Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1995 Sep 12;92(19):8846–8850. doi: 10.1073/pnas.92.19.8846

The three-dimensional structure of NAD(P)H:quinone reductase, a flavoprotein involved in cancer chemoprotection and chemotherapy: mechanism of the two-electron reduction.

R Li 1, M A Bianchet 1, P Talalay 1, L M Amzel 1
PMCID: PMC41064  PMID: 7568029

Abstract

Quinone reductase [NAD(P)H:(quinone acceptor) oxidoreductase, EC 1.6.99.2], also called DT diaphorase, is a homodimeric FAD-containing enzyme that catalyzes obligatory NAD(P)H-dependent two-electron reductions of quinones and protects cells against the toxic and neoplastic effects of free radicals and reactive oxygen species arising from one-electron reductions. These two-electron reductions participate in the reductive bioactivation of cancer chemotherapeutic agents such as mitomycin C in tumor cells. Thus, surprisingly, the same enzymatic reaction that protects normal cells activates cytotoxic drugs used in cancer chemotherapy. The 2.1-A crystal structure of rat liver quinone reductase reveals that the folding of a portion of each monomer is similar to that of flavodoxin, a bacterial FMN-containing protein. Two additional portions of the polypeptide chains are involved in dimerization and in formation of the two identical catalytic sites to which both monomers contribute. The crystallographic structures of two FAD-containing enzyme complexes (one containing NADP+, the other containing duroquinone) suggest that direct hydride transfers from NAD(P)H to FAD and from FADH2 to the quinone [which occupies the site vacated by NAD(P)H] provide a simple rationale for the obligatory two-electron reductions involving a ping-pong mechanism.

Full text

PDF
8846

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amzel L. M., Bryant S. H., Prochaska H. J., Talalay P. Preliminary crystallographic X-ray data for an NAD(P)H:quinone reductase from mouse liver. J Biol Chem. 1986 Jan 25;261(3):1379–1379. [PubMed] [Google Scholar]
  2. Benson A. M., Hunkeler M. J., Talalay P. Increase of NAD(P)H:quinone reductase by dietary antioxidants: possible role in protection against carcinogenesis and toxicity. Proc Natl Acad Sci U S A. 1980 Sep;77(9):5216–5220. doi: 10.1073/pnas.77.9.5216. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Berger M. S., Talcott R. E., Rosenblum M. L., Silva M., AliOsman F., Smith M. T. Use of quinones in brain-tumor therapy: preliminary results of preclinical laboratory investigations. J Toxicol Environ Health. 1985;16(5):713–719. doi: 10.1080/15287398509530781. [DOI] [PubMed] [Google Scholar]
  4. Boyington J. C., Gaffney B. J., Amzel L. M. The three-dimensional structure of an arachidonic acid 15-lipoxygenase. Science. 1993 Jun 4;260(5113):1482–1486. doi: 10.1126/science.8502991. [DOI] [PubMed] [Google Scholar]
  5. Brünger A. T., Kuriyan J., Karplus M. Crystallographic R factor refinement by molecular dynamics. Science. 1987 Jan 23;235(4787):458–460. doi: 10.1126/science.235.4787.458. [DOI] [PubMed] [Google Scholar]
  6. Chen S., Clarke P. E., Martino P. A., Deng P. S., Yeh C. H., Lee T. D., Prochaska H. J., Talalay P. Mouse liver NAD(P)H:quinone acceptor oxidoreductase: protein sequence analysis by tandem mass spectrometry, cDNA cloning, expression in Escherichia coli, and enzyme activity analysis. Protein Sci. 1994 Aug;3(8):1296–1304. doi: 10.1002/pro.5560030816. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Chen S., Deng P. S., Bailey J. M., Swiderek K. M. A two-domain structure for the two subunits of NAD(P)H:quinone acceptor oxidoreductase. Protein Sci. 1994 Jan;3(1):51–57. doi: 10.1002/pro.5560030107. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. ERNSTER L., NAVAZIO F. Studies on TPN-linked oxidations. I. Pathways of isocitrate oxidation in rat liver micochondria. Biochim Biophys Acta. 1957 Nov;26(2):408–415. doi: 10.1016/0006-3002(57)90023-9. [DOI] [PubMed] [Google Scholar]
  9. Favreau L. V., Pickett C. B. Transcriptional regulation of the rat NAD(P)H:quinone reductase gene. Characterization of a DNA-protein interaction at the antioxidant responsive element and induction by 12-O-tetradecanoylphorbol 13-acetate. J Biol Chem. 1993 Sep 15;268(26):19875–19881. [PubMed] [Google Scholar]
  10. Hosoda S., Nakamura W., Hayashi K. Properties and reaction mechanism of DT diaphorase from rat liver. J Biol Chem. 1974 Oct 25;249(20):6416–6423. [PubMed] [Google Scholar]
  11. Iyanagi T., Yamazaki I. One-electron-transfer reactions in biochemical systems. V. Difference in the mechanism of quinone reduction by the NADH dehydrogenase and the NAD(P)H dehydrogenase (DT-diaphorase). Biochim Biophys Acta. 1970 Sep 1;216(2):282–294. doi: 10.1016/0005-2728(70)90220-3. [DOI] [PubMed] [Google Scholar]
  12. Jaiswal A. K. Human NAD(P)H:quinone oxidoreductase2. Gene structure, activity, and tissue-specific expression. J Biol Chem. 1994 May 20;269(20):14502–14508. [PubMed] [Google Scholar]
  13. Lee C. P., Simard-Duquesne N., Ernster L., Hoberman H. D. Stereochemistry of hydrogen-transfer in the energy-linked pyridine nucleotide transhydrogenase and related reactions. Biochim Biophys Acta. 1965 Sep 20;105(3):397–409. doi: 10.1016/s0926-6593(65)80226-0. [DOI] [PubMed] [Google Scholar]
  14. Liu X. F., Yuan H., Haniu M., Iyanagi T., Shively J. E., Chen S. A. Reaction of rat liver DT-diaphorase (NAD(P)H:quinone acceptor reductase) with 5'-[p-(fluorosulfonyl)benzoyl]-adenosine. Mol Pharmacol. 1989 Jun;35(6):818–822. [PubMed] [Google Scholar]
  15. Ma Q., Cui K., Xiao F., Lu A. Y., Yang C. S. Identification of a glycine-rich sequence as an NAD(P)H-binding site and tyrosine 128 as a dicumarol-binding site in rat liver NAD(P)H:quinone oxidoreductase by site-directed mutagenesis. J Biol Chem. 1992 Nov 5;267(31):22298–22304. [PubMed] [Google Scholar]
  16. Posner G. H., Cho C. G., Green J. V., Zhang Y., Talalay P. Design and synthesis of bifunctional isothiocyanate analogs of sulforaphane: correlation between structure and potency as inducers of anticarcinogenic detoxication enzymes. J Med Chem. 1994 Jan 7;37(1):170–176. doi: 10.1021/jm00027a021. [DOI] [PubMed] [Google Scholar]
  17. Prestera T., Prochaska H. J., Talalay P. Inhibition of NAD(P)H:(quinone-acceptor) oxidoreductase by cibacron blue and related anthraquinone dyes: a structure-activity study. Biochemistry. 1992 Jan 28;31(3):824–833. doi: 10.1021/bi00118a027. [DOI] [PubMed] [Google Scholar]
  18. Prochaska H. J. Purification and crystallization of rat liver NAD(P)H:(quinone-acceptor) oxidoreductase by cibacron blue affinity chromatography: identification of a new and potent inhibitor. Arch Biochem Biophys. 1988 Dec;267(2):529–538. doi: 10.1016/0003-9861(88)90060-4. [DOI] [PubMed] [Google Scholar]
  19. Ross D., Siegel D., Beall H., Prakash A. S., Mulcahy R. T., Gibson N. W. DT-diaphorase in activation and detoxification of quinones. Bioreductive activation of mitomycin C. Cancer Metastasis Rev. 1993 Jun;12(2):83–101. doi: 10.1007/BF00689803. [DOI] [PubMed] [Google Scholar]
  20. Schlager J. J., Powis G. Cytosolic NAD(P)H:(quinone-acceptor)oxidoreductase in human normal and tumor tissue: effects of cigarette smoking and alcohol. Int J Cancer. 1990 Mar 15;45(3):403–409. doi: 10.1002/ijc.2910450304. [DOI] [PubMed] [Google Scholar]
  21. Sem D. S., Kasper C. B. Geometric relationship between the nicotinamide and isoalloxazine rings in NADPH-cytochrome P-450 oxidoreductase: implications for the classification of evolutionarily and functionally related flavoproteins. Biochemistry. 1992 Apr 7;31(13):3391–3398. doi: 10.1021/bi00128a013. [DOI] [PubMed] [Google Scholar]
  22. Skelly J. V., Suter D. A., Knox R. J., Garman E., Stuart D. I., Sanderson M. R., Roberts J. J., Neidle S. Preliminary crystallographic data for NAD(P)H quinone reductase isolated from the Walker 256 rat carcinoma cell line. J Mol Biol. 1989 Feb 5;205(3):623–624. doi: 10.1016/0022-2836(89)90233-7. [DOI] [PubMed] [Google Scholar]
  23. Smith W. W., Burnett R. M., Darling G. D., Ludwig M. L. Structure of the semiquinone form of flavodoxin from Clostridum MP. Extension of 1.8 A resolution and some comparisons with the oxidized state. J Mol Biol. 1977 Nov 25;117(1):195–225. doi: 10.1016/0022-2836(77)90031-6. [DOI] [PubMed] [Google Scholar]
  24. Snow M. E., Amzel L. M. Calculating three-dimensional changes in protein structure due to amino-acid substitutions: the variable region of immunoglobulins. Proteins. 1986 Nov;1(3):267–279. doi: 10.1002/prot.340010310. [DOI] [PubMed] [Google Scholar]
  25. Suttie J. W. Mechanism of action of vitamin K: synthesis of gamma-carboxyglutamic acid. CRC Crit Rev Biochem. 1980;8(2):191–223. doi: 10.3109/10409238009105469. [DOI] [PubMed] [Google Scholar]
  26. Talalay P. Mechanisms of induction of enzymes that protect against chemical carcinogenesis. Adv Enzyme Regul. 1989;28:237–250. doi: 10.1016/0065-2571(89)90074-5. [DOI] [PubMed] [Google Scholar]
  27. Tedeschi G., Chen S., Massey V. Active site studies of DT-diaphorase employing artificial flavins. J Biol Chem. 1995 Feb 10;270(6):2512–2516. doi: 10.1074/jbc.270.6.2512. [DOI] [PubMed] [Google Scholar]
  28. Wang B. C. Resolution of phase ambiguity in macromolecular crystallography. Methods Enzymol. 1985;115:90–112. doi: 10.1016/0076-6879(85)15009-3. [DOI] [PubMed] [Google Scholar]
  29. Ysern X., Prochaska H. J. X-ray diffraction analyses of crystals of rat liver NAD(P)H:(quinone-acceptor) oxidoreductase containing cibacron blue. J Biol Chem. 1989 May 15;264(14):7765–7767. [PubMed] [Google Scholar]
  30. Zhang Y., Talalay P., Cho C. G., Posner G. H. A major inducer of anticarcinogenic protective enzymes from broccoli: isolation and elucidation of structure. Proc Natl Acad Sci U S A. 1992 Mar 15;89(6):2399–2403. doi: 10.1073/pnas.89.6.2399. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES