Abstract
The degradation of lipophilic ganglioside GD1a and hydrophilic sialyllactitol by membrane-bound neuraminidase (EC 3.2.1.18) from calf brain has been studied at substrate concentrations of 0.1 mM. Ganglioside GD1a taken up by cell membranes is hydrolyzed faster membrane-bound neuraminidase than are water-soluble substrates of the enzyme, sialyllactitol and des-GD1a. Availability and enzymic breakdown of the disialoganglioside are enhanced by general anesthetics such as N2O or halothane whereas the degradation of the hydrophilic substrate silayllactitol is not affected or even is decreased by these agents. General anesthetics lower the microviscosity of membranes as indicated by studies of fluorescence depolarization with the indicator 1,6-diphenylhexatriene. Increased fluidity can result in higher lateral diffusion of ganglioside GD1a, thus increasing its chances of presentation to, and interaction with, membrane-bound neuraminidase. Lipophilic derivatives of the disialoganglioside, gangliosides GM1 and GM2 and gangliotriaosylceramide GA2, are strong inhibitors of the ganglioside degradation whereas water-soluble derivatives des-GM1, des-GM2, N-acetylneuraminic acid, and sialyllactose are not. A model is presented that suggests that the activity of membrane-bound neuraminidase on gangliosides of brain membranes is regulated by the viscosity of these membranes and their monosialoganglioside content.
Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bhavanandan V. P., Yeh A. K., Carubelli R. Neuraminidase assay utilizing sialyl-oligosaccharide substrates with tritium-labeled aglycone. Anal Biochem. 1975 Dec;69(2):385–394. doi: 10.1016/0003-2697(75)90140-2. [DOI] [PubMed] [Google Scholar]
- Brown B. L., Albano J. D., Ekins R. P., Sgherzi A. M. A simple and sensitive saturation assay method for the measurement of adenosine 3':5'-cyclic monophosphate. Biochem J. 1971 Feb;121(3):561–562. doi: 10.1042/bj1210561. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Coleman R. Membrane-bound enzymes and membrane ultrastructure. Biochim Biophys Acta. 1973 Apr 3;300(1):1–30. doi: 10.1016/0304-4157(73)90010-5. [DOI] [PubMed] [Google Scholar]
- Gatt S., Barenholz Y. Enzymes of complex lipid metabolism. Annu Rev Biochem. 1973;42(0):61–90. doi: 10.1146/annurev.bi.42.070173.000425. [DOI] [PubMed] [Google Scholar]
- Hoss W., Abood L. G. Fluidity in hydrophobic protein regions of synaptic membranes. Eur J Biochem. 1974 Dec 16;50(1):177–181. doi: 10.1111/j.1432-1033.1974.tb03885.x. [DOI] [PubMed] [Google Scholar]
- Leibovitz Z., Gatt S. Enzymatic hydrolysis of sphingolipids. VII. Hydrolysis of gangliosides by a neuraminidase from calf brain. Biochim Biophys Acta. 1968 Jan 10;152(1):136–143. doi: 10.1016/0005-2760(68)90015-5. [DOI] [PubMed] [Google Scholar]
- Ohman R., Rosenberg A., Svennerholm L. Human brain sialidase. Biochemistry. 1970 Sep 15;9(19):3774–3782. doi: 10.1021/bi00821a017. [DOI] [PubMed] [Google Scholar]
- Perkins J. P., Moore M. M. Adenyl cyclase of rat cerebral cortex. Activation of sodium fluoride and detergents. J Biol Chem. 1971 Jan 10;246(1):62–68. [PubMed] [Google Scholar]
- Sandhoff K., Harzer K., Wässle W., Jatzkewitz H. Enzyme alterations and lipid storage in three variants of Tay-Sachs disease. J Neurochem. 1971 Dec;18(12):2469–2489. doi: 10.1111/j.1471-4159.1971.tb00204.x. [DOI] [PubMed] [Google Scholar]
- Sandhoff K., Schraven J., Nowoczek G. Effect of xenon, nitrous oxide and halothane on membrane-bound sialidase from calf brain. FEBS Lett. 1976 Mar 1;62(3):284–287. doi: 10.1016/0014-5793(76)80076-2. [DOI] [PubMed] [Google Scholar]
- Sandhoff K. The hydrolysis of Tay-Sachs ganglioside (TSG) by human N-acetyl-beta-D-hexosaminidase A. FEBS Lett. 1970 Dec 18;11(5):342–344. doi: 10.1016/0014-5793(70)80564-6. [DOI] [PubMed] [Google Scholar]
- Sandhoff K., Wässle W. Anreicherung und Charakterisierung zweier Formen der menschlichen N-acetyl- -D-hexosaminidase. Hoppe Seylers Z Physiol Chem. 1971 Aug;352(8):1119–1133. [PubMed] [Google Scholar]
- Schengrund C. L., Rosenberg A. Intracellular location and properties of bovine brain sialidase. J Biol Chem. 1970 Nov 25;245(22):6196–6200. [PubMed] [Google Scholar]
- Schoenborn B. P. Binding of xenon to horse haemoglobin. Nature. 1965 Nov 20;208(5012):760–762. doi: 10.1038/208760a0. [DOI] [PubMed] [Google Scholar]
- Schraven J., Cáp C., Nowoczek G., Sandhoff K. A radiometric assay for sialidase acting on ganglioside GD1a. Anal Biochem. 1977 Apr;78(2):333–339. doi: 10.1016/0003-2697(77)90094-x. [DOI] [PubMed] [Google Scholar]
- Shinitzky M., Barenholz Y. Dynamics of the hydrocarbon layer in liposomes of lecithin and sphingomyelin containing dicetylphosphate. J Biol Chem. 1974 Apr 25;249(8):2652–2657. [PubMed] [Google Scholar]
- Tettamanti G., Morgan I. G., Gombos G., Vincendon G., Mandel P. Sub-synaptosomal localization of brain particulate neuraminidose. Brain Res. 1972 Dec 12;47(2):515–518. doi: 10.1016/0006-8993(72)90661-0. [DOI] [PubMed] [Google Scholar]
- Trudell J. R., Hubbell W. L., Cohen E. N. Pressure reversal of inhalation anesthetic-induced disorder in spin-labeled phospholipid vesicles. Biochim Biophys Acta. 1973 Jan 26;291(2):328–334. doi: 10.1016/s0005-2736(73)80001-x. [DOI] [PubMed] [Google Scholar]
- Trudell J. R., Hubbell W. L., Cohen E. N. The effect of two inhalation anesthetics on the order of spin-labeled phospholipid vesicles. Biochim Biophys Acta. 1973 Jan 26;291(2):321–327. doi: 10.1016/0005-2736(73)90485-9. [DOI] [PubMed] [Google Scholar]
- Wiegandt H., Bücking H. W. Carbohydrate components of extraneuronal gangliosides from bovine and human spleen, and bovine kidney. Eur J Biochem. 1970 Aug;15(2):287–292. doi: 10.1111/j.1432-1033.1970.tb01006.x. [DOI] [PubMed] [Google Scholar]
- Wiegandt H. The subcellular localization of gangliosides in the brain. J Neurochem. 1967 Jun;14(6):671–674. doi: 10.1111/j.1471-4159.1967.tb09571.x. [DOI] [PubMed] [Google Scholar]