Abstract
We have examined the photosensitivity of low-spin liganded hemoglobin, myoglobin, and peroxidase, and their metal-substituted analogues, using three different metals (Fe, Mn, Co) in several oxidation states and employing a variety of diatomic or pseudo-diatomic ligands (L). We have discovered a number of photosensitive systems, and present an overall stereo-electronic classification scheme for these photodissociation reactions: Linear, formally d6, metal-ligand fragments [e.g., Fe(II) +/- CO; Mn(II) +/- NO] are relatively photoliable, but systems with a bent fragment, and higher electron occupancy [e.g., Fe(II) +/- O2; Co(II) +/- NO] are relatively photoinert. Photostability appears to correlate with the occurrence of long-wavelength features in the optical absorption spectra, and the classification scheme is explained by considerations of electronic structure. The discussions are further applied to d5 systems and to low-spin d6 metalloporphyrins with nitrogenous bases as axial ligands.
Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- Austin R. H., Beeson K. W., Eisenstein L., Frauenfelder H., Gunsalus I. C. Dynamics of ligand binding to myoglobin. Biochemistry. 1975 Dec 2;14(24):5355–5373. doi: 10.1021/bi00695a021. [DOI] [PubMed] [Google Scholar]
- Brunori M., Giacometti G. M., Antonini E., Wyman J. Heme proteins: quantum yield determined by the pulse method. Proc Natl Acad Sci U S A. 1973 Nov;70(11):3141–3144. doi: 10.1073/pnas.70.11.3141. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chang C. K., Traylor T. G. Kinetics of oxygen and carbon monoxide binding to synthetic analogs of the myoglobin and hemoglobin active sites. Proc Natl Acad Sci U S A. 1975 Mar;72(3):1166–1170. doi: 10.1073/pnas.72.3.1166. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dedieu A., Rohmer M. M., Benard M., Veillard A. Letter: Oxygen binding to iron porphyrins. An ab initio calculation. J Am Chem Soc. 1976 Jun 9;98(12):3717–3718. doi: 10.1021/ja00428a060. [DOI] [PubMed] [Google Scholar]
- GIBSON Q. H., AINSWORTH S. Photosensitivity of haem compounds. Nature. 1957 Dec 21;180(4599):1416–1417. doi: 10.1038/1801416b0. [DOI] [PubMed] [Google Scholar]
- GIBSON Q. H., ANTONINI E. Kinetic studies on the reaction between native globin and haem derivatives. Biochem J. 1960 Nov;77:328–341. doi: 10.1042/bj0770328. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gibson Q. H., Hoffman B. M., Grepeau R. H., Edelstein S. J., Bull C. Manganese hemoglobin: allosteric effects in stopped flow flash photolysis and sedimentation measurements. Biochem Biophys Res Commun. 1974 Jul 10;59(1):146–151. doi: 10.1016/s0006-291x(74)80186-5. [DOI] [PubMed] [Google Scholar]
- Haldane J., Smith J. L. The Oxygen Tension of Arterial Blood. J Physiol. 1896 Dec 3;20(6):497–520. doi: 10.1113/jphysiol.1896.sp000634. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hoffman B. M., Gibson Q. H., Bull C., Crepeau R. H., Edelstein S. J., Fisher R. G., McDonald M. J. Manganese-substituted hemoglobin and myoglobin. Ann N Y Acad Sci. 1975 Apr 15;244:174–186. doi: 10.1111/j.1749-6632.1975.tb41530.x. [DOI] [PubMed] [Google Scholar]
- Hopf F. R., O'Brien T. P., Scheidt W. R., Whitten D. G. Structure and reactivity of ruthenium (II) porphyrin complexes. Photochemical ligand ejection and formation of ruthenium porphyrin dimers. J Am Chem Soc. 1975 Jan 22;97(2):277–281. doi: 10.1021/ja00835a008. [DOI] [PubMed] [Google Scholar]
- Iizuka T., Yamamoto H., Kotani M., Yonetani T. Low temperature photodissociation of hemoproteins: oxygenated cobalt-myoglobin and hemoglobin. Biochim Biophys Acta. 1974 Jun 7;351(2):182–195. doi: 10.1016/0005-2795(74)90180-9. [DOI] [PubMed] [Google Scholar]
- KEILIN D., HARTREE E. F. Cyanide compounds of ferroperoxidase and myoglobin and their reversible photodissociation. Biochem J. 1955 Sep;61(1):153–171. doi: 10.1042/bj0610153. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Keyes M. H., Falley M., Lumry R. Studies of heme proteins. II. Preparation and thermodynamic properties of sperm whale myoglobin. J Am Chem Soc. 1971 Apr 21;93(8):2035–2040. doi: 10.1021/ja00737a031. [DOI] [PubMed] [Google Scholar]
- Kirchner R. F., Loew G. H. Semiempirical calculations of model oxyheme: Variation of calculated electromagnetic properties with electronic configuration and oxygen geometry. J Am Chem Soc. 1977 Jul 6;99(14):4639–4647. doi: 10.1021/ja00456a020. [DOI] [PubMed] [Google Scholar]
- Makinen M. W., Eaton W. A. Polarized single crystal absorption spectra of carboxy- and oxyhemoglobin. Ann N Y Acad Sci. 1973;206:210–222. doi: 10.1111/j.1749-6632.1973.tb43213.x. [DOI] [PubMed] [Google Scholar]
- SMITH M. H. Kinetics and equilibria in systems containing haem, carbon monoxide and pyridine. Biochem J. 1959 Sep;73:90–101. doi: 10.1042/bj0730090. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shank C. V., Ippen E. P., Bersohn R. Time-resolved spectroscopy of hemoglobin and its complexes with subpicosecond optical pulses. Science. 1976 Jul 2;193(4247):50–51. doi: 10.1126/science.935853. [DOI] [PubMed] [Google Scholar]