Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1978 Jan;75(1):54–58. doi: 10.1073/pnas.75.1.54

Formation of a ternary complex: Actin, 5′-adenylyl imidodiphosphate, and the subfragments of myosin

Lois E Greene 1, Evan Eisenberg 1
PMCID: PMC411182  PMID: 343111

Abstract

The formation of the ternary complex composed of actin, 5′-adenylyl imidodiphosphate [AMP-P(NH)P], and myosin subfragment 1 (S-1) was studied using the analytical ultracentrifuge with UV optics, which enabled the direct determination of the extent of dissociation of actin·S-1 (acto·S-1) by AMP-P(NH)P. In contrast to the reaction with ATP, at saturating levels of AMP-P(NH)P (1.5 mM), extensive formation of the ternary acto·S-1·AMP-P(NH)P complex occurs at 22°. With 40 μM actin present, AMP-P(NH)P causes almost no dissociation of the acto·S-1 complex at 0.04 M ionic strength, while even at 0.22 M ionic strength one-third of the S-1 remains associated with actin and AMP-P(NH)P in a ternary complex. A detailed study of the binding of S-1·AMP-P(NH)P to actin using the Scatchard plot analysis shows that, at saturation, 1 mol of S-1·AMP-P(NH)P binds per mol of actin monomer. There appears to be no cooperativity occurring as the S-1·AMP-P(NH)P binds along the actin filament, with the possible exception of a slight positive cooperativity when most of the sites on the actin filament are saturated. The turbidity of the ternary complex is identical to the turbidity of acto·S-1 alone. Preliminary experiments with the two-headed subfragment of myosin, heavy meromyosin (HMM), show that the binding of HMM·[AMP-P(NH)P]2 to actin is only about twice as strong as the binding of S-1·AMP-P(NH)P to actin, indicating that the second head contributes very little to the free energy of binding.

Keywords: myosin subfragment 1, heavy meromyosin, association constants, turbidity

Full text

PDF
54

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Beinfeld M. C., Martonosi A. N. Effect of F-actin upon the binding of ADP to myosin and its fragments. J Biol Chem. 1975 Oct 10;250(19):7871–7878. [PubMed] [Google Scholar]
  2. Chock S. P., Chock P. B., Eisenberg E. Pre-steady-state kinetic evidence for a cyclic interaction of myosin subfragment one with actin during the hydrolysis of adenosine 5'-triphosphate. Biochemistry. 1976 Jul 27;15(15):3244–3253. doi: 10.1021/bi00660a013. [DOI] [PubMed] [Google Scholar]
  3. Dos Remedios C. G., Yount R. G., Morales M. F. Individual states in the cycle of muscle contraction. Proc Natl Acad Sci U S A. 1972 Sep;69(9):2542–2546. doi: 10.1073/pnas.69.9.2542. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Eisenberg E., Dobkin L., Kielley W. W. Binding of actin to heavy meromyosin in the absence of adenosine triphosphate. Biochemistry. 1972 Dec 5;11(25):4657–4660. doi: 10.1021/bi00775a003. [DOI] [PubMed] [Google Scholar]
  5. Eisenberg E., Moos C. The adenosine triphosphatase activity of acto-heavy meromyosin. A kinetic analysis of actin activation. Biochemistry. 1968 Apr;7(4):1486–1489. doi: 10.1021/bi00844a035. [DOI] [PubMed] [Google Scholar]
  6. Eisenberg E., Zobel C. R., Moos C. Subfragment 1 of myosin: adenosine triphophatase activation by actin. Biochemistry. 1968 Sep;7(9):3186–3194. doi: 10.1021/bi00849a022. [DOI] [PubMed] [Google Scholar]
  7. Fraser A. B., Eisenberg E., Kielley W. W., Carlson F. D. The interaction of heavy meromyosin and subfragment 1 with actin. Physical measurements in the presence and absence of adenosine triphosphate. Biochemistry. 1975 May 20;14(10):2207–2214. doi: 10.1021/bi00681a025. [DOI] [PubMed] [Google Scholar]
  8. Goody R. S., Hofmann W., Mannherz G. H. The binding constant of ATP to myosin S1 fragment. Eur J Biochem. 1977 Sep;78(2):317–324. doi: 10.1111/j.1432-1033.1977.tb11742.x. [DOI] [PubMed] [Google Scholar]
  9. Goody R. S., Holmes K. C., Mannherz H. G., Leigh J. B., Rosenbaum G. Cross-bridge conformation as revealed by x-ray diffraction studies on insect flight muscles with ATP analogues. Biophys J. 1975 Jul;15(7):687–705. doi: 10.1016/S0006-3495(75)85848-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Goody R. S., Leigh J. B., Mannherz H. G., Tregear R. T., Rosenbaum G. X-ray titration of binding of beta, gamma-imido-ATP to myosin in insect flight muscle. Nature. 1976 Aug 12;262(5569):613–615. doi: 10.1038/262613a0. [DOI] [PubMed] [Google Scholar]
  11. Highsmith S. Interactions of the actin and nucleotide binding sites on myosin subfragment 1. J Biol Chem. 1976 Oct 25;251(20):6170–6172. [PubMed] [Google Scholar]
  12. Highsmith S. The effects of temperature and salts on myosin subfragment-1 and F-actin association. Arch Biochem Biophys. 1977 Apr 30;180(2):404–408. doi: 10.1016/0003-9861(77)90054-6. [DOI] [PubMed] [Google Scholar]
  13. Lowey S., Luck S. M. Equilibrium binding of adenosine diphosphate to myosin. Biochemistry. 1969 Aug;8(8):3195–3199. doi: 10.1021/bi00836a010. [DOI] [PubMed] [Google Scholar]
  14. Lymn R. W. Low-angle x-ray diagrams from skeletal muscle: the effect of AMP-PNP, a non-hydrolyzed analogue of ATP. J Mol Biol. 1975 Dec 25;99(4):567–582. doi: 10.1016/s0022-2836(75)80172-0. [DOI] [PubMed] [Google Scholar]
  15. Lymn R. W., Taylor E. W. Mechanism of adenosine triphosphate hydrolysis by actomyosin. Biochemistry. 1971 Dec 7;10(25):4617–4624. doi: 10.1021/bi00801a004. [DOI] [PubMed] [Google Scholar]
  16. Marsh D. J., de Bruin S. H., Gratzer W. B. An investigation of heavy meromyosin-ADP binding equilibria by proton release measurements. Biochemistry. 1977 Apr 19;16(8):1738–1742. doi: 10.1021/bi00627a034. [DOI] [PubMed] [Google Scholar]
  17. Marston S. B., Rodger C. D., Tregear R. T. Changes in muscle crossbridges when beta, gamma-imido-ATP binds to myosin. J Mol Biol. 1976 Jun 14;104(1):263–276. doi: 10.1016/0022-2836(76)90012-7. [DOI] [PubMed] [Google Scholar]
  18. Marston S., Weber A. The dissociation constant of the actin-heavy meromyosin subfragment-1 complex. Biochemistry. 1975 Aug 26;14(17):3868–3873. doi: 10.1021/bi00688a021. [DOI] [PubMed] [Google Scholar]
  19. Schliselfeld L. H. Binding of adenylyl imidodiphosphate, an analog of adenosine triphosphate, to myosin and heavy meromyosin. J Biol Chem. 1974 Aug 10;249(15):4985–4989. [PubMed] [Google Scholar]
  20. Takeuchi K., Tonomura Y. Formation of acto-H-meromyosin and acto-subfragment-1 complexes and their dissociation by adenosine triphosphate. J Biochem. 1971 Dec;70(6):1011–1026. doi: 10.1093/oxfordjournals.jbchem.a129710. [DOI] [PubMed] [Google Scholar]
  21. White H. D., Taylor E. W. Energetics and mechanism of actomyosin adenosine triphosphatase. Biochemistry. 1976 Dec 28;15(26):5818–5826. doi: 10.1021/bi00671a020. [DOI] [PubMed] [Google Scholar]
  22. Wolcott R. G., Boyer P. D. The reversal of the myosin and actomyosin ATPase reactions and the free energy of ATP binding to myosin. Biochem Biophys Res Commun. 1974 Apr 8;57(3):709–716. doi: 10.1016/0006-291x(74)90604-4. [DOI] [PubMed] [Google Scholar]
  23. Woodrum D. T., Rich S. A., Pollard T. D. Evidence for biased bidirectional polymerization of actin filaments using heavy meromyosin prepared by an improved method. J Cell Biol. 1975 Oct;67(1):231–237. doi: 10.1083/jcb.67.1.231. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Yount R. G., Babcock D., Ballantyne W., Ojala D. Adenylyl imidodiphosphate, an adenosine triphosphate analog containing a P--N--P linkage. Biochemistry. 1971 Jun 22;10(13):2484–2489. doi: 10.1021/bi00789a009. [DOI] [PubMed] [Google Scholar]
  25. Yount R. G., Ojala D., Babcock D. Interaction of P--N--P and P--C--P analogs of adenosine triphosphate with heavy meromyosin, myosin, and actomyosin. Biochemistry. 1971 Jun 22;10(13):2490–2496. doi: 10.1021/bi00789a010. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES