Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1978 Jan;75(1):21–25. doi: 10.1073/pnas.75.1.21

On the photosensitivity of liganded hemoproteins and their metal-substituted analogues.

B M Hoffman, Q H Gibson
PMCID: PMC411174  PMID: 272637

Abstract

We have examined the photosensitivity of low-spin liganded hemoglobin, myoglobin, and peroxidase, and their metal-substituted analogues, using three different metals (Fe, Mn, Co) in several oxidation states and employing a variety of diatomic or pseudo-diatomic ligands (L). We have discovered a number of photosensitive systems, and present an overall stereo-electronic classification scheme for these photodissociation reactions: Linear, formally d6, metal-ligand fragments [e.g., Fe(II) +/- CO; Mn(II) +/- NO] are relatively photoliable, but systems with a bent fragment, and higher electron occupancy [e.g., Fe(II) +/- O2; Co(II) +/- NO] are relatively photoinert. Photostability appears to correlate with the occurrence of long-wavelength features in the optical absorption spectra, and the classification scheme is explained by considerations of electronic structure. The discussions are further applied to d5 systems and to low-spin d6 metalloporphyrins with nitrogenous bases as axial ligands.

Full text

PDF
21

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Austin R. H., Beeson K. W., Eisenstein L., Frauenfelder H., Gunsalus I. C. Dynamics of ligand binding to myoglobin. Biochemistry. 1975 Dec 2;14(24):5355–5373. doi: 10.1021/bi00695a021. [DOI] [PubMed] [Google Scholar]
  2. Brunori M., Giacometti G. M., Antonini E., Wyman J. Heme proteins: quantum yield determined by the pulse method. Proc Natl Acad Sci U S A. 1973 Nov;70(11):3141–3144. doi: 10.1073/pnas.70.11.3141. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Chang C. K., Traylor T. G. Kinetics of oxygen and carbon monoxide binding to synthetic analogs of the myoglobin and hemoglobin active sites. Proc Natl Acad Sci U S A. 1975 Mar;72(3):1166–1170. doi: 10.1073/pnas.72.3.1166. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Dedieu A., Rohmer M. M., Benard M., Veillard A. Letter: Oxygen binding to iron porphyrins. An ab initio calculation. J Am Chem Soc. 1976 Jun 9;98(12):3717–3718. doi: 10.1021/ja00428a060. [DOI] [PubMed] [Google Scholar]
  5. GIBSON Q. H., AINSWORTH S. Photosensitivity of haem compounds. Nature. 1957 Dec 21;180(4599):1416–1417. doi: 10.1038/1801416b0. [DOI] [PubMed] [Google Scholar]
  6. GIBSON Q. H., ANTONINI E. Kinetic studies on the reaction between native globin and haem derivatives. Biochem J. 1960 Nov;77:328–341. doi: 10.1042/bj0770328. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Gibson Q. H., Hoffman B. M., Grepeau R. H., Edelstein S. J., Bull C. Manganese hemoglobin: allosteric effects in stopped flow flash photolysis and sedimentation measurements. Biochem Biophys Res Commun. 1974 Jul 10;59(1):146–151. doi: 10.1016/s0006-291x(74)80186-5. [DOI] [PubMed] [Google Scholar]
  8. Haldane J., Smith J. L. The Oxygen Tension of Arterial Blood. J Physiol. 1896 Dec 3;20(6):497–520. doi: 10.1113/jphysiol.1896.sp000634. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hoffman B. M., Gibson Q. H., Bull C., Crepeau R. H., Edelstein S. J., Fisher R. G., McDonald M. J. Manganese-substituted hemoglobin and myoglobin. Ann N Y Acad Sci. 1975 Apr 15;244:174–186. doi: 10.1111/j.1749-6632.1975.tb41530.x. [DOI] [PubMed] [Google Scholar]
  10. Hopf F. R., O'Brien T. P., Scheidt W. R., Whitten D. G. Structure and reactivity of ruthenium (II) porphyrin complexes. Photochemical ligand ejection and formation of ruthenium porphyrin dimers. J Am Chem Soc. 1975 Jan 22;97(2):277–281. doi: 10.1021/ja00835a008. [DOI] [PubMed] [Google Scholar]
  11. Iizuka T., Yamamoto H., Kotani M., Yonetani T. Low temperature photodissociation of hemoproteins: oxygenated cobalt-myoglobin and hemoglobin. Biochim Biophys Acta. 1974 Jun 7;351(2):182–195. doi: 10.1016/0005-2795(74)90180-9. [DOI] [PubMed] [Google Scholar]
  12. KEILIN D., HARTREE E. F. Cyanide compounds of ferroperoxidase and myoglobin and their reversible photodissociation. Biochem J. 1955 Sep;61(1):153–171. doi: 10.1042/bj0610153. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Keyes M. H., Falley M., Lumry R. Studies of heme proteins. II. Preparation and thermodynamic properties of sperm whale myoglobin. J Am Chem Soc. 1971 Apr 21;93(8):2035–2040. doi: 10.1021/ja00737a031. [DOI] [PubMed] [Google Scholar]
  14. Kirchner R. F., Loew G. H. Semiempirical calculations of model oxyheme: Variation of calculated electromagnetic properties with electronic configuration and oxygen geometry. J Am Chem Soc. 1977 Jul 6;99(14):4639–4647. doi: 10.1021/ja00456a020. [DOI] [PubMed] [Google Scholar]
  15. Makinen M. W., Eaton W. A. Polarized single crystal absorption spectra of carboxy- and oxyhemoglobin. Ann N Y Acad Sci. 1973;206:210–222. doi: 10.1111/j.1749-6632.1973.tb43213.x. [DOI] [PubMed] [Google Scholar]
  16. SMITH M. H. Kinetics and equilibria in systems containing haem, carbon monoxide and pyridine. Biochem J. 1959 Sep;73:90–101. doi: 10.1042/bj0730090. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Shank C. V., Ippen E. P., Bersohn R. Time-resolved spectroscopy of hemoglobin and its complexes with subpicosecond optical pulses. Science. 1976 Jul 2;193(4247):50–51. doi: 10.1126/science.935853. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES