Abstract
The interaction of cardiac adenylate cyclase [ATP pyrophosphate-lyase (cyclizing); EC 4.6.1.1] with a variety of nucleotide affinity resins was systematically investigated. None of these resins effectively bound the native, detergent-solubilized enzyme. However, after hydrophobic resolution on an uncharged resin consisting of long-chain alkyl groups linked to agarose via ether bonds, 40% of the adenylate cyclase activity biospecifically adsorbed to an ATP affinity resin. Gel filtration without detergent after hydrophobic chromatography demonstrated that the enzyme eluted in the identical position as the native enzyme chromatographed in the presence of detergent. This preparation almost completely biospecifically adsorbed to the same ATP-resin and was not eluted with 5 mM cyclic AMP, pyrophosphate, or GTP. If the GTP-washed immobilized enzyme was subsequently desorbed with ATP, then expected Gpp(NH)p (5'-guanylyliminodiphosphonate) sensitivity persisted. A preliminary purification scheme that resulted in an approximate 5000-fold increase in specific activity is presented. These observations indicate that a membrane-bound enzyme may appear to be intrinsically hydrophobic only by virtue of aggregation with other hydrophobic constituents and that prior separation of hydrophobic chromatography may permit such proteins to be fractionated subsequently by methods conventionally applied to hydrophilic proteins.
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Birnbaumer L. Hormone-sensitive adenylyl cyclases. Useful models for studying hormone receptor functions in cell-free systems. Biochim Biophys Acta. 1973 Sep 10;300(2):129–158. doi: 10.1016/0304-4157(73)90002-6. [DOI] [PubMed] [Google Scholar]
- Hsie A. W., Puck T. T. Morphological transformation of Chinese hamster cells by dibutyryl adenosine cyclic 3':5'-monophosphate and testosterone. Proc Natl Acad Sci U S A. 1971 Feb;68(2):358–361. doi: 10.1073/pnas.68.2.358. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Johnson G. S., Friedman R. M., Pastan I. Restoration of several morphological characteristics of normal fibroblasts in sarcoma cells treated with adenosine-3':5'-cyclic monphosphate and its derivatives. Proc Natl Acad Sci U S A. 1971 Feb;68(2):425–429. doi: 10.1073/pnas.68.2.425. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Konijn T. M., Van De Meene J. G., Bonner J. T., Barkley D. S. The acrasin activity of adenosine-3',5'-cyclic phosphate. Proc Natl Acad Sci U S A. 1967 Sep;58(3):1152–1154. doi: 10.1073/pnas.58.3.1152. [DOI] [PMC free article] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Lamed R., Levin Y., Wilchek M. Covalent coupling of nucleotides to agarose for affinity chromatography. Biochim Biophys Acta. 1973 Apr 28;304(2):231–235. doi: 10.1016/0304-4165(73)90239-0. [DOI] [PubMed] [Google Scholar]
- Levey G. S. Solubilization of myocardial adenyl cyclase: less of hormone responsiveness and activation by phospholipids. Ann N Y Acad Sci. 1971 Dec 30;185:449–457. doi: 10.1111/j.1749-6632.1971.tb45272.x. [DOI] [PubMed] [Google Scholar]
- Loeffler L. J., Lovenberg W., Sjoerdsma A. Effects of dibutyryl-3',5'-cyclic adenosine monophosphage, phosphodiesterase inhibitors and prostaglandin E1 on compound 48-80-induced histamine release from rat peritoneal mast cells in vitro. Biochem Pharmacol. 1971 Sep;20(9):2287–2297. doi: 10.1016/0006-2952(71)90228-0. [DOI] [PubMed] [Google Scholar]
- Neer E. J. The size of adenylate cyclase. J Biol Chem. 1974 Oct 25;249(20):6527–6531. [PubMed] [Google Scholar]
- Neer E. J. Two soluble forms of guanosine 5'-(beta,gamma-imino)triphosphate and fluoride-activated adenylate cyclase. J Biol Chem. 1976 Sep 25;251(18):5831–5834. [PubMed] [Google Scholar]
- Pfeuffer T., Helmreich E. J. Activation of pigeon erythrocyte membrane adenylate cyclase by guanylnucleotide analogues and separation of a nucleotide binding protein. J Biol Chem. 1975 Feb 10;250(3):867–876. [PubMed] [Google Scholar]
- Puck T. T., Waldren C. A., Hsie A. W. Membrane dynamics in the action of dibutyryl adenosine 3':5'-cyclic monophosphate and testosterone on mammalian cells. Proc Natl Acad Sci U S A. 1972 Jul;69(7):1943–1947. doi: 10.1073/pnas.69.7.1943. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rosengren J., Pählman S., Glad M., Hjertén S. Hydrophobic interaction chromatography on non-charged Sepharose derivatives. Binding of a model protein, related to ionic strength, hydrophobicity of the substituent, and degree of substitution (determined by NMR). Biochim Biophys Acta. 1975 Nov 18;412(1):51–61. [PubMed] [Google Scholar]
- Ryan L. D., Vestling C. S. Rapid purification of lactate dehydrogenase from rat liver and hepatoma: a new approach. Arch Biochem Biophys. 1974 Jan;160(1):279–284. doi: 10.1016/s0003-9861(74)80035-4. [DOI] [PubMed] [Google Scholar]
- SUTHERLAND E. W., RALL T. W., MENON T. Adenyl cylase. I. Distribution, preparation, and properties. J Biol Chem. 1962 Apr;237:1220–1227. [PubMed] [Google Scholar]
- Salomon Y., Londos C., Rodbell M. A highly sensitive adenylate cyclase assay. Anal Biochem. 1974 Apr;58(2):541–548. doi: 10.1016/0003-2697(74)90222-x. [DOI] [PubMed] [Google Scholar]
- Schofield J. G. Role of cyclic 3',5'-adenosine monophosphate in the release of growth hormone in vitro. Nature. 1967 Sep 23;215(5108):1382–1383. doi: 10.1038/2151382b0. [DOI] [PubMed] [Google Scholar]
- Stellwagen E., Baker B. Proposed structure for brain adenylate cyclase purified using blue dextran-Sepharose chromatography. Nature. 1976 Jun 24;261(5562):719–720. doi: 10.1038/261719a0. [DOI] [PubMed] [Google Scholar]
- Swislocki N. I., Tierney J. Solubilization, stabilization, and partial purification of brain adenylate cyclase from rat. Biochemistry. 1973 May 8;12(10):1862–1866. doi: 10.1021/bi00734a004. [DOI] [PubMed] [Google Scholar]
