGTCGGCCGCATGG TGCAGAGCCTTACACGACGC 64 64 759
AW087005–110 GCTATGTGGTGGCGTCCG GAACAGCAAAATATTGCCTCTCGG 63 65 385
AW098158–174 TCCCTTGCCCTTCTTGTCTCC TGTGCTGAGGTTGCAGTGCC 64 65 216
AW098158–249 TGCTGTGTCACGTGCTTGC GGAAGCAGTCAGGATACGGAGG 63 64 443
AW098158–317 CGGGCTTGGTCTGTCCTCC TCTTCTGCCCTGGGAAGGC 65 65 471
AW098372–71 TCCATTTGATCGCTGTTCCG GAACTCAGGCAATCAAAGCAAGC 64 64 257
AW097984–288 GTGGGCTGAAGCGCAAGC TGATCATGTTGCGTAGGTGGG 65 64 237
AW098512–413 TCGCAACTCAGCCCTCACG TTGTTCCCGCAAGTGGGC 66 65 319
AW098442–86 AGCTCTGCACTGGGCTGG TGGAACCGTGAAAGCCCG 62 65 279
AW098442–198 GGATAAGCAGACGCGCCG CGAAAATGCAACCCCAGGC 65 65 271
AW098442–292 CCCAAAGTTCTTCTTGGGGC GAAAGATGTGAAGAAGCTGTTGAAGC 63 63 252
AW098349–75 AGATGATGCTGAGATGGAAGCG TCAAGAGAGGCACCCTCGG 63 63 400
AW098572–84 TGGGCTCTTGATGTTCTGGG ACCGATCCTCAGCCTGCC 63 63 381
AW098572–303 CCACAAATGGATCGGCAGG TTGCCTTCAAGCACAGCAGC 64 65 316
AW086786–104 ACGTGCTTGTTGCAAGGGC AACAGCACGTGTCGGTCAGC 64 64 291
AW086989–141 AAGTGGCGCGGTTTGAGG GTTTGACAGGAACGGGCAGG 64 65 759
AW098304–85 ATGGAAGCATGTGGTTTTGGG CGACGCATGTCCTTCGGC 64 66 560
AW086668–76 CAACAGGCCTCTAAATCTTGGCG TGGAGATTCTCACAGCCCCC 66 64 307
AW098058–71 CCAAGCGGGGCTTGTATGC GTCCAGCTTGCGTTCGGG 66 65 414
AW098449–310 CTGCCAAGACCATTTTGAGTGG AAAAAGTCACGACTAATGCTGTGC 64 61 369
AW097976–116 CATGTGCTGGTCTCACATTCCC GCATTTTGTCTCAAGCCTTCG 65 62 485
AW098621–172 TCGTGGTTGAGTTGAACGGG TCCCAAAACCTTGCCTCCG 64 65 407
AW097924–87 GCGTGCGTATGTTGTGATTAAGG GCTCTCTGCTACAGCAGCCTCG 63 66 347
AW097924–222 CATGTTGCGCGAATCAGAGG AACACAGAGTCTTGAATCTCCAGGG 65 64 323
AW086546–344 TCCTTCTCGGCAGCCTCG CAACCGTCTTAACACCTACAGGGC 65 65 504
AW086789–334 GACCCCCAGAGCATCTTCG CCTTGCGCTCCTTGATCTGC 63 65 358
AW098343–365 CCAACGACGCTTCTTCGC GAGGACGGGATTTGTTCATGC 63 63 674
AW098256–171 TGATGACGAGCTGCTCAGAGG GCCTTCTCAGCTTTGGCTGC 64 64 310
AW098256–290 AAGTGGCCGTGGAGATACAAGC GCTGCTCTCTCCTTCTCACGC 64 64 393
AW097983–255 TGCAAGCCCAGCTCTCTGC TCAAATTCCATTTGCTCGTCC 65 62 455
AW097983–358 GTGGCAATATTAAAGAGGCACCG GGAATACATGCTGCTCCTTTCTCC 63 64 307
AW087043–267 CCCTTGCCCTTCTTCTTCTGG TTCTCACTTGGAGGATCAGTTTGC 64 63 764
AW086539–362 GTTCCTGCAGCGCAGTCG ACTTGCGCCAAGGAGAATGG 64 64 425
AW098322–137 CTTGGGAAGACGTGGCCC AAGCGCTTCACCCAGGC 63 62 339
AW098322–275 CGTCATTGATGCTGAGGCG CAAGCCGACGCCAGTTGC 63 66 398
AW097946–284 CGACGCCGACATTCATGC AGGTCTGCATTCAGCAGATTACCC 64 64 370
AW098391–123 AGCCGAGGATTTAGGGCAGG AGACCGGTGCCTCATCCG 64 64 287
AW098391–191 AGGTGCTTGGACTGCTCAGG GGAATGCCAAAGGCGTCG 62 64 297
AW097948–171 GGCCCAAATCACCTACGCC GTTCTTCAGATGACGACGAGCC 64 63 408
AW097948–251 TGGTCTTCTTTTGGCTCGTCG CGTCCAACAGAGCCCTAAATGG 64 65 244
AW098786–108 GCACCGGTGGAAAGACCG ACGTATCACGAGGGCCACC 65 63 349
AW098786–315 ATGGGAAGACTTGCGCGG TTTGTGACCCATTCGCCC 64 62 324
AW098048–269 TCCCAGGTATCATTGCCCG AATGAAAGTGGCTGCTATCCAAGC 64 64 606
AW098048–348 ACAGATGTGGCTTGGATAGCAGC CCGATGTAAGTGTCTCTGCTGATGG 64 66 333
AW098804–195 GGCGGAGACAGGCACATACC GAGAATTCAGGCCGCTCCG 65 65 405
AW086917–156 GAATGGCCTCTTCCGGGC TGCAATCTGCACCGACTTGG 65 65 333
AW086712–250 TTACTGCCTTGCTGGGGTCC AACCAGCCCGCTAAGCTGC 64 64 378
AW087002–282 TTATCGCCAGAGGACAGCG GCCCATATTTGACAAGGCCG 62 64 402
AW086924–329 GCAGCACCTTGACGTCGC AGCTTCAAGGCCTGAGAAATGC 64 64 600
AW098761–71 CATGGCGCAGACCAATACG AAGTATGGGATCAAAGAGTTGTAGAGC 63 61 294
AW086619–136 CACACCTGCCTGTGGATTTGG CAAGCTCGACAACCCGGC 65 65 602
AW087029–297 CATGGGGTTCTGAGGCCG GGTCGGGATGAAATGCAAGC 64 64 486
AW086641–183 GGTTGCCTCCCTCAATCGC GAAGGCTGTCGGCATCTGG 65 64 248
AW086641–266 AAGGTGTAAGCACCTCCGGC GAAAGCCGGAATCGTCGG 63 63 501
AW086618–269 TGCCTCCTTCGCCTGATCC AGACATCGGAAAAGAAGTCGAACG 66 64 513
AW098004–106 GGATTGGGCGAAAGAAGCG AGAGAAGCACAACAGGGCCG 65 65 363
AW098004–215 CCATGGCTCGGAAGGAGG CCTCCGTAAGGCTGACTGTCC 64 63 373
AW098782–68 GCTTGCTCCTGCTTTGACTGC CTGAAGGGCTCCCAAATAGCC 64 64 422
AW098479–502 CTGGACAGCCAGTCAAGGC CCGATGCAATGAATGCCG 62 64 281
AW086833–142 AAGGATCCGCGACAAGTACCC TTGATGCGCTTCCTTATGACG 64 63 298
AW098949–71 GATTTCAAGACGCATCAGTTGCC CGAAGATGTCGCCCCTGG 65 65 466
AW098949–266 TGGCGCTATTACCAGGGGC CTGTCCAGGCATGGTGGG 65 63 406
AW098098–311 CCCCTGATCTTCTTGGCACG GACCCCCAGAGCATCTTCG 65 63 349
AW086738–110 CATGCAGAACGAGGAGGGC CCTGAGCGCGAACGAAGC 64 65 528
AW086979–128 TACACATTGCAGCGCATGG CCATAACAATGAAGGCGCACG 62 65 342
AW086878–120 TCTACCCCGCCGATGACG GAGAAGGCCAGACTCCAACTGC 65 64 654
AW087022–123 CGCCTTCACAGGCACAGG CTTGGAAGCCAATTTCTCCTTGG 64 65 502
AW086647–346 AGATGATGGGGGTGGTGTAAGC GCAACCCCATTGAGAAAGCG 64 65 395
AW098140–138 CCTAGTCACATGCCATGACCACC CGCTCAGGGAGATACTGACAGC 65 63 412
AW097944–86 AAGGCCGTGTCCAGCTCC TCGGGGCTAACAATGCACC 63 64 236
AW097944–242 CGTAACGGTGAGCGCAGG TTGCCTGTGGCAGACACG 63 63 538
AW087030–122 ACTGTTGGAGGATGGTCGTCG CCTCCATCAACAGCCGAGG 64 64 536
AW086635–160 TTGACTGCGAACTTCCTCATGG GGCTTTCAATCGCCCAGG 64 63 380
AW098279–292 TTTCGCGACATGGATGGG AAGTCTCTACCTCTATTGCATCAAGCC 64 63 260
AW086909–334 ACGTCCTCTGCGTCCTCCC TCCGCTCGTGTCACTGGG 65 64 412
AW086827–136 CTCGGATCCGCGTGTTGC CGTACGCGGACTCTGGTGG 66 65 790
AW086674–69 CTGCTCTTGCCAGTCTTGAACC GAACACTGTGACTGCTGAGAAGTTGG 63 65 352
AW098248–320 TTGGACGCCATCTTCGGC CTGCCTCTCCTGTGACAAAAGC 65 63 571
AW098328–149 TCAAGATGGAGGTGGGAATCG GCCCCGTCCATGATTTCG 64 64 335
AW097937–210 TCAAATGCGATGAATGTCGC CTGGACAGCCAGTCAAGGC 63 62 291
AW086669–414 AACGACCAGCGTAGGTGCC GCTGAGAAGGGTGAAGATGCG 63 64 290
AW098185–232 TATTGCGACTGCCCCACG GGGGTTATGCTACGGCACG 64 63 166
AW087017–243 CGATCCTGAAACAGGCCACC GAACTTTGCCTCAAACTTTCCAGC 65 64 445
AW087017–331 TTGGTGGTGGTCAAGAGGC AAAGCAAGAGCATTGATAGGTCCG 62 64 382
AW086830–254 TTTGGGTGGCCTTCTTCAGC GGGAGACACCCAACCACTTCG 64 66 533
AW086566–259 TGGGTAGCTCCAATACCGGG TTCCAGCGTGGGTTGAAGC 64 64 431
AW086566–452 CGATGATCATGTTGCGGAGG TCCGGGGAGTGGATCTCG 64 64 606
AW098560–101 ATCCGCAAGTGCAAGCCC TCATCCGTGGTGATTTTCGG 64 64 420
AW098281–150 GTACTTCGAAGACAATGCGGG CATTCGCAGCACTAGCAATCC 61 63 291
AW098587–180 AGGAAGTTCGTGGTCGTGGG TTGTGGCGTCCACATCGG 64 65 436
AW086962–158 TGGACTATTCCTTGGGCTTCTCG CCCCGATTGCGCAGTATCC 65 65 287
AW086962–273 TCGAGCAAGGCAAGTCATAAGG TCCGATGTTTCCTTCAGCGG 63 65 310
AW086962–333 TTCTCTACATGCTTGCCGC TTTGATAGCACAGCAGGGTAATGC 60 64 272
AW098337–225 GAACCTGCACCACGACAAAGC AAGCGTCGGCATTGCTCC 65 64 304
AW098364–121 TGGATATGGGTTGGCGGG AGCTGCTTGATGTCGGCTCC 64 65 518
AW098799–185 TCAGGCTTTGCCTTGGTGG AAGGTTGCTGGAGAAAGTAGCCC 64 64 354
AW098651–169 GCAATCCTGCTCTACCTTGCG CGCTCCAACGGGTAAGGG 64 63 307
AW098361–258 AAATGCAGGCTGTGCGAGC GCCATGACGACCTCCACG 64 63 834
AW086544–267 TTTCTTCGCAGAGCCCACG GTGTTGCATCCTGGTCGTGC 64 65 331
AW086990–246 CCCAGACGGCATTCGAGG TCATCCATTCGCATCTTCGC 65 64 499
AW086531–354 TTCAGCTGTCATGGCCTTCG ACGCAAGCTTTGGCACCC 64 64 373
AW086934–65 TTTTTCAACGAAAATAGCGAGCC CGAAGCTTTTGCAGGAACTCCC 63 66 265
AW086934–136 TCGAAAGGGACAAACGGGG AAGGCTCTCTAATATGGGGGTCG 65 63 314
AW087013–133 CTTCGGAGCCACCATCCC TTGTTGCCGAATGGGTCG 63 64 465
AW098823–115 AGCGAGCTTGCCTGCACC GCTTGGCAAAGAGACCAGGC 65 64 393
AW098823–199 GCAACTTTGGTGAAGGCCG CGGTCGCGGCAGTAGTAGC 63 64 308
AW098056–70 AAGAATGCAGTGTTTGGTGACAGC CCACATCCGCCTTGAGAGC 64 64 542
AW097956–276 CCGCGACCAATGAGACCC TGATCTGGATGCACGGGG 65 64 710
AW098620–189 GATGAACAACGCTCGCGG TGGTGTCGGAGATGTGGGG 63 65 326
AW097987–87 GTCTTAACCTTGGATGGCCGC GAGTGCTTTGAGTCATCGCTTCC 65 64 268
AW097987–167 TGTGGAGCCAACAGAGATTGAGG TGCATGCCTGCAAATCAGC 65 64 328
AW097987–313 CATGCAGCCGTTAAGGAAAGG TCAGCAATCCATTTTCAACCG 64 63 279
AW087075–240 TTGGTGATGCATACTCAAAGGTGG GGTCATCGAGCTCTCCTGGC 65 64 452
AW087075–332 TCAACTGGCGATCAGAAGCC CTGGCTGCACTAACACTGCC 63 61 232
AW098367–359 CAATTATCTCCAACGGCGGC AGTGGTAATCAGCCGTCATCTCG 64 64 421
AW086525–450 ACTCCTGGTTGGTGGCCG CTTCTTGAGGAAGTTGCAGAAGG 64 61 674
AW086525–514 TGATGGCAAGAAGGTGTCCG ACCGCATGAAGTTGTGGGC 64 64 318
AW098078–239 CCTCAACACCAGGCTCAATGG TGATCAAGGGCGCCAAGG 65 65 482
AW086765–100 TGACCCATGTGTTGATGATGAGG ATTTCAATGCCAGATTCCAGC 65 61 484
AF309562–421 TCCCCTTCGAGGAAAACCC CTGGCGACCAAAGCTCCG 63 65 425
AF309562–538 TGCTGGCGTTACAGACGACC GAGCAGCAGCCCTCTGAGC 64 63 323
AW087021–183 GGTTGAAGCTGTGAAGTTGTTCG GAGGACCTCTCTGGATGGGG 63 63 310
AW087021–312 AGCTTCTGCCATCCTCACTGC AGTTGCGACGACGAGACGG 64 64 315
AW098247–82 ACGCGTCCATCTGCCAGG AAGGTCGCCTCCACCTCG 65 63 461
AW086944–155 CTGCCATCCTTCCCGTCC AAGCAGTTGGTGTTGGCGG 63 64 353
AW098672–254 TTCCTTGGGGGCCTCAGC ACTGGCCTGGTCTCTTTGCC 65 63 313
AW087053–85 CGTCGTGAGCGTGAGGAGG AGGTATCCAAGCTTCTCATTGTAGTCC 65 63 474
AW098317–317 TGATATGGGGTCTTCCAGGTCC CGTTTTAATAAGAGGTCGACAGTGGC 64 65 498
AW086622–280 GCGAAGAGTGGGTAGCTCCG AAGCCCGAGCCTGTGAGG 64 63 346
AW086841–85 TTCGGAAGCACAAAACTGACG TCTCATCGCCGTTTAGCCG 63 64 279
AW098024–169 GGAAAGCTGTGACTGCACTTACCC AATCTGGGCCTGGCCTTACC 65 64 578
AW086649–182 TGCATGAATCACAATGAAGCCC ACGCATGCGCCATCTGC 65 65 463
AW098284–284 GCAGGACTGAGGAGTCGTCG TTTTCCTAGTCCCGCACGC 63 63 309
AW098191–439 GACCCGCCACATGAATGC CTTCCAGCTTGTGGACGGC 63 64 572
AW098191–543 TTGGAAAGGTTGTCAGCTTCTGC TTCGAAGCATTTGGACCAGG 64 63 478
AW086824–186 GAACGAGGGCAAAACAACACG TTGTTCGTATCATGAGTCCTTATTTGC 64 63 282
AW086824–253 GTGTACGTCATGGTGTCGATTGG TGCTGGGTGGAGATGGTCC 64 64 456
AW086779–195 TGGTGCCAGTTTGAGGAAGC AGCACCTCCGGCTTTGACC 63 64 431
AW098026–111 TGGCAGTGGAAAGCTGCG CTCATTGGGCATGTGGATGG 64 64 395
AW086929–81 ATGCACACTGCATCCCTTTGC AAATATGAAAGGAGGGGTCGC 65 61 407
AW086753–293 GGCAGCCCAATTTCATGAGG ATTGCTTGGAGCCTCTCAATGG 64 64 458
AW086737–66 AACCTACTGGTCGACAAGAACTGG CGAAGCACTTCCGGTGCC 62 65 464
AW098283–167 TGATGGATGCGCTTGTGG TCTGCAAGAGAGCCTACCTTGACC 62 65 426
AW098019–120 ATCGGGATTAGGACCAAGGC GATTCTGCCAGCGCATCC 62 62 271
AW098019–199 TGGAAAGGATGCGCTGGC ATTGCGCATCATCCATACCG 65 63 265
AW098019–297 CTTGCGTGAGGACTATTTGGC TTCTGCCCCTCAGAACCAGC 62 65 325
AW098233–116 TTATGCGCAGGAGCTTGGC CCTCCTCCCGCTACCAACG 64 65 453
AW098233–233 GCAAATCCTGATGGCCGC CCCGCATATTTGCCAATCC 65 63 281
AW086758–136 AAGGCTTTTGCACTGCACTCG TGCTGCTCGCACTGGAGG 64 65 299
AW087065–177 CGGGAGCACTTAACGACGC TCACACCTTCTGCTGTCTGG 64 60 575
AW098770–113 CCGTGAAGGACTGGGACAGG TTGCACGCCTTGTATCCTCG 65 64 282
AW098258–180 TTTGCACCCATTGCCAACC GCCGGGTTGTAAGCGAAGC 65 65 390
AW098797–116 AGGATCGGACTCCCTGCC TTCCCAACTTGTCAACTGCCC 62 64 490
AW098643–123 GGAGGCTTTTGAGGCGAGG CAATCAGCTGGCAATGAGCG 64 65 508
AW086790–163 TGGCAGAGTTTGATCGAGGC TGAAGGTGCTCTGGAGCGG 63 65 591
AW098780–75 AGGCGTCAGTCTACGGAATTGG TGCTCGCAAATCTTGCCC 64 63 379
AW098780–211 CCCACATCCCGATCCACG ACAATTTTCGCTTCAACAAGATCTCC 65 64 324
AW086556–413 AAGGCAGACTCTCGGGCG GCGTTCAGAAGGCCAATGC 64 64 458
AW098831–338 TTCAGTGGACGCGCTACCC TCCACAGTTGAGTTCCGGTGC 64 65 456
AW086710–390 TTTCTCCGGGCTTCCATCC AGGGCATTGCTCTCAGGGG 64 64 531
AW086768–261 CCTCCTCCCCATACGCTCC CACAACAACAGCACAAAGCTGC 64 64 427
AW087072–205 CCGCGACCAATGAGACCC TTGCGAGAAGTTGACCGTGG 65 64 387
AW087072–269 GCAGAAGGTCAAGAAGGCCC CCGTTGAGAGTGAGGTCACGG 63 65 373
AW086870–57 AACCCCGCCTGCTTCACC GGTGCATTTGGCTGTGCC 65 63 318
AW098197–197 ACGTGGATTTCAGGCGGC CGTGCTTCTTCTTCAGTAGCAGGG 64 65 489
AW098074–139 CAGGGGAAAGGCACCTGG CGGTTCCAGTGAGGATGCG 63 65 520
AW098521–456 ACTTCTCAGACGAGTTGGGGC CGTGCCGAAAAGGTGCG 63 64 288
AW098301–160 GCTGTGCAGGCGTTGTGG AGAAAGATGACGCAGATGGCG 65 64 599
AW087027–88 TGGGACTTCTACAAGCAAAAGTTGG CAGCGCTTGATGCTTCG 64 60 268
AW087027–159 AGGTGCCAGAGTACAAGGATGACC CTTCTGTTCCTGCACCCTCG 64 63 374
AW087027–246 GCTAAGGCCTCAGAGCAAGAGG CTTCACTTGTGGGTGCTTTGC 63 63 291
AW086848–172 CAACCCTTTCATGCACGCC CGCAACTCAGCCCTCACG 64 64 513
AW098187–139 AGTACAATCAGGCTGCCACGC TTGAGTTGAACTTCATTTACCTGCC 64 62 306
AW086969–51 TCGCATTTATGGCAGAGCAGG AGATTCTTCAGACGAACAGCCG 65 63 280
AW086692–252 CCGAATCATCAGATGCCAGG GTCTCGCAGCCGAGTTGG 63 63 420
BI894286–170 TGGACGAGCTGAGCGAGG TTACGCCATGTCCTTCGCC 63 64 494
AW086973–252 GGATGATTCCGCCAAACAGG TCTACGACGGCATCAGGGC 64 64 309
AW098153–431 CGAAGACGGCCTTGCACC CAAATTGGAGCAGCTGTGGC 65 64 448
AW098812–178 ACTGGCCCAGCCTTTCCG AGAAGTAGCCCCACTGCATCG 65 63 430
AW098812–326 TGAGATTGGGTTGTTCGATGG CCGCCGTCCACAATCTCG 63 66 457
AW086545–249 TTCCTTGGGGGCCTCAGC GCCGGTGTGCAAATTGAGG 65 64 330
AW086575–297 CATCTAGGTATTGTCGAGTCCCG TGAAAGTGGCAAGATGACCAAGG 62 65 459
AW086575–420 AGCAACTGCATCAATAAATTCCTCG TGGACCCGTGGTCTTAGCC 64 63 317
AW086781–77 CTCGCGTTGCTGGTGTCG TTCTGCGCATCTTCTTTTTGC 65 62 421
AW087048–137 GAAGGCTGCAATTCAGGAAACG TGAAAGAGGTTTCTTTGGTTTGTTGG 65 65 257
AW087048–215 GAGAAGAAGAAGGCCAGGGACC GTGGGCATTCGTTTCCGC 64 64 515
AW098758–58 TATTTGCTCCAGGATGCTGATGG GGCTTCATCGTCAGTCACGC 65 64 319
AW086711–314 TGAATCCGGCTGTCAAATCG GCGAGCTGCTGGTTCTGAGG 64 65 300
AW086711–405 TAGATGAGGTCACTCAAACGCTGC AAATCGGTATGGATGATGCG 64 60 438
AW086711–484 TTGCGCATCATCCATACCG AGTTGCAAAACTCTTGCGTGAGG 63 64 305
AW098776–59 GTCAGGCTCTGGCTGACG GCCAGCCTTTGCTTGATGTCC 60 66 314
AW098776–152 GCCAAGACGAACATGAATGTGG GCAGGAACCTGATGCTGGC 64 64 359
AW098585–138 CCTCGCCTCATGTCCTGC AGCACGTGCGTAGTTCCCG 63 64 335
AW098746–319 GGTTTCATCTCTGGCGCTTCG CCCATGAGGTCAAAGATGAGGG 66 65 249
AW098746–414 CCACCATGGTCCACTTCATAGC CTGAAGCGATCCCCCACC 63 63 421
AW098409–116 CAGAGATGGTCGTGGGTTGG CCCAACATCATCGTCTGAGGG 63 64 447
Primer <25 nucleotides from intron
AW086551–330 TTCTGTTTCCAACAGGCCG GTGCGCAAATTCACAGAGCG 62 65 307
AW086551–425 TCTCGCTCTGTGAATTTGCG CGATGTCAGAAGGCAGGTGG 62 64 231
AW086636–421 TCAGCTGACTTCGCGTTTGC GTTGGCTCAAGGAAAGGAGC 65 61 314
AW086700–323 AGTCAAGCGGGCCCTTCC ATGTGAAGTGCCAGGGCTGC 64 65 301
AW086752–361 AACCAGAGCCCCAACCCG ACAATCAGCGTGACCTCAAACG 65 64 395
AW086783–208 CGTCTCATCATGCGCAACG CTTCGCGCTCAGACTCAAGG 65 63 665
AW086798–387 GCATGGAACTCCCGGAACC CATCAAACTCCCACAACTCATTTCC 65 64 393
AW086855–57 GTGATCATGGCGGGGAGG TCCTCCGTCCTACAGTCGCC 64 64 263
AW086855–188 CCTGTTGTCGCAGCCAGC CGTCGTCAACGATTGTAGGG 64 61 321
AW086856–213 TCACGGATCTTTGGCCCG TTGGGGCCCCTCTTCTTACC 65 64 276
AW087036–57 AGAAGGAGTCTACTCTGCATCTGG CCTCAAGCTGCTTTCCAGCG 60 65 425
AW087051–351 TTCACAACAGGCAGACCCG GACAGTGGCTCTCTGGAAGGC 63 63 328
AW087074–125 CAGGCTGGTCCGCTTTGG CCGTTAACCTGAATATCCTTCACACC 65 64 395
AW087074–171 TGTGAAGGATATTCAGGTTAACGGC TGATGGTTGAGCTCCGACG 64 63 237
AW097915–117 GGGAGCAACCTGACCCTTCC CGCTCGAGATCGTAGCCTTGC 65 66 252
AW097968–35 AGTGCGGTGCCAACTGCG CCGCACTTGCCGTTCTCC 67 65 418
AW097979–42 GATGGCTCCAGCCCTTCG AGCTCTCCCCTGATGTTTTCAGC 64 65 318
AW097979–92 AACTGGCTGAAAACATCAGGGG AGTGACGCTGGCAACTCCC 64 63 361
AW098011–47 TGTTGCAGCTTGTGTACTTTCTGTACC ATGGGTGCGCCTGAAATCG 64 66 303
AW098051–84 GATTCCGTCACTGTCGGTGG GTGCCGAAACTGGTGCCC 63 65 519
AW098200–145 CAATGACACCAGGCTCCAACC TGCACCTTGTGGGGCAGC 65 66 275
AW098203–61 CAAGTTCTTGCAGGAAACATTTGG CCATGCTTGCTGACCGGG 64 66 464
AW098216–110 AGGGTGTCAATACGTCCAAGG TGGCACCGAGAGACGAAGG 61 64 460
AW098262–128 ACTACGTTGCCCACGACGC TTCGTAAACATCCTTGCCAGC 64 62 233
AW098262–171 GGATGCAACTGGTGCTGGC GATCAGATCCGAAGTCGAAACTCC 65 64 224
AW098263–244 TAGCATGGAGCACTGATCGGG CAATCCAACGTCCAAAGTAAACTGC 65 64 281
AW098272–223 CATTTGTGTGTTCCTTCTGCCG TGAGTCTCTTGAAGTCTCTTCATTTCC 64 62 190
AW098291–131 TGTAGGCCGAATAGCACTTGG TGGACCAGTAGTCATGTTGAATGC 62 63 245
AW098300–108 TGCAACGGTGTCGTTGTGC ACCCGTGAATCTTGATGAGGTCC 65 65 453
AW098306–52 GTTGCGCAGGGTTGAGCC TGGCCTCTCTGTTGCCAGC 65 65 450
AW098419–60 CGCCAGATTCAGGAGCAACC CTGGGGTACATGAACACCCTTACG 65 65 223
AW098448–78 ATGTCAAGTGCCAAGGATGC CACAGCACCGTGGAGCAGC 61 66 276
AW098461–262 CACACTCCTTTCCAATGGGGC ACAATCGGGAGTCATTGTGACC 66 63 269
AW098461–303 GGGGTCACAATGACTCCCG CAAGCCCTGAGGCGCAAAGC 63 69 330
AW098472–354 GTAGGATACGGTTTGAGGGCTGC GCTCTTGAAGAAGAAGTTCGGG 65 61 493
AW098535–258 TCGAACAAGCTGAAGCCC GAAGTTCGCGTCTGTGCCC 60 64 431
AW098580–204 CAAGACCCCACCATCTACAGGC CCCTTCACCTTCTCCACAGAGC 65 64 315
AW098597–63 GGAGCTGGTGACAGTGTGAAGG AGCAGCCATCAGACCCCC 64 63 273
AW098717–46 TCACGGCTCAAACTCTGATTAAATAGC AAATCCAAGGCCAGAACCCC 64 64 334
a

Melting temperature of the forward primer.

b

Melting temperature of the reverse primer.

c

Prod. size indicates the predicted PCR product size on the Physcomitrella patens genome sequence.

To evaluate the full set of 245 loci, we sequenced each of these gene regions in the female laboratory strain GG1 (collected from Gross Gerunds, Austria, by D. J. Cove), the male laboratory strains WT4 (collected in Wispertal, Austria, by E. Hartmann) and R40 (collected by S.F.M. in Rensselaer County, New York, USA), and an isolate from Otavalo, Ecuador (collected by S.F.M.). Live cultures of all of these individuals are available from the authors. DNA was extracted from 7-d-old protonemal grown under standard conditions (Cove et al., 2009) using the Nucleon PhytoPure Genomic DNA Extraction Kit (Amersham Biosciences, Piscataway, New Jersey, USA) following the manufacturer’s instructions. PCR was accomplished using GoTaq Green Master Mix (Promega Corporation, Madison, Wisconsin, USA) in 16-μL reactions. The cycling conditions were 94°C for 120 s, then 10 cycles of 94°C for 15 s, an annealing temperature of 65°C that decreased one degree each cycle, and 72°C for 60 s, followed by 20 cycles of 94°C for 15 s, 56°C for 30 s, and 72°C for 60 s. The PCR products were cleaned using the QIAquick PCR Purification Kit (QIAGEN Sciences, Germantown, Maryland, USA). Sequencing used BigDye Terminator version 3.1 chemistry and was accomplished on an ABI 3100 capillary sequencer (Applied Biosystems, Carlsbad, California, USA). Forward and reverse sequence fragments were edited and assembled using Sequencher 4.0 (Gene Codes Corporation, Ann Arbor, Michigan, USA), and all polymorphisms were checked from the chromatograms.

We generated high-quality sequence data for 218 of the 245 loci. We used the software DnaSP (Librado and Rozas, 2009) to estimate the distribution of the per-site genome-wide nucleotide variation (θ, an estimate of Neµ [where Ne is the effective population size and µ is the per-site nucleotide mutation rate]) in C. purpureus (mean: 0.014, median: 0.008, range: 0.0–0.14; Fig. 1, Table 2). Although these data were generated from a modest sample, this stands as the most complete estimate of this fundamental parameter in any bryophyte, and forms a benchmark for further comparisons. It is possible that this estimate of θ is biased upward, by cryptic population structure in our sample, or downward by our small sample size. However, many loci showed no variation among intercontinentally disjunct samples, consistent with previous work (McDaniel and Shaw, 2005), suggesting that the loci that are more diverged reflect locus-specific rather than genome-wide evolutionary processes. For example, loci at the low end of the distribution may be linked to loci that have experienced a selective sweep (McDaniel and Shaw, 2005), while loci on the high end of the distribution may be linked to the sex chromosomes or loci linked to local adaptation (McDaniel et al., 2007, 2008). This degree of variation illustrates the among-locus heterogeneity in evolutionary history within this species. While sampling more individuals would quantitatively improve this estimate, the concordance between this and previous estimates suggests that the median value is unlikely to be qualitatively improved without a much larger sample.

Fig. 1.

Fig. 1.

A frequency histogram of θ (an estimate of 4Neµ) from the 218 loci in Ceratodon purpureus.

Table 2.

Nucleotide diversity at sequenced loci in four geographically widespread accessions of Ceratodon purpureus.a

EST accession Gene name Lengthb Thetac GenBank accession no.
AF233229 auxin binding protein 1-like protein (abp1) 1138 0.000843 JY262836, JY262996, JY263192, JY262676
AF309562 hemoglobin mRNA 820 0.007737 JY262947, JY263101, JY263271, JY262786
AJ250735 delta 6-fatty acid desaturase 1264 0.043478 JY262851, JY263008, JY263206, JY262691
AW086517 similar to SW:IM30_PEA Q03943 CHLOROPLAST MEMBRANE-ASSOCIATED 30 KD PROTEIN PRECURSOR 1164 0 JY262832, JY262991, JY263187, JY262671
AW086519 similar to gb:gb|U77939.1|PVU77939 Phaseolus vulgaris ubiquitin-like (PLANT) 357 0.019055 JY262883, JY263033, JY263228, JY262722
AW086525 similar to TR:O76968 O76968 RIBOSOMAL PROTEIN L18A 1171 0.042882 JY262920, JY263071, JY263259, JY262758
AW086531 similar to SW:SYY_BACST P00952 TYROSYL-TRNA SYNTHETASE 436 0.00489 JY262928, JY263079, JY262765
AW086539 Moss EST library CPU Ceratodon purpureus cDNA clone PEP_SOURCE_ID:CPU010318 3-, mRNA sequence 364 0.057971 JY263102, JY263272, JY262787
AW086546 similar to SW:RL13_ARATH P41127 60S RIBOSOMAL PROTEIN L13 628 0.015856 JY262894, JY263042, JY263239, JY262731
AW086548 similar to SW:RK24_TOBAC Q02764 50S RIBOSOMAL PROTEIN L24, CHLOROPLAST PRECURSOR 468 0.009183 JY262834, JY262993, JY263189, JY262673
AW086549 similar to SW:SYRP_LACBI P87068 SYMBIOSIS-RELATED PROTEIN 286* 0.008734 JY262855, JY262696
AW086551 similar to TR:O48891 O48891 ATP-DEPENDENT CLP PROTEASE PROTEOLYTIC SUBUNIT. 787 0.001285 JY263156, JY263316
AW086555 similar to TR:O04619 O04619 SIMILAR TO MITOCHONDRIAL CARRIER FAMILY 509 0.006367 JY262870, JY263022, JY263219, JY262710
AW086556 similar to TR:O65731 O65731 40S RIBOSOMAL PROTEIN S5 392 0.020997 JY262973, JY263135, JY262814
AW086566 similar to TR:O65059 O65059 PROBABLE 40S RIBOSOMAL PROTEIN S15 762 0.035361 JY262939, JY263090
AW086575 similar to TR:P93133 P93133 NADP-ISOCITRATE DEHYDROGENASE 830 0.003851 JY263138, JY263302
AW086579 similar to SW:LDLC_HUMAN Q14746 LDLC PROTEIN 595 0.001778 JY262854, JY263010, JY262695
AW086590 similar to SW:RL2B_FRIAG O22644 60S RIBOSOMAL PROTEIN L23A 483 0 JY262886, JY263231, JY262725
AW086594 similar to TR:O80626 O80626 PUTATIVE RIBOSOMAL PROTEIN L35 594 0 JY262830, JY262989, JY263185, JY262669
AW086594 similar to TR:O80626 O80626 PUTATIVE RIBOSOMAL PROTEIN L35 429 0 JY262950, JY263105, JY262790
AW086618 similar to SW:SYV_BACSU Q05873 VALYL-TRNA SYNTHETASE 604 0.002098 JY262937, JY263088, JY263268, JY262774
AW086619 similar to TR:O82413 O82413 HISTIDYL-TRNA SYNTHETASE 524 0.046074 JY262906, JY263056, JY263251, JY262745
AW086636 Moss EST library CPU Ceratodon purpureus cDNA clone PEP_SOURCE_ID:CPU010708 3-, mRNA sequence 283 0.021739 JY263160, JY263320
AW086641 2similar to TR:Q9ZRS8 Q9ZRS8 RIBOSOMAL PROTEIN L37A 981 0.012953 JY262923, JY263074, JY263262, JY262761
AW086647 similar to SW:SPEE_COFAR O82147 SPERMIDINE SYNTHASE 327 0.008439 JY262916, JY263067, JY262754
AW086659 similar to SW:RS13_ARATH P49203 40S RIBOSOMAL PROTEIN S13 502 0.011655 JY262882, JY263032, JY263227, JY262721
AW086668 similar to SW:RS3A_BRARA P49396 40S RIBOSOMAL PROTEIN S3A 277 0.013468 JY262995, JY263191, JY262675
AW086669 similar to SW:COXG_YEAST Q01519 CYTOCHROME C OXIDASE POLYPEPTIDE VIB 535 0 JY263106, JY262791
AW086674 similar to SW:RL27_PYRST Q02984 60S RIBOSOMAL PROTEIN L27 439 0.018667 JY262926, JY263077, JY263263
AW086675 similar to TR:O48691 O48691 F3I6.17 PROTEIN 286 0.003115 JY262867, JY263217, JY262707
AW086686 similar to TR:P93359 P93359 PUTATIVE PRE-PRO-CYSTEINE PROTEINASE 306 0.007755 JY262889, JY263037, JY263234, JY262727
AW086692 similar to TR:O16619 O16619 F36H9.3 PROTEIN 356 0.002924 JY263146, JY263308
AW086694 similar to TR:O65088 O65088 TAT-BINDING PROTEIN HOMOLOG 339 0.004295 JY262864, JY263017, JY263215, JY262703
AW086700 similar to TR:Q9ZNS3 Q9ZNS3 RIBOSOMAL PROTEIN S27 322 0.090909 JY263164, JY263324
AW086710 similar to SW:BAS1_HORVU Q96468 2-CYS PEROXIREDOXIN BAS1 PRECURSOR 388 0.011459 JY262982, JY263149, JY263311, JY262824
AW086736 similar to TR:O81925 O81925 40S RIBOSOMAL PROTEIN S6 608 0 JY262868, JY263020, JY262708
AW086737 similar to TR:O23719 O23719 MAP3K DELTA-1 PROTEIN KINASE 421 0.004364 JY262971, JY263133, JY263298, JY262812
AW086738 similar to SW:RS21_ORYSA P35687 40S RIBOSOMAL PROTEIN S21 806 0.055219 JY263096, JY263270, JY262781
AW086752 similar to TR:Q9ZU52 Q9ZU52 PUTATIVE ALDOLASE 285* 0 JY263168, JY263328
AW086753 similar to TR:O04202 O04202 26S PROTEASOME REGULATORY SUBUNIT S12 ISOLOG 319 0.009603 JY262967, JY263128, JY263295, JY262809
AW086758 similar to SW:SYK_CRILO P37879 LYSYL-TRNA SYNTHETASE 316 0.004399 JY262968, JY263129, JY263296, JY262810
AW086759 similar to SW:YGLA_SYNP2 P28606 HYPOTHETICAL 34.1 KD PROTEIN IN GLNA 3-REGION 729 0.017016 JY262856, JY263011, JY263210, JY262697
AW086765 similar to TR:O82229 O82229 PUTATIVE SERINE CARBOXYPEPTIDASE 420 0.025048 JY262941, JY263092, JY262777
AW086768 similar to TR:O04820 O04820 HYPOTHETICAL 9.1 KD PROTEIN JY262985
AW086770 similar to TR:Q55649 Q55649 ABC TRANSPORTER 619 0.005089 JY262876, JY263028, JY262715
AW086781 similar to TR:Q9ZU75 Q9ZU75 UBIQUITIN-CONJUGATING ENZYME E2 751 0.015385 JY263151, JY263312
AW086783 similar to SW:RS28_MAIZE P46302 40S RIBOSOMAL PROTEIN S28 663 0.017572 JY263172, JY263331
AW086786 similar to TR:O65583 O65583 PUTATIVE URACIL PHOSPHORIBOSYL TRANSFERASE 271 0.005742 JY262874, JY263026, JY263222, JY262713
AW086789 similar to SW:RS24_HUMAN P16632 40S RIBOSOMAL PROTEIN S24 552 0.020856 JY262895, JY263043, JY263240, JY262732
AW086790 similar to SW:RS3A_CATRO P33444 40S RIBOSOMAL PROTEIN S3A 506 0.026438 JY262960, JY263119, JY263286, JY262802
AW086798 similar to TR:Q55953 Q55953 HYPOTHETICAL 18.6 KD PROTEIN 595 0.003401 JY263176, JY263335
AW086824 Moss EST library CPU Ceratodon purpureus cDNA clone PEP_SOURCE_ID:CPU020404 5-, mRNA sequence 230 0 JY262983, JY263152, JY263313, JY262825
AW086827 similar to SW:RL31_PICMA O65071 60S RIBOSOMAL PROTEIN L31 704 0.005418 JY262917, JY263068, JY263257, JY262755
AW086830 similar to SW:RL4_ARATH P49691 60S RIBOSOMAL PROTEIN L4 580 0.003736 JY262927, JY263078, JY263264, JY262764
AW086833 similar to gb:gb|AF016284.1|AF016284 Arabidopsis thaliana (PLANT) 323 0.002403 JY262915, JY263066, JY263256, JY262753
AW086837 similar to SW:SYL_BACSU P36430 LEUCYL-TRNA SYNTHETASE 540 0.001699 JY262853, JY263009, JY263209, JY262694
AW086841 similar to TR:O04002 O04002 CDSP32 PROTEIN 264 0.004587 JY262953, JY262795
AW086845 similar to SW:RS11_SOYBN P17093 40S RIBOSOMAL PROTEIN S11 700 0.062613 JY262871, JY263023, JY263220, JY262711
AW086855 similar to TR:Q9ZRT5 Q9ZRT5 GLUTATHIONE TRANSFERASE ATGST 11 564 0.002141 JY263157, JY263317
AW086858 similar to gb:emb|Z23165.1|ATRBPS18A A.thaliana ribosomal protein gene (PLANT) 719 0.012759 JY262881, JY263031, JY263226, JY262720
AW086868 similar to SW:RS8_ORYSA P49199 40S RIBOSOMAL PROTEIN S7 417 0.019656 JY262878, JY263029, JY263224, JY262717
AW086870 similar to TR:Q43548 Q43548 GOLDEN DELICIOUS APPLE FRUIT EXPRESSED 304 0.007576 JY262964, JY263125, JY263292, JY262806
AW086877 similar to SW:CG1C_ORYSA P93411 G1/S-SPECIFIC CYCLIN C-TYPE 397 0 JY262838, JY262998, JY263194, JY262678
AW086877 similar to SW:CG1C_ORYSA P93411 G1/S-SPECIFIC CYCLIN C-TYPE 336 0.003704 JY262847, JY263005, JY262687
AW086878 similar to SW:RL6_MESCR P34091 60S RIBOSOMAL PROTEIN L6 527 0.010703 JY263048, JY263245, JY262737
AW086917 similar to SW:ARF_ORYSA P51823 ADP-RIBOSYLATION FACTOR 189* 0.011364 JY262931, JY263081, JY263266, JY262767
AW086924 Moss EST library CPU Ceratodon purpureus cDNA clone PEP_SOURCE_ID:CPU030116 3-, mRNA sequence 425 0.031648 JY262948, JY263103, JY263273, JY262788
AW086929 similar to WP:F10G7.1 CE02624 416 0.045455 JY262962, JY263123, JY263290, JY262804
AW086934 similar to SW:YKQ0_YEAST P36053 HYPOTHETICAL 16.2 KD PROTEIN IN PIR3-APE2 INTERGENIC REGION 220 0.00813 JY263084, JY262770
AW086944 similar to TR:O48773 O48773 HYPOTHETICAL 47.8 KD PROTEIN 342 0.005782 JY262965, JY263126, JY263293, JY262807
AW086962 similar to TR:O81846 O81846 PHOSPHATIDYLINOSITOL SYNTHASE 699 0.011111 JY262908, JY263059, JY262747
AW086969 similar to TR:Q43275 Q43275 PLASMA MEMBRANE H+-ATPASE 185 0 JY263137, JY263301
AW086973 similar to TR:O22972 O22972 HSP90 ISOLOG 142* 0 JY263154, JY263315
AW086975 similar to WP:F17C11.8 CE05655 708 0 JY262840, JY263000, JY263196, JY262680
AW086979 similar to TR:Q9ZQN8 Q9ZQN8 PUTATIVE GLUCOSYLTRANSFERASE 316 0.012397 JY262949, JY263104, JY263274, JY262789
AW086989 similar to TR:Q14692 Q14692 KIAA0187 PROTEIN 570 0.007792 JY262885, JY263035, JY263230, JY262724
AW086990 Moss EST library CPU Ceratodon purpureus cDNA clone PEP_SOURCE_ID:CPU030623 5-, mRNA sequence 572 0.017001 JY262918, JY263069, JY262756
AW086999 similar to SW:SMD2_HUMAN P43330 SMALL NUCLEAR RIBONUCLEOPROTEIN SM D2 352 0.012636 JY262890, JY263038, JY263235, JY262728
AW087002 similar to gb:gb|AF068690.1|AF068690 Citrullus lanatus peroxisomal (PLANT) 458 0 JY263094, JY262779
AW087005 similar to TR:O65606 O65606 HYPOTHETICAL 23.9 KD PROTEIN 253 0.035573 JY262835, JY262994, JY263190, JY262674
AW087013 similar to gb:dbj|D00571.1|PYPLHABBP Pyrus pyrifolia mRNA for light harvesting (PLANT) 192 0.047619 JY262946, JY263100, JY262785
AW087017 similar to TR:O82341 O82341 PUTATIVE TGF-BETA RECEPTOR INTERACTING PROTEIN 306 JY263058
AW087018 similar to SW:PPCE_HUMAN P48147 PROLYL ENDOPEPTIDASE 606 0.052876 JY262837, JY262997, JY263193, JY262677
AW087021 Moss EST library CPU Ceratodon purpureus cDNA clone PEP_SOURCE_ID:CPU031003 5-, mRNA sequence 578 0.016376 JY262952, JY263109, JY263276, JY262794
AW087023 Moss EST library CPU Ceratodon purpureus cDNA clone PEP_SOURCE_ID:CPU031009 5-, mRNA sequence 760 0.004662 JY262850, JY263007, JY263205, JY262690
AW087027 Moss EST library CPU Ceratodon purpureus cDNA clone PEP_SOURCE_ID:CPU031019 5-, mRNA sequence 817 0.006417 JY262956, JY263112, JY263279, JY262798
AW087029 similar to SW:RS8_ORYSA P49199 40S RIBOSOMAL PROTEIN S8 482 0.005482 JY262914, JY263065, JY263255, JY262752
AW087030 similar to WP:C41C4.4 CE01519 PUTATIVE SERINE/THREONINE-PROTEIN KINASE C41C4.4 IN CHROMOSOME II PRECURSOR 498 0.010417 JY262943, JY263097, JY262782
AW087034 similar to SW:YML4_ARATH O22815 HYPOTHETICAL MLO-LIKE PROTEIN 226 JY263139
AW087043 similar to SW:RS8_ORYSA P49199 40S RIBOSOMAL PROTEIN S8 349 0.086154 JY263093, JY262778
AW087048 similar to TR:O80383 O80383 98B 511 0.007026 JY263114, JY263281
AW087051 similar to TR:O80644 O80644 F12L6.23 PROTEIN 74* 0 JY263165, JY263325
AW087053 similar to SW:IFE1_WHEAT P29557 EUKARYOTIC TRANSLATION INITIATION FACTOR 4E 227 0.017408 JY262975, JY263140, JY263303, JY262816
AW087065 similar to SW:SYS_HELAN O81983 SERYL-TRNA SYNTHETASE 524 0.004272 JY262972, JY263134, JY263299, JY262813
AW087074 similar to TR:O65686 O65686 PUTATIVE RIBOSOMAL PROTEIN S16 700 0 JY263169, JY263329
AW087075 Moss EST library CPU Ceratodon purpureus cDNA clone PEP_SOURCE_ID:CPU031418 5-, mRNA sequence 646 0.014107 JY262905, JY263054, JY263250, JY262743
AW097915 Moss EST library CPU Ceratodon purpureus cDNA clone PEP_SOURCE_ID:CPU011109 5- 379 0.028902 JY263177, JY263336
AW097924 Moss EST library CPU Ceratodon purpureus cDNA clone PEP_SOURCE_ID:CPU011114 5-, mRNA sequence 631 0.009688 JY262875, JY263027, JY263223, JY262714
AW097946 similar to TR:O81362 O81362 SULFITE REDUCTASE 176* 0.004545 JY262912, JY263063, JY263254, JY262751
AW097948 similar to SW:RL5_ORYSA P49625 60S RIBOSOMAL PROTEIN L5 641 0.009762 JY262936, JY263087, JY263267, JY262773
AW097953 similar to SW:R13A_PICMA O65055 60S RIBOSOMAL PROTEIN L13A 183* 0 JY262877, JY262716
AW097956 similar to SW:RL1X_ARATH P51418 60S RIBOSOMAL PROTEIN L18A 901 0.004234 JY262919, JY263070, JY263258, JY262757
AW097975 similar to TR:O65068 O65068 60S RIBOSOMAL PROTEIN L17 700 0.008681 JY262865, JY262704
AW097976 similar to TR:O24447 O24447 CARBAMOYL PHOSPHATE SYNTHETASE SMALL SUBUNIT 512 0.007593 JY262860, JY263015, JY263213
AW097979 similar to TR:O82808 O82808 F17H15.2 PROTEIN 609 0 JY263158, JY263318
AW097983 similar to SW:GYP7_YARLI P09379 PROBABLE GYP7 PROTEIN 733 0.004071 JY262930, JY263080, JY263265, JY262766
AW097984 similar to TR:O65059 O65059 PROBABLE 40S RIBOSOMAL PROTEIN S15 554 0.002037 JY262873, JY263025, JY263221, JY262712
AW097987 similar to TR:Q96337 Q96337 AMP-BINDING PROTEIN 1031 0.034648 JY262934, JY263085, JY262771
AW097994 similar to TR:O65462 O65462 RECEPTOR LIKE PROTEIN 359 0 JY262880, JY262719
AW098004 similar to TR:O66573 O66573 ALDEHYDE DEHYDROGENASE 673 0.008141 JY262942, JY263095, JY263269, JY262780
AW098011 similar to TR:Q14997 Q14997 KIAA0077 PROTEIN 491 0.010417 JY263161, JY263321
AW098019 similar to SW:VATA_MAIZE P49087 VACUOLAR ATP SYNTHASE CATALYTIC SUBUNIT A 1081 0.008511 JY262954, JY263110, JY263277, JY262796
AW098020 similar to TR:O82204 O82204 F6F22.24 PROTEIN 601 0.02139 JY262869, JY263021, JY263218, JY262709
AW098024 similar to TR:Q9ZWB8 Q9ZWB8 F21M11.8 PROTEIN 687 0.010737 JY262957, JY263116, JY263283, JY262799
AW098026 similar to SW:RS3_MOUSE P17073 40S RIBOSOMAL PROTEIN S3 397 0.036855 JY262958, JY263117, JY263284, JY262800
AW098048 similar to TR:O65023 O65023 HYPOTHETICAL 41.8 KD PROTEIN 534 0.003115 JY263055, JY262744
AW098048 similar to TR:O65023 O65023 HYPOTHETICAL 41.8 KD PROTEIN 57* 0 JY262913, JY263064
AW098051 Moss EST library CPU Ceratodon purpureus cDNA clonePEP_SOURCE_ID:CPU011520 5- 424 0.131034 JY263166, JY263326
AW098056 similar to TR:O23984 O23984 EXPRESSED SEQUENCE TAG 388 0.053872 JY262909, JY263060, JY262748
AW098058 similar to SW:RM24_YEAST P36525 60S RIBOSOMAL PROTEIN L24, MITOCHONDRIAL PRECURSOR 439 0.033613 JY262845, JY263004, JY263201, JY262685
AW098074 similar to gb:gb|L28831.1|SOYRIPR Glycine max ribosomal protein S11 gene, (PLANT) 706 0.037273 JY262974, JY263136, JY263300, JY262815
AW098078 similar to SW:RS20_ORYSA P35686 40S RIBOSOMAL PROTEIN S20 470 0.01982 JY262935, JY263086, JY262772
AW098097 similar to TR:O65583 O65583 PUTATIVE URACIL PHOSPHORIBOSYL TRANSFERASE 210* 0.005076 JY262827, JY262665
AW098140 similar to SW:RS21_ORYSA P35687 40S RIBOSOMAL PROTEIN S21 106* 0.014815 JY262925, JY263076, JY262763
AW098153 similar to TR:O82505 O82505 F2P3.12 PROTEIN 529 0 JY263113, JY263280
AW098157 similar to SW:RL37_ARATH Q43292 60S RIBOSOMAL PROTEIN L37 801 0.026701 JY262842, JY263002, JY263198, JY262682
AW098158 similar to SW:RL44_GOSHI Q96499 60S RIBOSOMAL PROTEIN L44 688 0.017544 JY262843, JY263003, JY263199, JY262683
AW098158 similar to SW:RL44_GOSHI Q96499 60S RIBOSOMAL PROTEIN L44 446 0.054795 JY262858, JY263013, JY262699
AW098185 Moss EST library CPU Ceratodon purpureus cDNA clone PEP_SOURCE_ID:CPU030823 3-, mRNA sequence 151* 0 JY262901, JY263050, JY262739
AW098187 similar to SW:GLYM_PEA P34899 SERINE HYDROXYMETHYLTRANSFERASE, MITOCHONDRIAL PRECURSOR * JY263131
AW098191 similar to TR:O49336 O49336 T11J7.10 PROTEIN 330 0 JY262970, JY263132
AW098191 similar to TR:O49336 O49336 T11J7.10 PROTEIN 392 0 JY262976, JY263141, JY262817
AW098197 similar to TR:O49337 O49337 T11J7.11 PROTEIN 747 0.002204 JY262969, JY263130, JY263297, JY262811
AW098200 Moss EST library CPU Ceratodon purpureus cDNA clone PEP_SOURCE_ID:CPU021119 5- JY263170
AW098203 similar to TR:Q9ZTW0 Q9ZTW0 ABA-RESPONSIVE PROTEIN 479 0.004264 JY263173, JY263332
AW098216 similar to SW:R33B_YEAST P41056 60S RIBOSOMAL PROTEIN L33-B 194* 0 JY263178, JY263337
AW098225 similar to SW:ERD1_ARATH P42762 ERD1 PROTEIN PRECURSOR 454 0.008905 JY262841, JY263001, JY263197, JY262681
AW098233 similar to TR:O80526 O80526 F19J9.9 PROTEIN 708 0.006442 JY262959, JY263118, JY263285, JY262801
AW098234 similar to SW:GLYM_PEA P34899 SERINE HYDROXYMETHYLTRANSFERASE, MITOCHONDRIAL PRECURSOR 278 0.053292 JY262857, JY263012, JY263211, JY262698
AW098247 similar to SW:ALFD_PEA Q01517 FRUCTOSE-BISPHOSPHATE ALDOLASE 2, CHLOROPLAST 569 0.005981 JY262961, JY263122, JY263289, JY262803
AW098252 similar to SW:RS2_ARATH P49688 40S RIBOSOMAL PROTEIN S2 86* 0 JY262872, JY263024
AW098256 similar to TR:O80799 O80799 T8F5.5 PROTEIN 517 0.002727 JY262911, JY263062, JY263253, JY262750
AW098258 similar to TR:O22215 O22215 PUTATIVE ESTERASE D 619 0.043062 JY262981, JY263148, JY263310, JY262823
AW098262 similar to TR:Q9ZV56 Q9ZV56 PUTATIVE PHOSPHOCHOLINE CYTIDYLYLTRANSFERASE 540 0.001946 JY263159, JY263319
AW098272 similar to TR:O49379 O49379 HYPOTHETICAL 16.4 KD PROTEIN 211 0.023952 JY263162, JY263322
AW098279 Moss EST library CPU Ceratodon purpureus cDNA clone PEP_SOURCE_ID:CPU021506 5-, mRNA sequence 141* 0 JY262900, JY263049, JY263246, JY262738
AW098281 similar to TR:O65068 O65068 60S RIBOSOMAL PROTEIN L17 348 0.044199 JY263107, JY263275, JY262792
AW098283 similar to TR:O64720 O64720 PUTATIVE TBP-BINDING PROTEIN 431 0.004885 JY262977, JY263142, JY263304, JY262818
AW098284 similar to TR:Q40922 Q40922 PSEUDOTZAIN 154* 0 JY262966, JY263127, JY263294, JY262808
AW098291 similar to SW:YAUB_SCHPO Q10166 HYPOTHETICAL 35.7 KD PROTEIN C26A3.11 IN CHROMOSOME I 286 0.02952 JY263167, JY263327
AW098300 similar to SW:SUI1_MAIZE P56330 PROTEIN TRANSLATION FACTOR SUI1 HOMOLOG 537 0.072549 JY263171, JY263330
AW098304 similar to SW:PRL1_ARATH Q42384 PP1/PP2A PHOSPHATASES PLEIOTROPIC REGULATOR PRL1 385 0.019139 JY262893, JY263041, JY263238, JY262730
AW098306 similar to SW:RL7_ARATH Q42208 60S RIBOSOMAL PROTEIN L7 203* 0 JY263174, JY263333
AW098317 Moss EST library CPU Ceratodon purpureus cDNA clone PEP_SOURCE_ID:CPU030319 5-, mRNA sequence 508 0 JY262980, JY262822
AW098318 Moss EST library CPU Ceratodon purpureus cDNA clone PEP_SOURCE_ID:CPU030321 5-, mRNA sequence 128* 0 JY262852, JY263208, JY262693
AW098322 similar to TR:O23601 O23601 HYPOTHETICAL 40.2 KD PROTEIN 735 0.023511 JY262896, JY263044, JY263241, JY262733
AW098328 similar to TR:Q23920 Q23920 PEPA 429 0.024938 JY262938, JY263089, JY262775
AW098337 similar to SW:P2A_HELAN P48579 SERINE/THREONINE PROTEIN PHOSPHATASE PP2A CATALYTIC SUBUNIT 293 0.004065 JY262933, JY263083, JY262769
AW098340 Moss EST library CPU Ceratodon purpureus cDNA clone PEP_SOURCE_ID:CPU030420 5-, mRNA sequence 434 0.011223 JY262839, JY262999, JY263195, JY262679
AW098349 Moss EST library CPU Ceratodon purpureus cDNA clone PEP_SOURCE_ID:CPU030717 5-, mRNA sequence 329 0 JY263207, JY262692
AW098359 similar to SW:RL29_RAT P25886 60S RIBOSOMAL PROTEIN L29 334 0.023392 JY262986, JY263182, JY262666
AW098361 similar to TR:O80800 O80800 T8F5.6 PROTEIN 849 0.012285 JY262903, JY263052, JY263248, JY262741
AW098364 similar to TR:O65636 O65636 HYPOTHETICAL 15.1 KD PROTEIN 442 0.004902 JY262940, JY263091, JY262776
AW098367 similar to TR:Q42809 Q42809 GMCK1P 453 0.010195 JY262910, JY263061, JY263252, JY262749
AW098372 Moss EST library CPU Ceratodon purpureus cDNA clone PEP_SOURCE_ID:CPU030814 5-, mRNA sequence 147* 0.008658 JY262866, JY263018, JY262705
AW098391 similar to TR:O30618 O30618 ACYL-COA OXIDASE 530 0.010414 JY262921, JY263072, JY263260, JY262759
AW098393 similar to SW:RL7A_ORYSA P35685 60S RIBOSOMAL PROTEIN L7A 211 0.020408 JY262887, JY263232
AW098407 similar to TR:O81046 O81046 AXI 1-LIKE PROTEIN 727 0.022222 JY262863, JY263214, JY262702
AW098418 similar to SW:RS25_LYCES P46301 40S RIBOSOMAL PROTEIN S25 312 0.011988 JY262888, JY263036, JY263233, JY262726
AW098419 similar to SW:R35A_MOUSE O55142 60S RIBOSOMAL PROTEIN L35A 550 0.01165 JY263179, JY263338
AW098432 Moss EST library CPU Ceratodon purpureus cDNA clone PEP_SOURCE_ID:CPU031514 5-, mRNA sequence 598 0 JY262891, JY263039, JY263236, JY262729
AW098442 similar to TR:P93321 P93321 CDC2 KINASE HOMOLOGUE, CDC2MSD 290 0.011252 JY262844, JY263200, JY262684
AW098442 similar to TR:P93321 P93321 CDC2 KINASE HOMOLOGUE, CDC2MSD 473 0.029591 JY262892, JY263040, JY263237
AW098448 similar to TR:Q9ZQX9 Q9ZQX9 40S RIBOSOMAL PROTEIN S27 HOMOLOG 274 0 JY263181, JY263340
AW098462 similar to SW:RS1A_ARATH P42798 40S RIBOSOMAL PROTEIN S15A 215 0.044709 JY262879, JY263030, JY263225, JY262718
AW098472 Moss EST library CPU Ceratodon purpureus cDNA clone PEP_SOURCE_ID:CPU011207 3- 446 0 JY263163, JY263323
AW098479 similar to TR:O48649 O48649 ADP-RIBOSYLATION FACTOR 251 0.029268 JY262907, JY263057, JY262746
AW098512 similar to SW:ILV5_SPIOL Q01292 KETOL-ACID REDUCTOISOMERASE PRECURSOR 645 0.019108 JY262884, JY263034, JY263229, JY262723
AW098515 similar to TR:O04556 O04556 T7N9.9 442 0.00391 JY262846, JY263202, JY262686
AW098521 similar to TR:O82203 O82203 PUTATIVE RIBOSOMAL PROTEIN 286 0 JY263145, JY263307, JY262821
AW098560 similar to TR:O13870 O13870 PROBABLE TRANSCRIPTIONAL REGULATOR C1B3.05 458 0.008354 JY262944, JY263098, JY262783
AW098568 similar to SW:DHE3_RHISN Q53199 PROBABLE GLUTAMATE DEHYDROGENASE 330 0.007305 JY262831, JY262990, JY263186, JY262670
AW098572 similar to TR:Q9ZUL5 Q9ZUL5 PUTATIVE DNA-BINDING PROTEIN 619 0.002573 JY262859, JY263014, JY263212, JY262700
AW098585 similar to SW:FKB7_WHEAT Q43207 70 KD PEPTIDYLPROLYL ISOMERASE JY263155
AW098587 similar to SW:OAT_EMENI Q92413 ORNITHINE AMINOTRANSFERASE 547 0.017842 JY262902, JY263051, JY263247, JY262740
AW098597 similar to TR:Q56987 Q56987 HYPOTHETICAL 23.2 KD PROTEIN 254 0 JY263175, JY263334
AW098620 similar to TR:Q9ZRI8 Q9ZRI8 FORMATE DEHYDROGENASE 606 0 JY262929, JY263341
AW098621 similar to SW:RS1A_ARATH P42798 40S RIBOSOMAL PROTEIN S15A 732 0.044058 JY263019, JY263216, JY262706
AW098624 similar to SW:RL44_GOSHI Q96499 60S RIBOSOMAL PROTEIN L44 JY262862
AW098631 similar to SW:SPEE_COFAR O82147 SPERMIDINE SYNTHASE 161* 0 JY262861, JY263016, JY262701
AW098643 similar to TR:Q9ZQP2 Q9ZQP2 PUTATIVE ACYL COENZYME A OXIDASE, PEROXISOMAL COMPONENT 456 0.019697 JY262955, JY263111, JY263278, JY262797
AW098651 similar to TR:Q45073 Q45073 HYPOTHETICAL 23.3 KD PROTEIN 337 0.008584 JY262951, JY263108, JY262793
AW098679 similar to TR:O82342 O82342 PUTATIVE TGF-BETA RECEPTOR INTERACTING PROTEIN 807 0.054728 JY262828, JY262987, JY263183, JY262667
AW098700 similar to TR:Q9ZQR3 Q9ZQR3 PUTATIVE RECEPTOR PROTEIN KINASE 272 0.023622 JY262848, JY263203, JY262688
AW098717 similar to TR:O82204 O82204 F6F22.24 PROTEIN 173* 0.006211 JY263180, JY263339
AW098746 similar to TR:O22662 O22662 PROTEIN PHOSPHATASE U 532 0 JY263115, JY263282
AW098758 similar to SW:TRP2_ARATH P25269 TRYPTOPHAN SYNTHASE BETA CHAIN 2 PRECURSOR 369 0 JY263121, JY263288
AW098761 similar to TR:Q9ZDU0 Q9ZDU0 30S RIBOSOMAL PROTEIN S9 134* 0.031169 JY262898, JY263046, JY263243, JY262735
AW098770 similar to WP:D1054.3 CE05522 603 0.003924 JY262978, JY263143, JY263305, JY262819
AW098776 similar to TR:Q41024 Q41024 SMALL GTP-BINDING PROTEIN 599 0.003643 JY263147, JY263309
AW098780 similar to SW:IMB3_HUMAN O00410 IMPORTIN BETA-3 SUBUNIT 656 0 JY262963, JY263124, JY263291, JY262805
AW098782 similar to TR:Q9ZVS6 Q9ZVS6 F15K9.15 PROTEIN 310 0.012212 JY262899, JY263047, JY263244, JY262736
AW098786 similar to SW:LE22_ARCFU O28084 PUTATIVE 3-ISOPROPYLMALATE DEHYDRATASE LARGE SUBUNIT 569 0.006545 JY262897, JY263045, JY263242, JY262734
AW098797 similar to SW:CAHC_HORVU P40880 CARBONIC ANHYDRASE, CHLOROPLAST PRECURSOR 410 0.001855 JY262984, JY263153, JY263314, JY262826
AW098799 similar to WP:F41C3.4 CE02732 347 0.004489 JY262945, JY263099, JY262784
AW098804 similar to TR:O81808 O81808 HYPOTHETICAL 62.6 KD PROTEIN 512 0.017094 JY262922, JY263073, JY263261, JY262760
AW098812 similar to TR:O81468 O81468 T15F16.12 PROTEIN 747 0.007407 JY263120, JY263287
AW098823 similar to SW:RLA1_MAIZE P52855 60S ACIDIC RIBOSOMAL PROTEIN P1 852 0.005929 JY262904, JY263053, JY263249, JY262742
AW098831 similar to TR:O75865 O75865 R32611_2 485 0.005742 JY262979, JY263144, JY263306, JY262820
AW098839 similar to SW:RS19_ORYSA P40978 40S RIBOSOMAL PROTEIN S18 857 0 JY262849, JY263006, JY263204, JY262689
AW098949 similar to TR:O04033 O04033 F7G19.16 389 0.002045 JY262924, JY263075, JY262762
AW098949 similar to TR:O04033 O04033 F7G19.15 411 0.003956 JY262932, JY263082, JY262768
AW098974 similar to SW:RL34_TOBAC P41098 60S RIBOSOMAL PROTEIN L34 514 0.063425 JY262829, JY262988, JY263184, JY262668
BI894286 similar to SW:ATP2_ACTCH P43395 ATP SYNTHASE BETA CHAIN, MITOCHONDRIAL 272 JY263150
BI894288 similar to SW:RS23_FRAAN P46297 40S RIBOSOMAL PROTEIN S23 565 0 JY262833, JY262992, JY263188, JY262672
CZ893596 CEPU109
CZ894207 CEPU105 86 0.026316
CZ894357 CEPU108 243 0.0125
a

Accessions studied were: C. purpureus: WT4 (Wispertal, Austria), GG1 (Grossgerunds, Austria), R40 (Petersburg Pass, Renssalaer, New York), and Otavalo, Ecuador (McDaniel E112, DUKE). Additional isolates were sequenced for the loci in bold in C. purpureus (Ros29.10.2009-1 [UF], Ros29.10.2009-2 [UF], Antarctica, Robinson&Wasley 99/00 [DUKE]); T. cylindricus (DUKE11365, DUKE65082, DUKE65084); and C. chloropus (Werner&Ros 14024 [DUKE], Guerra15.4.2001 [DUKE], Ros29.10.2009-1 [UF], Ros29.10.2009-2 [UF]).

b

Length of the amplified PCR product in C. purpureus; an “*” indicates that C. purpureus lacks the P. patens intron.

c

A “–” indicates that a single PCR product was generated; a “0” indicates an absence of variation among isolates.

We have identified more than 50 loci with θ = 0.02, a value more than twice the species median. This value is also equivalent to the most variable nuclear loci used for phylogeographic inference in any bryophyte species to date. Using the PCR and sequencing strategy outlined above, we chose 12 loci to sequence in isolates of C. purpureus from the Sierra Nevadas, Spain; Casey Station, Antarctica; and Wollongong, Australia, and 1–2 isolates of the sister groups to C. purpureus, Trichodon cylindricus (Hedw.) Schimp., and Cheilothela chloropus (Brid.) Broth. (Table 2). The PCR products were nearly the same length in all three species, and produced sequences with unambiguous chromatograms. In all cases, the introns were alignable among the three species, but the species differed at ∼10–20% of the intron sites, suggesting that these loci may be useful for phylogeographic and species-level phylogenetic studies. In the complete panel of loci, we also found 23 introns that were present in the P. patens genome that were absent in the C. purpureus genome (Table 2). Using a PCR length variation test, we determined that the intron absence was shared by many species in the Dicranidae (McDaniel and Neubig, unpublished data). These presence/absence polymorphisms may be useful phylogenetic markers (Goffinet et al., 2007). We expect that this panel of primers will be valuable for the bryophyte evolutionary genetics community as a whole.

CONCLUSIONS

In this study, we have generated primers for more than 200 loci, based on comparisons from ESTs from C. purpureus and the genome of P. patens. We have used these loci to estimate the genome-wide distribution of nucleotide diversity within C. purpureus. Because these primers were designed to be homologous to exonic regions that are conserved between species that diverged long ago, these primers may amplify the target region in a wide variety of mosses. We anticipate that these loci will form a valuable addition to the bryophyte molecular ecology toolkit, enabling more detailed phylogeographic and population genetic studies of a variety of focal species.

LITERATURE CITED

  1. Cove D., Perroud P.-F., Charron A., McDaniel S., Khandelwal A., Quatrano R. 2009. The moss Physcomitrella patens: A novel model system for plant development and genomic studies, Emerging Model Organisms. Cold Spring Harbor Laboratory Press, New York, New York, USA: [DOI] [PubMed] [Google Scholar]
  2. Cox C. J., Goffinet B., Wickett N. J., Boles S. B., Shaw A. J. 2010. Moss diversity: A molecular phylogenetic analysis of genera. Phytotaxa 9: 175–195 [Google Scholar]
  3. Goffinet B., Wickett N. J., Werner O., Ros R. M., Shaw A. J., Cox C. J. 2007. Distribution and phylogenetic significance of the 71-kb inversion in the plastid genome in Funariidae (Bryophyta). Annals of Botany 99: 747–753 [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Kent W. J. 2002. BLAT—The BLAST-Like Alignment Tool. Genome Research 12: 656–664 [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Librado P., Rozas J. 2009. DnaSP v5: A software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25: 1451–1452 [DOI] [PubMed] [Google Scholar]
  6. McDaniel S. F., Shaw A. J. 2005. Selective sweeps and intercontinental migration in the cosmopolitan moss Ceratodon purpureus (Hedw.) Brid. Molecular Ecology 14: 1121–1132 [DOI] [PubMed] [Google Scholar]
  7. McDaniel S. F., Willis J. H., Shaw A. J. 2007. A linkage map reveals a complex basis for segregation distortion in an interpopulation cross in the moss Ceratodon purpureus. Genetics 176: 2489–2500 [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. McDaniel S. F., Willis J. H., Shaw A. J. 2008. The genetic basis of developmental abnormalities in interpopulation hybrids of the moss Ceratodon purpureus. Genetics 179: 1425–1435 [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. McDaniel S. F., von Stackelberg M., Richardt S., Quatrano R. S., Reski R., Rensing S. A. 2010. The speciation history of the Physcomitrium–Physcomitrella species complex. Evolution 64: 217–231 [DOI] [PubMed] [Google Scholar]
  10. Rozen S., Skaletsky H. J. 2000. Primer3 on the WWW for general users and for biologist programmers. In S. Misener and S. A. Krawetz [eds.], Methods in molecular biology, vol. 132: Bioinformatics methods and protocols, 365–386. Humana Press, Totowa, New Jersey, USA. [DOI] [PubMed] [Google Scholar]
  11. Stech M., Quandt D. 2010. 20,000 species and five key markers: The status of molecular bryophyte phylogenetics. Phytotaxa 9: 196–228 [Google Scholar]
  12. Vanderpoorten A., Shaw A. J. 2010. The application of molecular data to the phylogenetic delimitation of species in bryophytes: A note of caution. Phytotaxa 9: 229–237 [Google Scholar]

Articles from Applications in Plant Sciences are provided here courtesy of Wiley

RESOURCES